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This paper focuses on extensive ductile crack growth by modeling a mode I fracture experi-
ment. Solution of this problem, requires structural scale plate/shell finite which cannot
resolve the details of the fracture process. Thus, a cohesive zone model, which accounts
for the dependence of the cohesive tearing energy on the crack advance is employed.
The steady-state cohesive energy is informed by the detailed analysis of necking localiza-
tion and shear failure, performed with the Gurson model. The structural scale model
reveals the partition of the tearing energy into the cohesive energy and the additional
plastic dissipation occurring outside the cohesive zone.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The governing mechanism of ductile fracture in metals is nucleation, growth and coalescence of micro-voids. In stretching
of bars or plates of most ductile structural alloys, there is no appreciable porosity in the material until necking localization
sets in producing enhanced local stress triaxiality. The increase in tri-axial stress accelerates the void growth and, eventually,
causes localization in a shear band and coalescence into a crack [5,13]. The plastic strains inside the neck can reach high
levels (on the order of �100% measured by the grain width reduction [6]) which are usually much larger than strains outside
the neck. To accurately capture neck development and progressive damage development within the neck, a detailed numeri-
cal analysis is necessary with micromechanically motivated constitutive models, such as the Gurson model [8] and its sub-
sequent modifications [10,20,21], the Perzyna model [7,14], or the Rousselier model [16]. While these micromechanical
approaches can reproduce the details of the deformation and plastic dissipation in the fracture process zone, including
details such as the cup-cone fracture mode, they require very small element sizes, on the order of void spacing, as empha-
sized by Xue et al. [32]. This level of resolution is computationally expensive and only feasible for small scale geometries
such as coupon test samples. The fact that it is not feasible to use micro-mechanically based constitutive models is a signifi-
cant handicap for engineers attempting to quantify the response of large-scale structures such as ships, aircraft, and automo-
biles to extreme loading conditions leading to component-level fracture and failure. Generally, large structures must be
analyzed using plate/shell elements with characteristic in-plane lengths larger than the plate thickness.

The present study is specifically concerned with modeling mode I ductile tearing of large sheet metal components such as
those found on a ship, an automobile or an aircraft. The large scale of the problem requires large plate/shell finite elements
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Nomenclature

A0 initial undeformed cross-sectional area of a tensile coupon
d overall elongation of the detailed neck model simulated using shear modified Gurson model
D void spacing in the dominant void population
E elastic modulus
F applied force for the detailed neck model simulated using shear modified Gurson model
K elastic stress intensity factor
KRðDaÞ crack growth resistance in small scale yielding under monotonic load
KIC plane strain mode I toughness – stress based
KC plane stress toughness
L initial specimen length of a tensile coupon
N Considere condition strain at the necking onset; material power law hardening exponent
P applied force in large scale fracture model
RP plastic zone size
t plate thickness
T nominal cohesive traction
Tmax maximum cohesive tractionbT peak cohesive traction
a steady-state crack growth coefficient for cohesive energy/area
b plane strain toughness coefficient
C cohesive energy = work/area required to separate the plate after the onset of necking
CI work/area dissipated in necking
CII work/area dissipated in shear localization
CIC plane strain mode I toughness – energy based
Csteady-state

steady state energy/area
CSSY ðDaÞ crack growth resistance in small-scale yielding
d cohesive separation within the neck region
d1; d2 cohesive traction–separation shape parameters
dmax maximum separation across the neck
D crosshead displacement in large scale plate model
Da crack advance in small scale yielding
Dx distance ahead of the pre-crack
e strain
elog logarithmic strain
e0 strain at yield
m Poisson’s ratio
r true stress
rM true stress governing flow of the damage-free base material (matrix material) in the Gurson model
rU ultimate stress
ry yield stress
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with a minimum in-plane dimension limited by plate thickness. In this paper, crack growth resistance is modeled starting
from initiation from a pre-crack through extensive propagation. Standard shell elements cannot capture the details of neck-
ing localization and subsequent micro-mechanical damage and fracture. The complicated behavior beyond the onset of neck-
ing leading to failure can be addressed in several ways. In this paper, a cohesive zone is used to represent the sequence of
failure processes. Similar efforts for both ductile and brittle materials have been undertaken by other authors [2,4,9,17,31].
Simonsen and Törnqvist [18] employed a critical plastic strain criterion to advance the crack tip, demonstrating how the
critical strain must depend on element size when calibrated against experiment. In each approach, the sequence of failure
processes is subsumed within either the cohesive zone or the calibrated critical strain. Another approach [24–28,30] employs
special shell elements allowing for damage and softening in a phenomenological way to generate the effective non-linear
response of the structural components. A recent study by the present authors [29] compared the use of these special ele-
ments in plate tearing simulations with an approach based on a cohesive zone. Similar efforts have been recently undertaken
by other authors [1,18,19].

The present approach, which is directed to tearing of plates under large scale plastic yielding conditions, has parallels
with an early simulation of mode I crack growth under small scale yielding plane strain conditions by Tvergaard and
Hutchinson [22]. Those authors embedded a cohesive zone imbued with a peak strength and cohesive energy within a finite
element representation of the surrounding elastic–plastic field. Crack growth resistance was computed under monotonically
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increasing load from the onset of growth until the approach to steady-state advance. The model was able to partition the
total work of fracture into the work of the fracture processes, represented by the cohesive zone, and the plastic work dissi-
pated in the surrounding field. As already noted, in this paper, plane stress elements with in-plane size larger than the plate
thickness will be employed along with a cohesive zone model calibrated to capture localization and fracture processes at the
scale of the plate thickness and below.

As background, the paper begins in Section 2 with a brief discussion of the difference between mode I crack growth resis-
tance in plane stress small scale yielding and that in plane strain. Then, in Section 3 recent work on the steady-state tearing
of large plates is reviewed to provide insight into the specification of the cohesive zone. In Section 4, the necessity of allowing
for a dependence of the cohesive fracture energy on crack advance is highlighted, reflecting the role of changing stress triaxi-
ality and the development of necking localization ahead of the crack tip as the crack advances from a pre-crack. Section 4
discusses the experimental results used as a basis for model calibration and verification, as well as the computational model.
Full details of the model calibration procedure are provided in Section 5, followed by a review and interpretation of the sim-
ulation results. The cohesive zone developed for the particular plate material and thickness are used to compute the tearing
resistance behavior for the plate under small scale yielding conditions in Section 6, providing insights into the relation of
tearing resistance to the cohesive separation energy. Conclusions and suggestions for further work are given in Section 7.
2. Mode I crack growth resistance in small scale yielding: plane stress versus plane strain

Although the central problem to be addressed in this paper is the mode I tearing of a plate under large scale plastic yield-
ing conditions, it is useful to begin by considering mode I crack growth in ductile alloys under small scale yielding conditions
and to contrast the behavior in plane strain with that in plane stress. These considerations provide insights into the for-
mulation of the cohesive zone used in the mode I plate tearing analysis, and they give background to the computation of
the small scale yielding resistance curve for the calibrated plate material.

In plane strain, small scale yielding requires the crack tip plastic zone to be small compared to both the overall crack
length (or ligament length) and the thickness of the specimen or plate. In plane stress applications, the requirement of small
scale yielding only requires the plastic zone to be small compared to the overall crack length and other relevant in-plane
lengths. In plane stress, the plastic zone will often be much larger than the plate thickness. In each case, small scale yielding
implies that the elastic stress intensity factor, K , characterizes the intensity of the applied loads experienced by the crack tip
and plastic zone surrounding it. Crack growth resistance in small scale yielding under monotonically applied load is
characterized by KRðDaÞ where Da is the crack tip advance from an initial pre-crack. Qualitative sketches of KRðDaÞ for plane
strain and plane stress are presented in Fig. 1.

In plane strain, growth initiates at KR ¼ KIc , given a sufficiently sharp pre-crack. Even modestly tough materials display
some crack grow resistance such that the stress intensity required to advance the crack increases with Da. Steady-state resis-

tance is attained after the crack has advanced on the order of the plane strain plastic zone size, Rp ffi ðKIc=ryÞ2=10. For very
tough materials, ðKRÞsteady-state can be much larger than KIc . Quantitative results for resistance curve behavior such as that
depicted in Fig. 1a have been computed in [22] based on a plane strain model that imbeds a cohesive zone to represent
the fracture process within a finite element representation of the surrounding plastic zone and outer elastic field.

The behavior in plane stress depicted in Fig. 1b is qualitatively similar, but the underlying mechanics is distinctly dif-
ferent. For a plate whose thickness, t does not satisfy t � Rp, the onset of crack growth occurs at KC . Except for exceedingly
thin plates such as foils, KC > KIc due to lower stress triaxiality at the crack tip than in plane strain. The initial stage of
advance, persisting for a distance of at least several plate thicknesses, is complicated and highly three-dimensional. The crack
usually begins to advance at the center of the crack front where the triaxiality is the highest and lags behind near the sur-
faces. As the applied stress intensity factor increases and the crack tip advances, a neck in the plate begins to form ahead of
Fig. 1. Qualitative features of mode I crack growth resistance, KRðDaÞ, for ductile alloys in small scale yielding in plane strain (a) and plane stress (b). In
plane strain, steady-state toughness is attained after a crack advance, Da, of several times the plastic zone size at initiation, Rp . In plane stress, attainment of
steady-state toughness requires a crack advance that is at least several times the plate thickness, t, after the necking region advancing ahead of the tip
becomes fully developed.
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the tip. As the neck develops, shear localization subsequently occurs within the neck oriented at roughly 45� to the plate
surfaces, finally giving rise to a slant crack. Steady-state, with a neck advancing ahead of the tip, is attained after the crack
has passed through this initial stage. The plane stress steady-state toughness of a ductile alloy can be very large compared to
KC due primarily to the large plastic dissipation in the neck, as elucidated in the next section. The features just described
must be reflected in any cohesive zone model of plate tearing.

3. Energy dissipation in mode I steady-state tearing of a plate

Consider mode I tearing of a large ductile plate with a long crack that has advanced sufficiently such that the steady-state
conditions depicted in Fig. 2 are attained. Once the onset of necking sets in ahead of the crack (Fig. 2a), the subsequent defor-
mation within the neck occurs under essentially plane strain-like conditions with almost no additional in-plane straining
taking place in the direction parallel to the crack. The sequence of deformation stages, (a)–(d), depicted in Fig. 2 have been
analyzed in [12]. Aspects of that study relevant to the prescription of the traction–separation relation of the cohesive zone for
tearing of large plates will now be summarized.

The deformation sequence depicted in Fig. 2 was modeled by the 2-dimensional plane strain problem indicated in the
insert of Fig. 3. The material was represented by the shear-modified Gurson model [10], allowing a detailed analysis of
the fracture process from the onset of necking, through thinning and shear localization. In [12], the undamaged material
input has power law hardening with a uniaxial true stress versus logarithmic strain given by:
Fig. 2.
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Fig. 3 presents a representative example of the normalized force–displacement relationship [12]. Necking begins at the
Considere condition corresponding to a maximum nominal traction, and attained at the strain e ¼ N:
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After the onset of necking, plastic deformation is confined to the neck region. Void damage within the neck grows until
conditions are reached when further localization occurs in the form of a shear band extending across the central region of the
neck at an angle ffi 45� to the tensile direction. Prior to shear band formation plastic deformation occurs throughout the neck,
but once the shear band forms plastic deformation is largely localized within a very narrow band resulting in the precipitous
drop in the load-elongation behavior seen in Fig. 3. Shear fracture processes inside the band give rise to final separation dur-
ing this stage (Fig. 2d).

The aspects of the traction–elongation behavior in Fig. 3 relevant to the task in this paper are as follows. Plane stress finite
elements whose in-plane dimensions are larger than the thickness of the plate can accurately represent behavior prior to the
onset of necking, but they are incapable of resolving the deformation in the neck and in the shear band. Thus, the traction–
displacement relation of the cohesive zone must represent the behavior beyond the maximum traction, as extracted from
Sequential fracture process under steady-state crack advance in ductile plate subject to mode I loading: (a) onset of local necking well ahead of the
well developed neck nearer the tip, (c) shear localization within the neck and (d) slant failure at the tip. Taken from [12].



Fig. 3. Representative normalized force–elongation curve for steady-state tearing of ductile structural alloy obtained using the shear modified Gurson
material model. The quantities rY ;A0 and L denote the yield stress, initial cross-sectional area, and initial length, respectively, of the undeformed section
while F and d are the force and overall elongation. Details of the specification of the material model are given in [12].
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Fig. 3 and presented in Fig. 4. In Fig. 4, the vertical axis is the nominal traction (the force per original area) divided by the
yield stress T=rY and the horizontal axis is the separation across the neck region occurring after the onset of necking nor-
malized by the plate thickness, d=t. The area under this curve, C, is the work/area required to separate the plate after the
onset of necking. This is the cohesive energy/area that must be accounted for by the cohesive zone when steady-state has
been attained. An important observation evident in Fig. 4 is that the energy dissipated in the necking process prior to shear
localization, CI, is usually much greater than that dissipated in shear localization and fracture, CII. The behavior illustrated in
Figs. 3 and 4 is representative of many relatively tough ductile alloys. As a consequence, the traction–separation energy of
the cohesive zone in plane stress plate tearing is very large after the crack has propagated far enough such that the neck is
fully developed. It should be noted that the slope of the equilibrium traction–separation curve in Fig. 4 can become negative
for sufficiently narrow shear bands or as the band strength degrades. No attempt is made to capture this level of detail in the
cohesive zone representation developed in the present paper. As will be seen shortly, the primary aim of the representation
is to capture the energy dissipated in necking to failure, with the slope of the traction–separation curve set by a combination
of physical and numerical considerations.
Fig. 4. Representative traction–separation behavior extracted from the force–displacement relationship in Fig. 3 for conditions in which sufficient crack
advance has occurred such that a fully developed neck has formed ahead of the crack and steady-state propagation is underway. The separation occurring
across the neck region following the onset of necking is denoted by d. The work/area dissipated in necking is denoted by CI while that dissipated in shear
localization and shear fracture is denoted by CII .
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From Fig. 4 one notes that Csteady-state ffi Tmaxdmax. The maximum separation across the neck, dmax, is proportional to the
height of the neck which, in turn, is proportional to the plate thickness, t. Consequently, the steady-state energy/area dissi-
pated can be written as:
Fig. 5.
plane s
alumin
Csteady�state ¼ arY t ð3Þ
where the coefficient a usually lies in the range 0:4 < a < 0:8 depending on the material hardening exponent and the
parameters characterizing the void damage [12]. The important implication for present purposes is that the steady-state
cohesive energy/area is proportional to the plate thickness. It is interesting to compare (3) with the plane strain mode I tough-
ness expressed in units of energy/area, CIc ¼ ð1� m2ÞK2

Ic=E. Basic mechanistic models of plane strain toughness [15,23] give:
CIc ¼ brY D ð4Þ
where D is the spacing between voids in the dominant void population. The coefficient b is on the order of unity and depends
on material properties such as strain hardening and initial void volume fraction. Dominant void spacing is typically tens of
microns and seldom more than a hundred microns. It therefore follows from (3) to (4) that the steady-state cohesive energy/
area, Csteady-state, of plates with thicknesses larger than a millimeter will be many times the plane strain toughness of the
material, CIc . Further, whereas plane strain toughness is a material quantity, the plane strain steady-state cohesive
energy/area of a plate depends on the both the material and the plate thickness. As an aside, it is also interesting to note
that the above comparison also suggests that the tearing toughness of a thin foil is likely to be less than CIc if its thickness
is less than the characteristic void spacing.

4. Cohesive zone characterization for mode I tearing of a plate with an initial pre-crack

In this section, the cohesive zone used in conjunction with plane stress plate (or shell) elements is addressed for analyzing
mode I crack advance initiating from a pre-crack in a large scale plate structure. The preceding discussion motivates the
necessity of allowing for a cohesive energy/area, CðDxÞ, that is an increasing function of the distance Dx ahead of the pre-
crack tip. Fig. 5 displays CðDxÞ as calibrated in the next section for a 10 mm thick Al 5083 H116 plate tested by Simonsen
and Törnqvist [18]. For this plate, the steady-state cohesive energy/area (3) is attained when the crack has propagated about
seven times the plate thickness. Moreover, it is almost fifty times the value required to initiate crack growth from the blunt
pre-crack.

The traction–separation relation, TðdÞ, used in this paper is presented in Fig. 6. The peak traction, bT , and the length
parameters, d1 and d2, determining the shape can be regarded as functions of distance ahead of the pre-crack, Dx. At each
Dx, the cohesive energy/area is:
CðDxÞ ¼
Z d2

0
Tdd ¼ 1

2
bT ðd1 þ d2Þ ð5Þ
Variation of the cohesive energy/area of a cohesive zone model for analyzing mode I cracking in initiating from a pre-crack in a large plate when
tress elements larger than the plate thickness, t, are employed. This particular curve has been calibrated for a 10 mm thick plate of Al 5083 H116
um discussed in Section 5.



Fig. 6. Form of the traction–separation relation used in this paper with peak traction bT and shape parameters, d1 and d2.

P.B. Woelke et al. / Engineering Fracture Mechanics 147 (2015) 293–305 299
Full details of the description for the test plate will be given in the next section. The choice of a separation curve which ramps
down to zero traction in a gradual manner such as that in Fig. 6, is deliberate because it avoids computational problems.
More abrupt traction drops, such as that in Fig. 4, can give rise to discontinuous crack advancement and to a ‘‘stair-stepped’’
force–displacement curve. Additionally, such a rapid drop in stiffness can cause spurious numerical oscillations (‘‘ringing’’) in
the simulations. These effects can be particularly problematic for analyses conducted with relatively large elements, as is the
case here. Thus, the gradual traction fall-off such as that in Fig. 6 is important to the large plate simulations carried out here.
Plane strain studies such as those in [22] have indicated that the two most important properties of the separation-law are the
peak traction and the energy of separation, with shape details of the traction–separation curve of secondary importance. The
present study under plane stress conditions reveals more sensitivity to the details of the shape, as discussed in the next
section.
5. Calibration of cohesive zone using load–displacement data for a pre-cracked plate

A detailed investigation of a specific large aluminum plate subjected to Mode I ductile tearing is discussed here. The plate
tearing problem was simulated using large scale shell elements with cohesive elements along the crack path. The measured
overall force–displacement response is used to calibrate the traction–separation relationship of the cohesive zone discussed
in the previous section and its variation with crack advance. First, some details of the experimental test are discussed. Then,
the finite element model is prescribed followed by a description of the calibration process.

5.1. Problem description and experimental test results

The problem investigated here is a pre-notched large aluminum AL 5083 H116 plate subjected to mode I tearing, part of a
test series on naval-grade plate materials conducted by Simonsen and Törnqvist [18]. The test was conducted by means of a
specially designed load frame shown in Fig. 7. The plate dimensions are: height = 806 mm, width = 500 mm, and thick-
ness = 10 mm. A 100 mm initial notch was machined into the plate with a 5 mm diameter hole at the initial tip. The large
scale of the frame makes it a unique apparatus for experimental testing of large-scale structural components. A similar load
frame has recently been built at the Naval Surface Warfare Center Carderock Division to conduct large-scale experimental
tests relevant to the military and civilian shipping industry [11].

The photograph of the tested plate after the crack has propagated almost entire width of the specimen is shown in Fig. 7.
The experimental force vs. corrected crosshead displacement, will be discussed in more detail in Section 5.3.

Uniaxial tensile tests for the plate material (Al 5083 H116) in [18] led to a power law hardening true stress vs. logarithmic
strain relationship:
r ¼ Cðelog þ e0ÞN ð6Þ
with parameters C ¼ 550 MPa, e0 ¼ 0:01, and N ¼ 0:2. The reported material yield strength and ultimate strength are
rY ¼ 245 MPa;rU ¼ 334 MPa and the elastic modulus is E ¼ 69 GPa.

5.2. Finite element model

The finite element model used in the analyses is shown in Fig. 8. The plate was modeled with large quadrilateral shell
elements with Mindlin–Reissner kinematics, using the explicit dynamic finite element code EPSA [3,27,28]. Nodal spring-
type cohesive elements were used along the crack path. The top and bottom rectangular ‘grips’ were modeled as rigid bars.



Fig. 7. Experimental load frame and fractured aluminum plate [18].
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Points B and B0 (Fig. 8) were fixed to prohibit vertical translation. The plate was loaded by applying a constant vertical veloc-
ity to nodes A and A0 located on the front faces of the grips. Force, P, and displacement, D were computed at these nodes for
comparison with the experimentally measured quantities.

The power hardening law (6) for Al 5083 H116 was used to represent the material with the parameters reported. A mesh
sensitivity study was conducted using three different meshes: 12.7 mm, 25 mm, and 50 mm – resulting in a total of 3400,
768, and 296 total elements respectively. The smallest element size (12.7 mm) was limited by the plate thickness
(t ¼ 10 mm).

5.3. Cohesive zone calibration

Calibration of the cohesive zone for the large-scale model requires determination of the traction–separation relationship
for the individual cohesive elements along the crack path ahead of the pre-crack. As discussed earlier, one must anticipate
that the cohesive energy/area will be relatively small for elements immediately ahead of the pre-crack tip and increase
toward the steady-state level for elements lying more than several thicknesses ahead of the tip. The measured force–dis-
placement response of the Simonsen and Törnqvist [18] test shown in Fig. 9 will be used to perform the calibration.
Systematic procedures for calibrating the position-dependent traction–separation law are not available, and future effort
will be needed to develop calibration approaches, including extensions for crack growth under mixed mode loadings. The
Fig. 8. Finite element representation of the mode I fracture test (50 mm mesh). Vertical translation was fixed at points B and B0 .
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present approach makes use of the steady-state results presented in Section 3 together with a rather straightforward ‘trial
and error’ procedure.

In the present approach, the peak traction, bT , is taken to be the maximum traction in (2), Tmax ¼ 334 MPa, and this is
assumed to be independent of Dx. The steady-state cohesive energy is taken to be that given in (3) with
a ¼ 0:48;ry ¼ 245 MPa and t ¼ 10 mm such that Csteady-state ¼ 1:175 MJ=m2. This choice coincides with the cohesive
energy/area of the example in Fig. 4 which, as discussed in Section 3, was computed using the fine scale damage model

[12]. Given bT ¼ Tmax, it remains to determine CðDxÞ and the Dx-distribution of d1=d2. (By (5), only one of d1 and d2 is undeter-

mined if bT and C are known.) In our approach, the first step was to take C ¼ Csteady-state, and investigate the influence of d1=d2,
both taken independent of Dx. If the only considerations were numerical, the choice d1=d2 ffi 0 would provide the best
numerical conditioning of the FE calculation for reasons described earlier. However, the actual traction–separation behavior
in Fig. 4 has an abrupt fall-off with d1=d2 only slightly less than unity. Here, we have compromised numerical conditioning
and the fact that actual traction–separation behavior in the steady-state regime has the abrupt fall-off.

Tearing simulations using a 12.7 mm mesh were carried out for various values of d1=d2. With d1=d2 ffi 1=3
(Tmax ¼ 334 MPa;CðDxÞ ¼ Csteady-state ¼ 1:175 MJ=m2), the simulated force versus cross-head displacement is the upper curve
in Fig. 9. This choice accurately reproduces the measured tearing resistance of the plate after more than 100 mm crack
growth (although it significantly overestimates the peak force, as discussed below). By contrast, a simulation with
d1=d2 ¼ 0 and the same values of Tmax and Csteady-state significantly underestimates the tearing resistance after extensive crack
growth, as the lower curve in Fig. 9 reveals (further details of this simulation will also be discussed below). The simulated
tearing resistance clearly depends on d1=d2. The initial choice of steady-state cohesive energy based on the results in
Section 3, Csteady-state ¼ 1:175 MJ=m2, was somewhat fortuitous and not necessarily the best choice: had a slightly larger value
been chosen, the calibrated value of d1=d2 would be less than 1/3 and vice versa. Nevertheless, the values d1=d2 ffi 1=3,
Tmax ¼ 334 MPa;Csteady-state ¼ 1:175 MJ=m2 will be used to characterize the steady-state limit.

The simulation with an Dx-independent steady-state cohesive energy/area, CðDxÞ ¼ Csteady-state ¼ 1:175 MJ=m2, signifi-
cantly overestimates peak force, as indicated by the upper curve in Fig. 9. The initial cohesive energy must be lower than
the steady-state limit, as already anticipated in the earlier discussion. Thus, it remains to determine the Dx dependence
of C and d1=d2 ahead of the pre-crack tip in the approach to the steady-state limit. In the present calibration approach, with
a given distribution of d1=d2, the distribution CðDxÞ is determined such that the experimental load–displacement record is
reproduced. This is a straightforward sequential process whereby C is assigned values element by element ahead of the
tip such that the predicted load–displacement curve coincides as closely as possible with the experimental curve as the crack
advances element by element. The result of this process is the distribution CðDxÞ in Fig. 5 and the companion plot in Fig. 10
showing entire curves of nodal cohesive force versus opening displacement for the 12.7 mm FE mesh. The calibrated value of
the cohesive energy at fracture initiation is CðDx ¼ 0Þ ¼ 0:033 MJ=m2, which is just above the nominal plane strain tough-
ness of Al5083-H116: CIc ¼ 0:027 MJ=m2. This indicates that at the notch tip, a near plane strain condition persists. For a
plate with increasing thickness, in reference to the plate analyzed here (t > 10 mm), these values would converge. For a thin-
ner plate however, the difference would likely increase. Thus, the plane strain toughness could be used as a limiting value for
the initial estimate of the cohesive energy/area.

Because the global finite element model utilizes nodal cohesive elements (Fig. 8), the traction–separation relationship
must be converted to a nodal cohesive force–displacement relationship. This is accomplished by multiplying the traction–
separation relationship by the tributary area of every nodal cohesive element. The peak cohesive force in the first element
(at the notch tip) was reduced by ½, because its tributary width is ½ that of the other elements due to the initial notch radius
of the pre-crack. The simulated applied force-crosshead displacement with the calibrated cohesive zone is the middle dashed
curve in Fig. 9. Steady-state traction–separation is imposed for all elements starting with the seventh cohesive element and
beyond corresponding to Dx ffi 70 mm, approximately 7 times the plate thickness.

The distribution of d1=d2 for the 12.7 mm mesh in Fig. 10 has been determined by trial and error iteration, but constrained
to merge with d1=d2 ¼ 1=3 in the steady-state limit. As shown in Fig. 10, d1=d2 ¼ 0 was used before reaching the steady-state
limit. A different distribution of d1=d2 would give rise to some change in CðDxÞ presented in Fig. 5. In this paper, the impor-
tance of an Dx-dependent cohesive traction–separation relation in modeling plate tearing has been highlighted. Further work
will be required to derive more systematic approaches to calibration of the traction–separation relationship and to more

completely understand conditions needed to render unique distributions of bT , C and d1=d2.
To emphasize the importance of the choice of d1=d2, a simulation with d1=d2 ¼ 0, Tmax ¼ 334 MPa and CðDxÞ given by Fig. 5

has been carried out and is plotted as the lowest curve in Fig. 9. This choice reproduces the initial force-crosshead behavior,
almost to the peak force, when the crack advance is less than about 50 mm, as would be expected because the calibrated
cohesive zone has d1=d2 ¼ 0 for Dx < 50 mm. For larger crack advance, the predicted applied force falls well below the
experimental curve, as discussed earlier.

Fig. 11 presents simulations with three mesh sizes (12.7, 25 and 50 mm), each with the same calibrated cohesive zone
traction–separation relation, i.e., with CðDxÞ in Fig. 5 and d1=d2 distributed in the manner shown in Fig. 10 for the
12.7 mm mesh. Relatively little mesh-dependence is evident.

Equivalent strain contours for all three meshes are shown in Fig. 12 at the crosshead displacement of 30 mm when the
crack has traversed more than half way across the initial uncracked ligament. The boundary to the light region coincides



Fig. 9. Applied force vs. crosshead displacement as measured in the test 9 of Simonsen and Törnqvist [18] and the FE models with three cohesive zone
choices — upper dashed curve with CðDxÞ ¼ Csteady-state and d1=d2 ¼ 1=3; middle curve with CðDxÞ in Fig. 5 and traction–separation curves in Fig. 10; lower
curve with CðDxÞ in Fig. 5 and d1=d2 ¼ 0. The FE mesh size is 12.7 mm.

Fig. 10. Cohesive force–displacement relations for nodal cohesive elements – 12.7 mm mesh. The cohesive element 1 is at the initial notch tip. The
distribution of CðDxÞ is given in Fig. 5.
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roughly with the elastic–plastic boundary indicating that extensive plasticity occurs outside the cohesive zone—this is a
large scale yielding crack propagation problem. The large scale yielding aspect of the problem is driven home by Fig. 13
where three contributions to the energy input as a function of the applied crosshead displacement have been presented
based on the FE simulations: (i) the total energy (the work done by the applied load, which agrees closely with the experi-
ment), (ii) the energy stored and dissipated in cohesive zone, and (iii) the energy dissipated plastically and stored elastically
outside the cohesive zone. After the crack has undergone extensive advance most of the energy outside the cohesive zone has
been dissipated in plastic deformation. For this plate, even though the cohesive tearing energy of the plate is huge,
nevertheless, more than twice the energy is dissipated in plastic deformation outside the cohesive zone than in the cohesive
zone. Here, too, these results are insensitive to mesh size. It is apparent that this problem could not be addressed by means of
linear elastic fracture mechanics, e.g., small scale yielding.



Fig. 11. Applied force vs. crosshead displacement as measured in the experiment and the FE models with three mesh sizes — 12.7, 25.0 and 50.0 mm. The
three simulations curve with CðDxÞ as the final calibration (Fig. 5) and the traction–separation distribution illustrated for the 12.7 mm mesh in Fig. 10.
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6. Relation between small scale yielding crack growth resistance and CðDxÞ

The test analyzed in the previous section involved large scale plastic yielding. In this section, we compute the crack
growth resistance of a plate of the same material (Al 5083 H116) and the same thickness (10 mm) in small scale yielding
in plane stress, denoted by CSSYðDaÞ with Da as the crack advance. The same traction–separation relation obtained in
Section 5, as specified in Figs. 5 and 10, are employed in the simulation. In particular, the relation between CSSYðDaÞ and
the cohesive energy/area, CðDxÞ, given in Fig. 5 will be computed. The finite element model with the 12:7 mm mesh is used
and is similar to the one in the previous section except that now the plate size is considerably larger (1:5 m� 1:5 m) such
that the plastic zone is a small fraction of the crack length and the ligament ahead of the crack for the entire range of crack
advance considered. To simulate small-scale yielding, tractions associated with the mode I plane stress crack tip fields with
amplitude KI are imposed on the outer boundary of the plate where CSSY ¼ K2

I =E. The traction–separation law is imposed
along the line extending ahead of the crack tip. The small scale yielding crack growth resistance is plotted in Fig. 14 as
CSSYðDaÞ=Csteadystate versus Da=t where Csteadystate is the steady-state energy/area of the cohesive zone. Included in this figure
is the entire x-dependent separation energy of the cohesive zone, CðDxÞ, from Fig. 5.

The features of the small scale yielding, plane stress tearing resistance are similar to those depicted in Fig. 1b in terms of
the stress intensity factor. For this plate material and thickness, steady-state tearing in small scale yielding requires a crack
advance of about 15 times the plate thickness, roughly twice the distance ahead of the crack tip at which the cohesive zone
becomes x-independent. The difference is due to the plasticity in the plate outside the cohesive zone that develops as the
crack advances. In this case, the crack growth tearing resistance in steady-state is more than twice the steady-state cohesive
zone separation energy, e.g., 2:7 MJ=m2 vs. 1:175 MJ=m2. As noted earlier, this huge tearing resistance is due in part to plastic
dissipation in the neck ahead of the crack tip, which constitutes most of the cohesive separation energy, and in part to the
plastic dissipation occurring outside the cohesive zone. For this plate material and thickness, those two contributions are
roughly equal.
Fig. 12. Equivalent strain contours at a cross-head displacement of 30 mm during fracture for the three different FE meshes considered. The light green
region coincides roughly with the extent of the plastic zone.



Fig. 13. Computed energy contributions for three meshes for the simulations in Fig. 11: The total energy delivered by the force working through the applied
crosshead displacement; the elastic energy and plastic dissipation outside the cohesive zone (in the plate elements); and the energy stored and dissipated in
the cohesive zone.

Fig. 14. Normalized small scale yielding crack growth resistance, CSSY ðDaÞ=Csteady-state , computed for the 10 mm Al 5083 H116 plate using the cohesive
separation energy/area, CðDxÞ, together with the traction–separation distribution in Fig. 10. Csteady-state is the steady-state separation energy of the cohesive
zone.
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7. Conclusions and recommendations for further work

In the Introduction, it was emphasized that application of the shell finite element models to ductile fracture problems of
practical concern for marine, aerospace, automotive and other industries utilizing large-scale structures requires that the
representation of the fine scale fracture processes be subsumed within, for example, a critical fracture strain or, in the case
of the present study, a cohesive zone. Calibrating the parameters of the cohesive zone is an essential step of any com-
putational scheme for ductile fracture based on a cohesive zone—a step which has not received the attention it deserves.
The calibration process is generally not straightforward especially when it is necessary to account for a position-dependent
traction law. In this paper, the calibration employed both inputs from fine scale traction–separation computations and direct
fitting to experimental data. We have emphasized that the procedure employed here is neither systematic nor optimal and
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that further efforts will be required to refine the calibration procedures. This will be even more important for mixed mode
tearing analysis.

The present investigation has demonstrated that a large scale shell finite element model with cohesive zone can be suc-
cessfully used to capture crack initiation and extensive crack propagation in a ductile plate. The importance of accounting for
a dependence of the cohesive zone properties on distance ahead of an initial crack or blunt notch has been highlighted. For
tough ductile plates, the development of the maximum, or steady-state, cohesive separation energy requires crack advances
of many times the plate thickness — about 7 times the plate thickness in the plate considered. In the early tearing stages
before attainment of steady-state, the cohesive energy is much smaller. Most of the cohesive separation energy in steady-
state plate tearing is due to plastic dissipation in the neck that develops ahead of the advancing crack tip. For this reason,
the steady-state cohesive separation energy scales with the plate thickness. For a plate whose thickness exceeds several
millimeters, the steady-state tearing toughness measured in units of energy/area can be orders of magnitude larger than
the corresponding plane strain toughness of the material. The specific tearing test modeled in this paper, a 10 mm Al
5083 H116 edge-notched plate tested by Simonsen and Törnqvist [18], reveals that large scale yielding accompanies the
tearing with more energy dissipated outside the cohesive zone than within it.
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