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Experiments on soft polycrystalline aluminum have yielded evidence that, besides the required punch
load, both the size and shape of imprinted features are affected by the scale of the set-up, e.g. substantial
details are lost when the characteristic length is on the order of 10 lm. The objective of this work is to
clarify the role played by strain gradients on this issue, and to shed light on the underlying mechanisms.
For this, indentation by a periodic array of flat punch indenters is considered, and a gradient enhanced
material model that allows for a numerical investigation of the fundamentals are employed. During a lar-
gely non-homogeneous deformation, the material is forced up in between the indenters so that an array
of identical imprinted features is formed once the tool is retreated. It is confirmed that the additional
hardening owing to plastic strain gradients severely affects both the size and shape of these imprinted
features. In particular, this is tied to a large increase in the mean contact pressure underneath the punch,
which gives rise to significant elastic spring-back effects during unloading.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Flat punch indenting of elastic–plastic solids has earned
renewed interest in recent years as a way of rapidly mass produc-
ing micron surface features. To achieve high throughput, the
surface punching has been evolved into a continuous micro-man-
ufacturing process that relies on imprinting/molding by rolling
(referred to as roll-molding, (Lu and Meng, 2013)). However, the
underlying mechanisms remains the same. In its simplest form, a
flat patterned indentor is pressed into the underlying material
and thereby leaving an imprint in the plastically deformed surface
once retreated. This classical problem is well-established in the lit-
erature, not the least owing to the slip-line field solutions for an
rigid perfectly plastic solid by Hill (1950), which has been verified
in numerical studies employing conventional plasticity (Nepershin,
2002). Their efforts, along with corresponding studies on pyrami-
dal (Vickers or Knoop), spherical (Brinell) and wedge indentation,
have yielded important in-sight into the underlying mechanics,
and indentation has become a widely used standard technique in
material testing at all scales. It is, however, recognized that indent-
ing at small scales results in increased yield resistance, for materi-
als that deform plastically by dislocation movement, when
compared to large scale testing.
When employing indenting (or punching) for manufacturing
purposes, the surface imprint is often aimed to represent a coun-
terpart to the indenter as closely as possible. However, a perfect
match is complicated by effects such as elastic spring-back, strain
gradient hardening, material inertia, and viscosity. Redesign of the
punch may improve the imprint, but in general perfectly sharp
edges cannot be achieved and some surface curvature must be
accepted; this with little noticeable different at large scales. How-
ever, deviations from perfectly sharp edges become increasingly
evident when the punching process is down-scaled to do micro-
manufacturing. Unfortunately, the goal of attaining sharp edges,
and abrupt variations in the deformed geometry, are associated
with large strain gradients, which lead to the before mentioned
increased hardening at micron scale. The explanation for this is
now generally accepted to lie in the concept of Geometrically Nec-
essary Dislocations (GND’s). When large plastic strain gradients
appear GND’s must be stored (Ashby, 1970), and this gives rise to
free energy associated with the local stress field of the GND’s, as-
well as increased dissipation when the GND’s move in the lattice.
At small scales, GND’s can become a substantial portion of the total
dislocation density which is normally dominated by so-called Sta-
tistically Stored Dislocations (SSD’s) at larger scale. Thus, a larger
amount of energy is required to deform the material at small scales
in the presence of gradients, and this leads to an apparent increase
in yield stress and strain hardening. To accurately predict the
shape and size of imprints made during micro-manufacturing the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.06.009&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.06.009
mailto:kin@mek.dtu.dk
http://dx.doi.org/10.1016/j.ijsolstr.2014.06.009
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


3550 K.L. Nielsen et al. / International Journal of Solids and Structures 51 (2014) 3549–3556
employed material model must therefore represent stresses over
the full range of length scales involved.

A vast amount of theoretical literature seeking to encapsulate
the experimentally observed gradient effects at micron scale has
been put forward, counting both phenomenological models
(Aifantis, 1984; Fleck and Hutchinson, 1997, 2001; Gudmundson,
2004; Gurtin and Anand, 2005; Lele and Anand, 2008; Fleck and
Willis, 2009a,b), and micro-mechanics based models (Gao et al.,
1999; Huang et al., 1999; Gurtin, 2002; Qiu et al., 2003). The higher
order theory by Fleck and Willis (2009b) is employed in the current
study, and the concept of higher order stresses, work conjugate to
the strain gradients, is thus adopted to widen the range of length
scales for which the model is valid. The objective is to model an
experiment on soft polycrystalline aluminum at small scale, where
the impression made by a periodic array of micro-indenters devi-
ates substantially from that observed at larger scales. Through
numerical modeling it is the aim to clarify the influence of plastic
strain gradients. Moreover, by including unloading the elastic
spring-back can be quantified when compared to the surface shape
at maximum indentation depth. By choosing a material length
parameter of LD ¼ 1 lm, it is demonstrated that significant gradi-
ent effects should be expected for imprinted features with a char-
acteristic length on the order of 10 lm and below. This choice of
length parameter are in line with the estimates for the length
parameter put forward by Hutchinson (2000) (LD � 0:25� 5 lm,
depending on the gradient type being stretch or rotational), and
recently by Danas et al. (2012) (LD � 0:5� 1:5lm).

The paper is structured as follows. The considered boundary
value problem is summarized in Section 3, while the material
model formulation and numerical procedure are briefly outlined
in Sections 2 and 4. A modeling framework capable of predicting
the rate-independent material response is employed, and the
results are laid out in Section 5. Focus is on shape and size changes
to the imprints made onto the plastically deformed surface, as-well
as on changes to the loading history due to strain gradient effects.
Some concluding remarks are given in Section 6.
Table 1
Mechanical properties.

Parameter Significance Value

ry=E Uniaxial yield strain 0.001
m Poisson’s ratio 0.3
N Strain hardening exponent 0.05–0.2
2. Strain gradient material models

In spite of indentation being an inherent finite strain problem, a
small strain version of the strain gradient plasticity theory by Fleck
and Willis (2009b) (tensorial version) is employed in this study as
a first approximation. This is considered sufficient for the small
indentation depths analyzed. A compact summary of the rate-inde-
pendent model formulation published by Nielsen and Niordson
(2013, 2014) is given below. Throughout, Einstein’s summation
rule is utilized in the tensor equations and ðÞ;i denotes partial dif-
ferentiation with respect to the spatial coordinate xi.

2.1. Fundamentals of the Fleck–Willis strain gradient theory

A small strain formulation is employed. The total strain rate is
determined from the gradients of the displacement rates;
_eij ¼ ð _ui;j þ _uj;iÞ=2, and decomposed into an elastic part, _ee

ij, and a
plastic part, _ep

ij, so that; _eij ¼ _ee
ij þ _ep

ij. For a higher order gradient
dependent material, involving higher order stresses, the principle
of virtual work reads (Gudmundson, 2004)
Z

V
rijdeij þ ðqij � sijÞdep

ij þ sijkdep
ij;k

� �
dV

¼
Z

S
Tidui þ tijdep

ij

� �
dS: ð1Þ

Here, rij is the symmetric Cauchy stress tensor, and
sij ¼ rij � dijrkk=3 its deviatoric part. In addition to conventional
stresses, the principle of virtual work incorporates the so-called
micro-stress tensor, qij (work-conjugate to the plastic strain, ep
ij),

and the higher order stress tensor, sijk (work-conjugate to plastic
strain gradients, ep

ij;k). The right-hand side of Eq. (1) thereby
includes both conventional tractions, Ti ¼ rijnj, and higher order
tractions, tij ¼ sijknk, with nk denoting the outward normal to the
surface S, which bounds the volume V.

The mechanisms associated with dislocation movement and/or
storage of geometrically necessary dislocations (GND’s) (Ashby,
1970; Gurtin, 2002; Ohno and Okumara, 2007) have been incorpo-
rated into the current higher order theory by assuming the micro-
stress, qij, and higher order stresses, sijk, to have a dissipative part
only, such that; qij ¼ qD

ij , and sijk ¼ sD
ijk. Thus, assuming the form

of the free energy to be

W ¼ 1
2
ðeij � ep

ijÞLijklðekl � ep
klÞ ð2Þ

the conventional stresses are derived as; rij ¼ @W=@ee
ij ¼

Lijklðekl � ep
klÞ, where Lijkl is the isotropic elastic stiffness tensor. In

this study, all energetic gradient contributions are omitted. The dis-
sipative stress quantities in the plastic regions read (Gudmundson,
2004; Fleck and Willis, 2009b)

qD
ij ¼

2
3

rC

_Ep
_ep

ij; and sD
ijk ¼

rC

_Ep
ðLDÞ2 _ep

ij;k ð3Þ

with rC and _Ep identified as the effective stress and the associated
effective plastic strain rate, respectively, given by

rC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

qD
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r
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3

_ep
ij
_ep

ij þ ðLDÞ2 _ep
ij;k

_ep
ij;k

r
:

ð4Þ

Here, _ep
ij;k is the gradient of the plastic strain rates, and LD is the

dissipative length parameter which is included for dimensional
consistency. The quantities defined in Eqs. (3) and (4) only exists
in the plastic regions (in which rC ¼ rF), while qD

ij ¼ qij ¼ sij in
the elastic regions, such that the effective stress reduces to the con-
ventional von Mises stress. An isotropic power hardening material
is modeled in the present work, with the current flow stress given
by

rF ½Ep� ¼ ry 1þ Ep

ry=E

� �N

ð5Þ

Here, E is Young’s modulus, N is the strain hardening exponent,
and ry is the initial yield stress. The material parameters used in
the simulations are given in Table 1.

To complete the higher order theory, Fleck and Willis (2009b)
put forward two minimum principles that delivers the incremental
solution to the displacement rate field, _ui, and plastic strain rate
field, _ep

ij.
Assume that the current stress/strain state is known in terms of

the displacement, ui, and plastic strain, ep
ij, fields. The plastic strain

rate field, in the subsequent load increment, is thereby determined
as; _ep

ij ¼ k _ep�
ij , where the plastic trial field, _ep�

ij , follows from the min-
imum statement (Minimum Principle I in Fleck and Willis, 2009b)



K.L. Nielsen et al. / International Journal of Solids and Structures 51 (2014) 3549–3556 3551
H ¼ inf
_ep�
ij

Z
V

rF ½Ep� _Ep� � sij _ep�
ij

� �
dV �

Z
S

tij _ep�
ij dS ð6Þ

and k is the plastic multiplier associated with the trial field. It is
noticed that a solution to the plastic trial field is obtained inde-
pendently of the incremental solution to the displacement field
associated with incremental loading. Thus, only the plastic multi-
plier, k, links the two, but remains unknown at this stage of the
solution.

To make this link, Fleck and Willis (2009b) formulated the
following functional to be minimized (Minimum Principle II)

J½ _ui; k P 0� ¼ 1
2

Z
V
Lijklð _eij � _ep

ijÞð _ekl � _ep
klÞ þ h½Ep� _Ep2

� �
dV

�
Z

S

_Ti _ui þ _tij _ep
ij

� �
dS: ð7Þ

The minimum principles deliver the solution for the displace-
ment rates and the multiplier associated with the plastic trial field,
_ep�

ij . Here, _ep
ij ¼ k _ep�

ij and _Ep ¼ k _Ep� in Eq. (7), whereas, the current

hardening modulus is determined by h½Ep� ¼ drF=dEp.
A corresponding rate-dependent model formulation was layed

out by Fleck and Willis (2009b), while its comparison to the cur-
rent rate-independent version can be found in Nielsen and
Niordson (2013, 2014).
3. Problem formulation

Fig. 1 illustrates the considered model set-up, where flat
punch indentation by a periodic array of equally spaced indenters
is parameterized. The set-up is chosen so that it also resembles a
2D cross-sectional cut of the mold-rolling process newly studied
by Lu and Meng (2013). Thus, besides the stationary punch
indentation problem, it is the aim to bring out first indications
of size effects for mold-rolling at small scales. Throughout, sym-
metry conditions are enforced at x1 ¼W ( _u1 ¼ 0 and _ep

12 ¼ 0), free
sliding conditions are applied along x2 ¼ 0 ( _u2 ¼ 0), periodicity is
enforced at x1 ¼ 0 ( _u1 ¼ 0 and _e12 ¼ 0), and the loading is applied
by prescribing a controlled displacement at b 6 x1 6W and
x2 ¼ H ( _u2 ¼ � _D, rigid indenter). The free sliding (or symmetry)
condition at x2 ¼ 0 implies essentially that indentation takes
place from both sides of the plate simultaneously. For flat punch
indentation, this approximation deteriorates as the sheet
H

x

F

b

W

x Indenter2

1

Δ

Fig. 1. Schematic of a flat punch indenter pressed into a strain gradient enhanced
elastic–plastic material. The setup will be employed to study the response to a
periodic array of indenters (symmetry conditions at x1 ¼ 0 and x1 ¼W).
becomes thin compared to the indenter spacing, but it is
expected to be a good model for the mold-rolling process.

To determine suitable boundary conditions for the interface
between the indenter and the surface material a brief investigation
of four different cases will be presented.

The four cases are;

Case A: Full sticking ( _u1 ¼ 0) and constraint plastic flow
( _ep

ij ¼ 0).
Case B: Free sliding (T1 ¼ 0) and constraint plastic flow ( _ep

ij ¼ 0).
Case C: Full sticking ( _u1 ¼ 0) and free plastic flow (tij ¼ 0).
Case D: Free sliding (T1 ¼ 0) and free plastic flow (tij ¼ 0).

The parameterized model set-up allows a number of dimen-
sionless quantities to be identified, and the response for the mate-
rial to be governed by

F ¼ f
b

W
;

H
W
;
rY

E
; m;N;

LD

W

� �
ð8Þ

where b is the channel width, W is the punch distance, and H is the
half sheet thickness (see Fig. 1), whereas the material
parameters; ry; E; m;N; and LD has been introduced in the preceding
section.

4. Numerical formulation and solution procedure

The employed numerical solution procedure rests on the
general finite element approach presented in Nielsen and
Niordson (2014), and has as basis the structure of the formulation
presented by Niordson and Hutchinson (2011). Here, using a
standard finite element interpolation of the displacement field,
ui, and the plastic strain field, ep

ij, respectively.

ui ¼
X8

n¼1

NðnÞi UðnÞ and ep
ij ¼

X4

n¼1

MðnÞ
ij epðnÞ ð9Þ

where NðnÞi are quadratic shape functions, MðnÞ
ij are linear shape func-

tions, while UðnÞ and epðnÞ holds the nodal values of the unknown
variables.

The incremental procedure for this strain gradient model for-
mulation consists of two successive steps, in which ‘‘Step 1’’
determines the plastic strain rate field from Minimum Principle
I based on the known stress/strain conditions in the current state
(in terms of the displacement field, ui, and the plastic strain field,
ep

ij). ‘‘Step 2’’ subsequently determines the corresponding incre-
mental displacement solution, as-well as the plastic multipliers
for the rate-independent formulation, from Minimum Principle
II. Full details on the numerical implementation and solution pro-
cedure for the rate-independent formulation can be found in
Nielsen and Niordson (2013, 2014).

5. Results

The aspect ratio of the periodic domain considered remains
fixed at H=W ¼ 0:5 for all the results presented, unless otherwise
specified. Together with the symmetry conditions at x2 ¼ 0, this
models periodic punch indentation (or approximates mold-rolling)
from both sides onto a sheet of thickness 2H.

Punch response curves are shown in Fig. 2 in terms of the mean
contact pressure under the punch as a function of indentation
depth, D, normalized by the half sheet thickness, H. Results are
shown for a fixed ratio of channel width to indenter distance of
b=W ¼ 0:3, and material parameters chosen according to Table 1.
An intermediate strain hardening exponent is chosen (N ¼ 0:1)



Fig. 2. Punch response curves displaying both loading and unloading of the
indenter. Results are shown for LD=W ¼ ½0:03;0:1;0:3�, for the four boundary
configurations at the indenter interface; Case A ( _ep

ij ¼ 0; _u1 ¼ 0), Case B
( _ep

ij ¼ 0; T1 ¼ 0), Case C (tij ¼ 0; _u1 ¼ 0), and Case D (tij ¼ 0; T1 ¼ 0). Here,
N ¼ 0:1; b=W ¼ 0:3, and H=W ¼ 0:5.

Fig. 3. Punch response curves showing the effect of conventional strain hardening
and hardening owing to plastic strain gradients. Results are shown for
LD=W ¼ ½0:03;0:3�;N ¼ ½0:05;0:1;0:2�, and b=W ¼ 0:3 (Case A boundary conditions,
and H=W ¼ 0:5).
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along with three different material length parameters,
LD=W ¼ ½0:03; 0:10;0:30�1, whereof the results for the smallest
length parameter closely resembles those of a conventional material.
For each of the material length parameters, the four distinct bound-
ary cases presented in Section 3 are considered, and results for all
combinations of full/no friction and full/no constraint on the plastic
flow at the punch interfaces are brought out in Fig. 2. It is seen that
while the full constraint conditions (Case A) leads to the stiffest
response, and the no constraint conditions (Case D) leads to the soft-
est response, a full constraint on only one of the two fields (either _u1

or _ep
ij) yields a similar response that lie in between the two extremes.

Furthermore, the results show that a significant size effect exists for
the periodic punch problem in agreement with the findings by Guha
et al. (2013a,b).

Throughout this work, all punch response curves are shown for
both loading and unloading of the indenter (thus until the indenter
has been completely retreated). It is clear that, initially unloading
takes place along the same slope as that found at initial contact.
However, as the contact area decreases while the indenter is
retreated, the slope decreases; an effect most clearly seen for the
larger values of LD=W . It has been noticed that the indenter first
looses contact with the deformed surface near the center of the
channel ðx1 ¼WÞ, whereafter this detached region spreads and
eventually reaches the corners of the indenter at x1 ¼ b.

In the following studies only Case A (full friction and constraint
plastic flow) for the interface condition at the punch is considered,
as this gives raise to the highest peak load (though only small dif-
ferences are predicted between Cases A–D).

The effect of conventional material hardening is presented in
Fig. 3, where results for N ¼ ½0:05;0:10;0:20� are shown for two
values of the material length parameter, LD=W ¼ ½0:03;0:30�. While
conventional hardening clearly influences the response, it is obvi-
ous that gradient hardening dominates, and even the case with
low conventional hardening (N ¼ 0:05) exhibits very strong hard-
ening due to strain gradients – in particularly for LD=W ¼ 0:3.
1 Employing the present Fleck–Willis model framework, the numerics become
unstable for LD ! 0. It was found that LD=W ¼ 0:03 comes fairly close to that limit for
the current set-up.
The channel shape, in terms of the outline of the deformed top
surface, is presented in Figs. 4 and 5 upon complete removal of the
punch after indentation. Results are shown for three different
length parameters, LD=W ¼ ½0:03;0:1;0:3�, and for two ratio of
channel width to indenter spacing, b=W ¼ ½0:3;0:8�. For a length
parameter that yields results close to the conventional limit
(LD=W ¼ 0:03), a flat channel is produced with a ridge rising shar-
ply where the indenter corners were in contact. This is seen for
both the narrow feature (b=W ¼ 0:3, compare Figs. 4a, c, and e),
and the wider feature (b=W ¼ 0:8, compare Figs. 4b, d, and f). How-
ever, when the material length parameter increases relative to the
other geometric dimensions (or equivalently; if the scale of the
geometric parameters become relative smaller), these distinct
details are lost as the channel become less flat by the ridge rising
less sharply after unloading (see Fig. 4). This size effect on the
shape of the channel, and the imprinted feature, is the focus of this
study as it complicates the process of making an accurate imprint
that match the indenter counterpart.

To quantify the size effects on the imprinted feature, a parame-
terized model of the topology is set-up in Fig. 6. A target surface of
width ‘‘b’’ (according to Fig. 1) is here constructed so that it
matches the area underneath the curve that outlines the predicted
surface. Thus, the two surfaces will coincide in case of a perfect
match (a ¼ b ¼ 1), whereas differences between the imprinted fea-
ture and the target surface can be quantified by four key measures;
(i) the channel depth, d�, (ii) the maximum width at average height,
b, (iii) the deviation from the average height, a, and (iv) the inte-
grated mismatch between the two curves, calculated as;
Error =

RW
0 jydef : � ytargetjdx=ADeformed

2. The evolution of the four
parameters is shown in Figs. 7–10 for fixed length parameters, and
various values of the ratio of channel width to indenter spacings,
b=W , and sheet thicknesses H=W .

For fixed sheet thickness and indenter displacement,
(H=W ¼ 0:5 and D0=H ¼ 0:02), the ratio of channel width and
indenter spacing, b=W , clearly influences on the shape of the
imprinted feature, which in turn is affected by the length
2 Here, ydef : and ytarget are the curve describing the predicted and target imprint,
respectively, and ADeformed is the area underneath the curves. An example is shown in
Fig. 6.



Fig. 4. Deformed top surface after unloading the indenter, where the hatched area indicates the gradient enhanced solid and the dashed line indicates the initial top surface.
Results are shown for two indenter widths, b=W ¼ ½0:3;0:8�, with LD=W ¼ ½0:03;0:1;0:3�, and N ¼ 0:1 (Case A boundary conditions). Here, D0 is the maximum indentation
depth (D0=H ¼ 0:02 and H=W ¼ 0:5).

Fig. 5. Deformed top surface after unloading the indenter, here displaying the effect
of strain gradients. Results are shown for two indenter widths, b=W ¼ ½0:3;0:8�, and
with LD=W ¼ ½0:03;0:1;0:3�, and N ¼ 0:1 (Case A boundary conditions). Here, D0 is
the maximum indentation depth (D0=H ¼ 0:02 and H=W ¼ 0:5).

Fig. 6. Parametrization of the deformed top surface quantifying to which degree the
target surface has been achieved. Here, ADeformed is the area underneath the curved
outlining the deformed surface, and ATarget ¼ ADeformed allows constructing the target
surface for a given indenter width, b=W . For a perfect match, the intersection a and
b yields; a ¼ b ¼ 1. The final indent depth, d� , is also indicated. Here, D0 is the
maximum indentation depth (D0=H ¼ 0:02 and H=W ¼ 0:5).
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parameter (thus the scale of the imprint). For LD=W ¼ 0:03, which
yields a material response close to the conventional limit, it is clear
that the best match to the target surface is obtained. This is con-
cluded by; the height ‘‘a’’ being fairly close to unity for all b=W ,
the width ‘‘b’’ reaching the highest values detected, and the inte-
grated error taking the lowest values (see Fig. 7). This agrees well
with the deformed top surfaces shown in Figs. 4 and 5, where little
spring-back is observed (a � 1) for the smallest length parameter,
and a reasonable accurate match to the target surface is obtained.
However, even in the conventional limit perfectly sharp corners on
the imprinted feature cannot be expected, and this deviation
becomes increasingly evident for larger length parameters



Fig. 7. Match between the deformed top surface and the target surface for various
indenter widths, b=W . The match is quantified by the ‘‘a’’ and ‘‘b’’ value specified in
Fig. 6, as-well as the Error=

RW
0 jydef : � ytarget jdx=ADeformed . Results are shown for

LD=W ¼ ½0:03;0:1;0:3�, and N ¼ 0:1 (Case A boundary conditions, H=W ¼ 0:5, and
D0=H ¼ 0:02).
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(corresponding to smaller imprints). In particularly for the largest
length parameter, LD=W ¼ 0:3, it is obvious that; the height ‘‘a’’
has dropped significantly, the width ‘‘b’’ is lowered, and that the
integrated error has increased (see Fig. 7). Thus, the imprint
appears smoothened and substantial details are lost when com-
pared to an imprint made at larger scales. Moreover, it is clear from
Fig. 7 that for fixed length parameter, the match with the target
surface deteriorates with increasing indenter width (b=W
decreases).

In line with the above discussion, interesting results are
revealed when considering the evolution of the channel depth,
d�, with the ratio b=W , at different length scales. From Fig. 8b, it
is seen that the channel depth increases monotonically for increas-
ing indenter width (decreasing b=W) close to the conventional
limit (LD=W ¼ 0:03), whereas the monotonity is lost once gradient
effects play a significant role. To get to grips with this, it is
Fig. 8. Normalized a) peak load, Fmax , and b) maximum indenter depth, d� , respectively,
shown for LD=W ¼ ½0:03;0:1;0:2;0:3�, and N ¼ 0:1 (Case A boundary conditions). Here, D
important to realize that as b=W decreases, an increasing volume
of material is displaced by the indenter (recall that D0=H is fixed),
while the constraint on the deformation increases (the free surface
where the material extrudes upward becomes smaller). Thus,
neglecting material compressibility, the average height of the fea-
ture, at maximum indenter depth, has to increase with decreasing
b=W , and moreover the mean contact pressure under the indenter
has to increase – in particular for large length parameters. This is
also evident from Fig. 8a. In general, the increased mean contact
pressure intensifies elastic volume changes, so that less material
is forced upward, as-well as adds to the elastic straining, which
in turn yields larger spring-back during unloading. It is this compe-
tition between changes in the mean contact pressure and the elas-
tic spring-back that give rise to the non-monotonic behavior in
Fig. 8b.

A corresponding parametric study on the effect of changing the
sheet thickness is laid out in Figs. 9 and 10. Here, keeping the ratio
of channel width to indenter spacing fixed at b=W ¼ 0:3 and 0.8,
respectively, and varying the length parameter to imitate imprints
being made at different scales. Fig. 9b clearly shows the channel
depth, d�, being a monotonic function of the sheet thickness,
H=W . This is tied to D0=H being kept constant (=0.02). Thus, for
increasing sheet thickness, the punch travels further into the mate-
rial, displacing a larger volume for fixed indenter size, and forcing
more material to extrude upwards at the free surface. However, as
for the above study, the final channel depth is largely affected by
changes to the length parameter as large strain gradients arise with
the deformation. From Fig. 9b, this is particularly evident for a
wide punch (b=W ¼ 0:3) as a fairly large amount of displaced
material has to be extruded upward over a small span of free sur-
face. On the other hand, the final channel depth for a narrow punch
(b=W ¼ 0:8) is much less sensitive to the length parameter, due to
a smaller displaced volume and a relatively larger free surface.

Fig. 10 displays the four key measures identified from the
parameterized surface topology in Fig. 6, as function of the normal-
ized sheet thickness, H=W . Results are, here, presented for two
ratio’s of channel width to indenter spacing, b=W ¼ ½0:3;0:8�. As
for the above results, the best possible match to the target surface
is obtained in the conventional limit (no gradient effects), while
the substantial details in the surface morphology are lost for
decreasing b=W .
for various indenter widths, b=W , and fixed sheet thickness, H=W ¼ 0:5. Results are
0 is the maximum indentation depth (D0=H ¼ 0:02).



Fig. 9. Normalized (a) peak load, Fmax , and (b) maximum indenter depth, d� , respectively, for various sheet thicknesses, H=W , and fixed indenter width at b=W ¼ 0:3 and
b=W ¼ 0:8, respectively. Results are shown for LD=W ¼ ½0:03;0:1;0:2;0:3�, and N ¼ 0:1 (Case A boundary conditions). Here, D0 is the maximum indentation depth
(D0=H ¼ 0:02).

Fig. 10. Match between the deformed top surface and the target surface for various sheet thicknesses, H=W , for two indenter widths; (a) b=W ¼ 0:3, and (b) b=W ¼ 0:8. The
match is quantified by the ‘‘a’’ and ‘‘b’’ value specified in Fig. 6, as-well as the Error =

RW
0 jydef : � ytarget jdx=ADeformed . Results are shown for LD=W ¼ ½0:03;0:1;0:3�, and N ¼ 0:1

(Case A boundary conditions, and D0=H ¼ 0:02).
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6. Concluding remarks

Small scale indentation of elastic–plastic materials is well-
known to reflect size effects, in terms of increased hardness when
compared to indentation made at larger scale. Similar size effects
are predicted for flat punch indentation, or imprinting of micron
scale features onto sheet metals, and it is obvious from Figs. 2, 3,
8a, and 9a that the peak-load associated with a specific indentation
depth rises as the length parameter increases (equivalent to down-
scaling the process). The mean contact pressure underneath the
punch thereby increases due to strain gradient hardening as the
material show more resistance to extrude upward between the ind-
enters. This intensifies elastic volume changes, and adds to the elas-
tic straining, so that a larger elastic spring-back occurs during
unloading (see Figs. 5 and 6). Thus, as the punch tool is retreated,
the size change of a micron scale imprint is substantial (see Figs. 5,
8, and 9), and the degree of mismatch with the mold counterpart is
worsened when down-scaling the process (see Figs. 7 and 10).
Throughout, isotropic hardening is assumed for the material
response. However, it is expected that kinematic hardening would
have an influence on the observed length scale effect for the shape
of the final impression as it is largely tied to the elastic spring back.

The implications of these findings can be tied directly to micro-
manufacturing processes, e.g. the so-called roll-molding developed
for low-cost, high-throughput of micron-scale imprints (Lu and
Meng, 2013). By letting the roll hold the mold counterpart,
micro-channel array imprinting on thin sheet metals poses essen-
tially the same issues as those treated in the presented work. Thus,
the shape of the imprinted features will be affected by down-scal-
ing the process. However, shape optimization of the punch geom-
etry could potentially improve on the imprinted feature so that a
match better the desired impression.
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