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A study is presented of the post-buckling behaviour
and imperfection sensitivity of complete spherical
shells subject to uniform external pressure. The study
builds on and extends the major contribution to
spherical shell buckling by Koiter in the 1960s.
Numerical results are presented for the axisymmetric
large deflection behaviour of perfect spheres followed
by an extensive analysis of the role axisymmetric
imperfections play in reducing the buckling pressure.
Several types of middle surface imperfections are
considered including dimple-shaped undulations and
sinusoidal-shaped equatorial undulations. Buckling
occurs either as the attainment of a maximum pressure
in the axisymmetric state or as a non-axisymmetric
bifurcation from the axisymmetric state. Several new
findings emerge: the abrupt mode localization that
occurs immediately after the onset of buckling, the
existence of an apparent lower limit to the buckling
pressure for realistically large imperfections, and
comparable reductions of the buckling pressure for
dimple and sinusoidal equatorial imperfections.

1. Introduction
The intense study of the nonlinear buckling behaviour
of shells and, in particular, of spherical shells largely
ended almost five decades ago with the publication of
Koiter’s [1] monumental paper on the post-buckling
behaviour and imperfection sensitivity of spherical
shells subject to external pressure. Spherical shells
under external pressure and cylindrical shells under
axial compression display extraordinarily nonlinear post-
buckling behaviour with a sudden loss of load-carrying
capacity triggered by buckling. These two shell/loading
combinations are the most imperfection sensitive in the
sense that experimentally measured buckling loads are
often as little as 20% of the buckling load predicted for
the perfect structure. As a consequence, design codes for
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elastic buckling of these thin shell structures often stipulate that the design load is ‘knocked down’
to 20% of that of the buckling load of the perfect structure. This empirical rule was proposed
over 50 years ago based on a large body of collected experimental buckling data and is still the
governing design rule.

No attempt will be made here to survey the prior extensive literature on spherical shell
buckling. Nevertheless, related to present aims, it should be mentioned that the highly nonlinear
character of spherical shell buckling was appreciated in the first half of the 1900s and an important
step in coming to terms with the nonlinearity and strong imperfection sensitivity was taken by
von Karman & Tsien [2], who set in motion a quest for a quantitative criterion governing the
low buckling loads of thin spherical and cylindrical shells. A large literature addressing this
topic accrued over the next 30 years investigating criteria such as a minimum post-buckling
load or a load at which the energy in the buckled state equals that in the unbuckled state. So
far, no acceptable criterion of this type based on the response of the perfect shell has emerged.
Instead, more progress has resulted from the consideration of initial imperfections and their
role in reducing the buckling load, although progress along these lines for spherical shells was
limited, as will be described in this paper. Koiter [3] developed a general theory of elastic stability
which connected imperfection sensitivity to the initial post-buckling behaviour of the perfect
structure. Relevant to the present study, it must be noted that a limitation of the Koiter theory
is that the imperfection-sensitivity predictions are asymptotic and only valid for sufficiently
small imperfections. The range of validity is not known from the theory itself and varies from
problem to problem. Spherical shell buckling is particularly challenging in this regard because
the direct application of Koiter-type theory to full spheres under external pressure, first presented
by Thompson [4] and somewhat later by Koiter [1], turns out to be valid for only extremely
small imperfections, too small to be representative of those in actual shells. This paper brings
out clearly the reason underlying the small range of validity of the Koiter theory for full spherical
shells and presents accurate buckling pressure results for representative imperfection amplitudes
and shapes.

The lull in research on spherical shell bucking over the past several decades has been
superseded by a resurgence of activity driven from several quarters. Recent advances with soft
elastomeric materials have made it possible to fabricate spherical shells that either are near perfect
or have precisely controlled imperfections, thereby opening the way for systematic experimental
imperfection-sensitivity studies [5,6]. These laboratory developments align with efforts underway
at NASA and by others interested in large shell structures to replace the long-standing empirical
buckling knock-down factors employed in design codes with an approach that computes buckling
loads using commercial finite-element codes by incorporating realistic imperfections tied to
manufacturing processes and direct measurement. Spherical shell buckling has also attracted
interest for applications as diverse as pattern formation and in the life sciences in the study
of capsules, pollen grains and viruses [7–11]. From a mathematical perspective, spherical and
cylindrical shells are interesting because of their complicated bifurcation behaviour and their
highly unstable post-buckling response. Recent work in the nonlinear dynamics community has
focused on these structures with the aim of gaining both a qualitative understanding of the
nonlinear system and a quantitative understanding of what sets the apparent lower limit of the
buckling loads [12–14].

2. Three shell theories
Three nonlinear shell theories for analysing buckling of spherical shells will be employed in
this paper. The rationale for doing so is to establish the range of applicability of the two most
commonly used sets of nonlinear buckling equations—small strain–moderate rotation theory and
Donnell–Mushtari–Vlasov (DMV) theory—in application to spherical shell buckling. A theory
which employs exact stretching and bending strain measures for the middle surface of the
perfect shell undergoing axisymmetric buckling deformations will be used to benchmark the
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two commonly used theories. Most of the results in this paper are computed with small strain–
moderate rotation theory, but DMV theory is also used to carry out the classical bifurcation
analysis and discussed throughout because of its widespread use in the analysis of spherical shell
buckling. All three theories are the so-called first-order theories intended for application to thin
shells. Such theories provide an accurate representation of the energy in stretching and bending
in the constitutive model to first order in t/R with t as the shell thickness and R as its radius.
Moderate rotation theory will be specified first, followed by DMV theory and finally the exact
theory.

(a) Small strain–moderate rotation theory
For the all problems of interest here, the middle surface strains remain small. In addition, for all
but an initial set of examples, the rotations remain moderately small. In nonlinear shell theory,
this means that middle surface strains ε satisfy |ε| � 1 and rotations ϕ about the middle surface
tangents and normal satisfy ϕ2 � 1. As a rough rule of thumb, the rotations should not exceed
about 15–20° for this theory to remain accurate. Rotations about the middle surface tangents
are the largest while the rotation about the normal to the shell middle surface will turn out
to be very small in the sphere buckling problem. Nevertheless, the equations accommodate
moderate rotations about the normal. Our calculations will also show that there is almost no
difference between dead pressure (force per original area acting in the original radial direction)
and live pressure (force per current area acting normal to the deformed middle surface) for
the behaviour of interest in this paper, but both loadings will be modelled to establish this
fact. It should be noted that, in this paper, dead pressure does not imply that the pressure is
prescribed to be fixed, as the terminology ‘dead’ sometimes implies. In this paper, ‘prescribed
pressure’ will be the terminology used to characterize a loading condition in which p is held
constant whether the pressure is dead or live. Equations for a first-order shell theory with small
strains and moderate rotations were given by Sanders [15], Koiter [16,17] and Budiansky [18].
These are specialized below for initially perfect spherical shells followed by the introduction of
small initial geometric imperfections.

Euler coordinates (ω, θ , r) are employed with r as the distance from the origin, ω as the
circumferential angle and θ as the meridional angle ranging from 0 at the equator to π/2 at
the upper pole. The radius of the undeformed middle surface of the shell is R. A material
point at (ω, θ , R) on the middle surface of the undeformed shell is located on the deformed
shell at

r̄ = uωiω + uθ iθ + (R + w) ir, (2.1)

where (iω, iθ , ir) are unit vectors tangent and normal to the undeformed middle surface associated
with the respective coordinates. For general deflections, the displacements (uω, uθ , w) are
functions of ω and θ ; for axisymmetric deflections uω = 0, while the other two displacements are
functions only of θ .

The nonlinear strain–displacement relations make use of the linearized middle surface strains
(eωω, eθθ , eωθ ) and the linearized rotations (ϕω, ϕθ , ϕr) with the rotation components about iθ , iω
and ir, respectively, which are

eωω = 1
R

(
1

cos θ

∂uω

∂ω
− tan θ uθ + w

)
,

eθθ = 1
R

(
∂uθ

∂θ
+ w

)

and eωθ = 1
2R

(
∂uω

∂θ
+ 1

cos θ

∂uθ

∂ω
+ tan θ uω

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)
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and

ϕω = 1
R

(
− 1

cos θ

∂w
∂ω

+ uω

)
,

ϕθ = 1
R

(
−∂w

∂θ
+ uθ

)

and ϕr = 1
2R

(
1

cos θ

∂uθ

∂ω
+ tan θ uω − ∂uω

∂θ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

In the small strain–moderate rotation theory, the middle surface strains are nonlinear

Eωω = eωω + 1
2
ϕ2

ω + 1
2
ϕ2

r ,

Eθθ = eθθ + 1
2
ϕ2

θ + 1
2
ϕ2

r

and Eωθ = eξθ + 1
2
ϕωϕθ ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

while the bending strains are linear

Kωω = 1
R

(
∂ϕω

∂ω
− tan θ ϕθ

)
,

Kθθ = 1
R

∂ϕθ

∂θ

and Kωθ = 1
2R

(
∂ϕω

∂θ
+ 1

cos θ

∂ϕθ

∂ω
+ tan θ ϕω

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

In this paper, imperfections in the form of a small, initial, stress-free radial deflection
of the middle surface wI from the perfect spherical shape are considered with (uω, uθ )I = 0.
Imperfections in the form of thickness variations or residual stresses will not be considered.
Thickness variations can give rise to both non-uniform pre-buckling stresses and initial middle
surface undulations but in most structures thickness variations are controlled to a much high
tolerance than middle surface undulations. In addition, in this paper attention is limited to
axisymmetric imperfections such that wI is a function of θ but not ω. Assuming that wI itself
produces small middle surface strains and moderate rotations (a condition always met in all our
examples), denote the strains in (2.4) arising from wI by EI

αβ . Then, evaluate the total strains due

to (uω, uθ , wI + w), where w is additional to wI, and denote the result by EI+U
αβ . The strains arising

from displacements additional to wI, which produce the stresses, are Eαβ = EI+U
εβ − EI

αβ and these
are given by

Eωω = eωω + 1
2
ϕ2

ω + 1
2
ϕ2

r ,

Eθθ = eθθ + 1
2
ϕ2

θ + 1
2
ϕ2

r − 1
R

dwI

dθ
ϕθ

and Eωθ = eξθ + 1
2
ϕωϕθ − 1

2R
dwI

dθ
ϕω,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)

where the linearized strains and rotations are evaluated in terms of (uω, uθ , w). Because the
bending strains are linear in the displacements and their gradients, the same process reveals that
the relations (2.5) still hold for the relationship between the bending strains and the additional
displacements with no influence of wI. From this point on, the additional displacements (uω, uθ ,
w) will simply be referred to as the displacements. An imperfection contribution also arises for
live pressure loading which will be introduced shortly.

The stress–strain relations for a shell of isotropic material in each of the three first-order
theories employed here are

Nαβ = Et
(1 − ν2)

[(1 − ν)Eαβ + νEγ γ δαβ ]

and Mαβ = D[(1 − ν)Kαβ + νKγ γ δαβ ],

⎫⎪⎬
⎪⎭ (2.7)
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with t as the shell thickness, E as Young’s modulus, v as Poisson’s ratio and D = Et3/[12(1 − v)2]
as the bending stiffness. The resultant membrane stresses are (Nωω, Nθθ , Nωθ ) and the bending
moments are (Mωω, Mθθ , Mωθ ). With S denoting the reference spherical surface specified by r = R
and the Euler angles (ω, θ ), the elastic energy in the shell is

SE(uω, uθ , w) = 1
2

∫
S
{MαβKαβ + NαβEαβ}dS. (2.8)

For the perfect shell, the potential energy (PE) of the uniform inward pressure p on the shell is
the negative of the work done by the pressure. For dead pressure (force per unit original area of the
middle surface acting in the original radial direction),

PE = p
∫

S
w dS (dead pressure). (2.9)

For live pressure (force per area of the deformed middle surface acting normal to the deformed
middle surface), the PE is the pressure multiplied by the change of volume �V within the middle
surface. The results in [15,16,18] can be used to obtain the following exact expression for �V in
terms of the middle surface displacements and their gradients, here in the surface tensor notation
of [18]:

�V =
∫

S

{
w + 1

3
[(ϕα + Qα)uα + R(ϕ2

r + |eα
β |) + w(eα

α + |eα
β | + ϕ2

r )]
}

dS, (2.10)

with |eα
β | as the determinant of eα

β , Qα = ϕαeβ
β − ϕβeα

β + εβαϕβϕr and εαβ as the surface alternating
tensor. We omit listing this expression in terms of physical components as it is rather lengthy.
However, in physical components for axisymmetric deformations, (2.10) becomes

�V =
∫

S

{
w + 1

3
[(1 + eωω)ϕθ uθ + w(eωω + eθθ ) + (R + w)eωωeθθ ]

}
dS. (2.11)

These exact results, (2.10) and (2.11), are applicable to a full spherical shell or any segment of the
shell which is constrained such that uω and uθ vanish on the boundary. The integrand in each of
the expressions for �V is a cubic function of the displacements and their gradients. It is worth
recording that a general expression for �V in [17], an alternative to that in (2.10), appears to
include errors or misprints.

Now introduce the effect of an axisymmetric initial imperfection wI on the PE of the pressure
loading using the process described for the strains, where w becomes additional to wI. Because it
is linear in w, the PE for dead pressure remains as (2.9). For live pressure, the resulting expressions
derived from (2.10) or (2.11) involving wI are lengthy and will not be listed. The energy functional
of the loaded shell system is

Ψ = SE(uω, uθ , w) + p f (uω, uθ , w), (2.12)

where PE = pf, with f given by (2.9) for dead pressure or derived from (2.10) or (2.11) for live
pressure. The presence of wI in (2.12) is not explicitly noted.

(b) Donnell–Mushtari–Vlasov theory
DMV theory introduces two approximations to the moderate rotation theory: (i) the square of the
rotation about the normal, ϕ2

r , is neglected in the in-plane strains (2.6) and (ii) the deformations
are assumed to have a short wavelength relative to R, referred to as shallow deformations, such
that the displacements uω and uθ in the rotations ϕω and ϕθ in (2.3) are neglected. Thus, in DMV
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theory for spherical shells with small axisymmetric initial imperfections, the strain–displacement
relations are

Eωω = eωω + 1
2

(
1

R cos θ

∂w
∂ω

)2
,

Eθθ = eθθ + 1
2

(
1
R

∂w
∂θ

)2
− 1

R
dwI

dθ
ϕθ

and Eωθ = eωθ + 1
2

(
1

R cos θ

∂w
∂ω

)(
1
R

∂w
∂θ

)
− 1

2R
dwI

dθ
ϕω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

and

Kωω = − 1
R2 cos θ

(
∂2w
∂ω2 − sin θ

∂w
∂θ

)
,

Kθθ = − 1
R2

∂2w
∂θ2

and Kωθ = − 1
R2

(
∂2w

∂ω ∂θ
+ tan θ

∂w
∂ω

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

where the linearized stretching strains in (2.13) are still given by (2.2).
Generally only dead pressure is represented when DMV theory is used with PE given by (2.9).

The stress–strain relations are given by (2.7) and the elastic strain energy by (2.8). Thus, for DMV
theory, the energy functional for the spherical shell subject to uniform pressure is given by (2.12)
with f = ∫

S w dS.

(c) Exact first-order theory for axisymmetric deformations
The stretching and bending strain measures of moderate rotation theory and DMV theory are
approximate and their accuracy deteriorates as the shell displacements and rotations become
sufficiently large. The following expressions for the Lagrangian stretching strains, (Eωω, Eθθ ),
and changes in curvature, (Kωω, Kθθ ), of the spherical shell middle surface are exact and can
be obtained from [15,16,18]. A first-order shell theory based on these exact measures will be
used to benchmark the other two theories using approximate strain measures by illustrating the
range over which the measures remain accurate. The exact measures are limited to axisymmetric
deformations (uω = 0, uθ (θ ), w(θ )). The linearized stretching strains, (eωω, eθθ ), and rotation, ϕθ , are
defined in (2.2) and (2.3), respectively. The Lagrangian stretching strains are

Eωω = eωω + 1
2 e2

ωω

and Eθθ = eθθ + 1
2 eθθ

2 + 1
2 ϕ2

θ ,

⎫⎬
⎭ (2.15)

while the changes in curvature are

Kωω = 1
R

{(1 + eωω + eθθ + eωωeθθ )(1 − tan θ ϕθ + eωω) + tan θ ϕθ (1 + eωω)(eθθ − eωω) − 1} (2.16)

and

Kθθ = 1
R

{
(1 + eωω + eθθ + eωωeθθ )

(
1 + dϕθ

dθ
+ eθθ

)
− ϕθ (1 + eωω)

(
deθθ

dθ
− ϕθ

)
− 1

}
. (2.17)

Consistent with a first-order theory for a material with a linear stress–strain response, the
membrane and bending stresses are still given by (2.7). In all the problems investigated in
this paper, the stretching strains, Eωω and Eθθ , remain small. Thus, the distinction between the
Lagrangian strains and other measures is insignificant and the linear constitutive relation (2.7) is
meaningful. The strain energy, PE of the live pressure loading and the energy functional Ψ of the
system have the same forms as those given earlier for the moderate rotation theory in (2.12).
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3. Bifurcation pressure and modes for the perfect shell based
on Donnell–Mushtari–Vlasov theory

Koiter [1] cites the PhD thesis of van der Neut [19] as the first rigorous demonstration that the
eigenvalue problem for the buckling of a perfect spherical shell subject to uniform pressure
has simultaneous axisymmetric and non-axisymmetric eigenmodes with bifurcation from the
uniformly compressed state at the critical pressure

pC = 2E√
3(1 − ν2)

(
t
R

)2
. (3.1)

Koiter [1] provides his own derivation of van der Neut’s results using moderate rotation theory
but in so doing invokes a series of approximations that follow from the fact that the eigenmodes
are shallow, i.e. have short wavelengths relative to R. His derivation is tantamount to invoking
DMV theory. It is insightful and useful for present purposes to provide a derivation of the classical
results for buckling of a perfect spherical shell using DMV theory from the start. This section
provides that derivation. We will demonstrate later in this paper that DMV theory with dead
pressure loading is accurate for nearly all aspects of the buckling behaviour of interest in this
paper.

The uniform membrane solution for the perfect spherical shell subject to uniform pressure p
according to either moderate rotation theory or DMV theory is

uω = uθ = 0, w0 = − (1 − ν)pR2

2Et
with N0

ωω = N0
θθ = −σ t and σ = 1

2
p

R
t

, (3.2)

where σ is the equi-biaxial compressive stress in the shell in the uniform state. Bifurcation from
this uniform state in the form (uω, uθ , w) = (�uω, �uθ , w0 + �w) is sought where the nonlinear
equations are linearized about the uniform state with respect to the �-quantities. The well-known
formulation using the Airy stress function �F to satisfy in-plane equilibrium is employed along
with the additional compatibility condition. The perturbation process leads to a pair of coupled
partial differential equations from DMV theory governing the buckling eigenvalue problem

D∇4�w + 1
R

∇2�F + σ t∇2�w = 0 and
1
Et

∇4�F − 1
R

∇2�w = 0, (3.3)

where ∇2 is the Laplacian operator on the spherical reference surface and ∇4 = ∇2(∇2).
Eliminating �F from the pair of equations in (3.3) gives

∇2
{

D∇4�w + Et
R2 �w + σ t∇2�w

}
= 0. (3.4)

The spherical harmonic Snm(ω, θ ) = (
sin mω
cos mω

)
Pm

n (sin θ ), with Pm
n as the associated Legendre

function of degree n and order m, satisfies ∇2Snm = −n(n + 1)R−2Snm. With n and m (0 ≤ m ≤ n)
restricted to be integers to ensure circumferential continuity and smooth behaviour at the poles,
it follows from (3.4) that eigenmodes of the form w ∝ Snm are associated with the eigenvalue

σ tR2

D
= n(n + 1) + q4

0
1

n(n + 1)
with q4

0 = 12(1 − ν2)
(

R
t

)2
. (3.5)

Anticipating that for thin shells n will be reasonably large, x = n(n + 1) can be regarded as a
continuous variable, ignoring the fact that n must be an integer, to minimize σ with respect to
x. This provides a lower bound estimate of the lowest eigenvalue, i.e. the buckling stress and

 on November 17, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


8

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160577

...................................................

0.5

(a)

(b)

(c)

0

–0.5

–1.0
0 30

q (°)

–P18(sin q) n = 17

wpole /R = 0.1

n = 18

wpole /R = 0.1

60 90

Figure 1. In (a,c), the symmetric axisymmetric bifurcation mode for the perfect shell with R/t= 103.5 and v= 0.3. In (b),
the antisymmetric axisymmetric bifurcation mode for R/t= 92.6 and v= 0.3. (Online version in colour.)

pressure for the perfect shell,

σC = E√
3(1 − ν2)

t
R

,

pC = 2E√
3(1 − ν2)

(
t
R

)2

and n(n + 1) =
√

12(1 − ν2)
R
t

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

This reproduces the result in [1]. For R/t values for which n is an integer, (3.6) is the lowest
eigenvalue. However, as Koiter [1] notes, for other values of R/t the difference between the
lower bound in (3.6) and the slightly larger eigenvalue for integer n is of relative order t/R. This
difference is very small for thin shells such that σC and pC in (3.6) are universally referred to as the
critical buckling stress and pressure of the perfect shell. Moreover, numerical calculations with the
moderate rotation theory with either live or dead pressure along the lines of those reported later
reveal that, even for a shell with R/t as small as 50, the difference between the classical formulae
for σC and pC in (3.6) and the lowest eigenvalue computed based on integer n is never more
than 1%.

There are 2n + 1 modes associated with the lowest eigenvalue: the axisymmetric mode, m = 0
and w = P0

n(sin θ ) ≡ Pn(sin θ ), and 2n non-axisymmetric modes, w = cos mω Pm
n (sin θ ) and w =

sin mω Pm
n (sin θ ) with 1 ≤ m ≤ n. The shape of the axisymmetric mode is shown in figure 1 for

shells with v = 0.3, in one case with R/t = 103.5 corresponding to a mode (n = 18) that is symmetric
about the equator and in the other case with R/t = 92.6 having an antisymmetric mode (n = 17).
Throughout this paper, the inward deflection at the upper pole is defined as wpole = −w(π/2).
In figure 1b,c, the shape is plotted with wpole/R = 0.1 for visualization purposes. As will be seen,
this far exceeds the amplitude for which the bifurcation mode has any relevance.

The coupling of the multiple modes in the nonlinear post-buckling range is one of the
reasons for the extremely strong imperfection sensitivity of the buckling of the spherical shell
under external pressure [1,3]. It will be useful at this stage to make contact with Hutchinson’s
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[20] analysis based on the behaviour of interacting modes in the vicinity of the shell equator.
Let w = cos mω w̄(θ ) be any eigenmode with w̄(θ ) ∝ Pm

n (sin θ ), with w̄ satisfying the equation for
Legendre’s associated functions,

1
cos θ

d
dθ

(
cos θ

dw̄
dθ

)
+
(

n(n + 1) − m2

cos2θ

)
w̄ = 0. (3.7)

Near the equator where θ ≈ 0, (3.7) is approximated by

d2w̄

d2θ
+ (n(n + 1) − m2)w̄ = 0. (3.8)

Thus, in the vicinity of the equator, symmetric modes have w̄(θ ) = cos
(√

q2
0 − m2θ

)
apart from

a different multiplicative factor where, by (3.5) and (3.6), n(n + 1) = q2
0. With �ω and �θ denoting

the wavelengths of the mode in the circumferential and meridional directions, the simultaneous
symmetric modes in the vicinity of the equator have the form

w = cos
(

2πRω

�ω

)
cos

(
2πRθ

�θ

)
with

(
2πR
�θ

)2
+
(

2πR
�ω

)2
= q2

0. (3.9)

These are the modes considered in the analysis of mode interaction and imperfection sensitivity
in shallow sections of a sphere [20]. The buckle wavelengths are of the order of � ≈ √

Rt and small
compared with R for thin shells. This representation of the modes will be used in the sequel.

4. Axisymmetric post-buckling behaviour of the perfect shell
Selected results for the axisymmetric post-buckling behaviour of the perfect shell will be
presented emphasizing behaviour at both small and large deflections. From a structural
standpoint, it will be seen that the important action occurs at small deflections that are usually
not more than several times the shell thickness. The numerical results in this paper make use of
highly effective algorithms (see appendices) for solving nonlinear ODEs which were not available
in the 1960s when nearly all the prior studies of spherical shell buckling were carried out. Koiter’s
[1] study of the imperfection sensitivity of spherical shell buckling employed analytical methods
based on perturbation expansions about the bifurcation point of the perfect shell, although he
attempted to extend the range of validity of these expansions by analytical means.

We begin by presenting an example of axisymmetric large deflection behaviour based on the
formulation in §2c that employs exact middle surface strain measures. The numerical method
for this formulation is described in the appendices. The shells in figure 2 have R/t = 25 and 50
with v = 0.3. Symmetry with respect to the equator has been imposed. Following bifurcation,
the pressure falls monotonically to the point where the opposite poles make contact. Under
prescribed pressure, the post-buckling response would be unstable over the entire range of
deformation plotted. Even under prescribed volume change �V, the response at bifurcation
is unstable until the pressure drops to p/pC ∼= 0.2 (wpole/R ∼= 0.3) for R/t = 25 or p/pC ∼= 0.15
(wpole/R ∼= 0.2) for R/t = 50. The post-buckling shape seen in the insert in figure 2a does not
resemble the classical axisymmetric mode described in §3 for reasons which will be discussed
shortly. Instead, the advanced buckling shape in the vicinity of the pole is approximately an
inverted cap with radius of curvature −R. For sufficiently small pole deflections, the buckle is
shallow and the rotation of the middle surface is small. However, as the pole deflection increases,
the magnitude of the maximum rotation becomes larger than 90° in the limit when wpole/R = 1,
clearly exceeding the range in which moderate rotation theory is expected to hold.

An important point brought out in figure 3 is that much of the essential buckling behaviour of
thin shells plays out in the range of deflections of the order of several shell thicknesses. The solid
line curves in figure 3 have been computed using the moderate rotation theory of §2b together
with live pressure using the exact expression (2.11) for the change in volume. For axisymmetric
deformations, the small strain–moderate rotation equations reduce to the system of six nonlinear
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Figure 2. Large axisymmetric deflections of two perfect shells based on the exact formulation. (a) Pressure versus pole
deflection normalized by the sphere radius. (b) Pressure versus change in volume normalize by the negative of the volume
within the middle surface of the undeformed sphere, V0 = −4πR3/3. The deformed middle surface is plotted in the insert
in (a) at three levels of deformation, including that at which the opposing poles first make contact. (Online version in colour.)

first-order ODEs given in the appendices. The dashed line curves in figure 3 have been computed
using the exact formulation for the case R/t = 50. For this case, divergence between the moderate
rotation theory and exact theory for the linearized rotation ϕθ is first evident at 0.25 radians (∼=15°)
but is still relatively small at twice that level. In fact, the moderate rotation prediction for the
relation of the pressure to the pole deflection for R/t = 50 remains accurate for pole deflections as
large as wpole/t = 10 or wpole/R = 0.2. The same is true for the relation of pressure to change in
volume. Equally important is the observation that, in the range of behaviour plotted, the relation
of p/pC to wpole/t is essentially independent of R/t and becomes increasingly so for even larger
R/t. As evident from figure 3c, the relation of p/pC to �V/VC is not independent of R/t due
to the fact that the dimple-like buckle at the pole diminishes in size relative to the sphere as R/t
increases. A complete characterization of this behaviour will be given in a subsequent publication.

For spherical shell buckling, it appears that the moderate rotation theory retains a reasonably
high level of accuracy for the main quantities of interest for deflections considerably beyond
those based on the previously quoted rule of thumb that the rotations should not exceed
15–20°. All of the subsequent results presented in this paper lie within the range wpole/t ≤
10 and they have been computed with the moderate rotation theory of §2b. Selected results
have been recomputed using the less accurate DMV theory. Apart from one case involving
non-axisymmetric bifurcation, we have not observed any appreciable difference between the
predictions of the two theories. Moreover, except for the very large deflection results in figure 2,
there is almost no difference between imposing live or dead pressure for the moderate rotation
theory for any of the other results presented in this paper. Finally, and importantly, the possibility
of non-axisymmetric bifurcation from the axisymmetric state will be analysed in §7 and reported
for all the axisymmetric solutions based on the moderate rotation theory. In particular, non-
axisymmetric bifurcation from the axisymmetric post-buckling solutions in figure 3 does not
occur. Once initiated these axisymmetric solutions are resistant to non-axisymmetric bifurcation
and remain axisymmetric.

We end this section on buckling of the perfect spherical shell by displaying the extraordinarily
rapid transition from the classical bifurcation mode seen in figure 1 to the localized dimple-like
mode seen in the insert in figure 2a. For this purpose, a perfect shell with R/t = 103.5 and v = 0.3
is considered, corresponding exactly to n = 18 by (3.6) and to the axisymmetric bifurcation mode
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Figure 3. Axisymmetric post-buckling behaviour of the perfect shell in the range of relatively small deflections for shells with
several R/t, assuming symmetry with respect to the equator. Solid lines denote results based on moderate rotation theory and
dashed lines are based on the exact formulation for R/t= 50. In (c),�VC = 4πR2wC is the change of volume of the perfect
shell at bifurcation where the associated normal displacement is wC = −(1 − ν)t/

√
3(1 − ν2). An extremely small initial

imperfection is used to trigger bifurcation from the spherical shape. This imperfection is then reduced to zero on the post-
bifurcation branch. (Online version in colour.)

shown in figure 1a,c. The dramatic evolution of the post-bifurcation buckling mode is shown in
figure 4. Almost immediately following bifurcation, the classical mode gives way to a dimple-like
mode localized at the pole. The deflection over most of the shell away from the pole is simply
the uniformly compressed state. As discussed in connection with figure 2, this dimple becomes
an inverted cap near the pole with radius of curvature approaching −R. Evkin et al. [21] have
presented an asymptotic analysis of the dimple mode using shallow shell theory applicable to
thin spherical shells in which the dimple is confined to the vicinity of the pole. Based on their
asymptotic analysis, the authors derive a formula for the dependence of p/pC on wpole/t. Their
formula is independent of R/t and reproduces the results in figure 3b with an error as large as
25% for moderate values of wpole/t but becoming increasingly accurate as wpole/t becomes larger.
Further details of the asymptotic results in [21] will be discussed in a subsequent publication.

The immediate localization of the post-buckling mode to the pole of the sphere was not well
understood to researchers in the 1960s, although there is already recognition by von Karman
& Tsien [2] that experimentally observed buckling modes were more dimple-like than shaped
like the classical mode. The localization explains why the initial post-bifurcation expansions of
Thompson [4] and Koiter [1] based on the axisymmetric classical bifurcation mode have such an
exceptionally small domain of validity. The initial post-bifurcation approach tacitly assumes that
the classical bifurcation mode provides the first-order, and dominant, approximation to the post-
buckling mode. As soon as mode localization occurs, this ceases to be a good assumption. While
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Figure 4. Evolution of the bucklingmode in the initial post-bifurcation range for a perfect spherical shell with R/t= 103.5 and
v= 0.3 with indicators pointing to the associated location on the pressure–deflection curve. The classical bifurcation mode
with wbif ∝ P18(sin θ ) is evident only for an extremely small range beyond bifurcation whereupon the mode becomes fully
localized at the pole to an inward dimple-like shape. (Online version in colour.)

evidently not aware of the localization phenomenon, Koiter was aware that the range of validity
of the expansions was severely limited for sphere buckling. A substantial portion of his study [1]
was devoted to an attempt to extend the validity of the expansions.

5. The effect of axisymmetric imperfections in the shape of the classical mode
Because imperfections in the shape of the classical bifurcation mode are known to cause the largest
load reductions in imperfection-sensitive structures [3], at least for sufficiently small imperfection
amplitudes, we begin by considering axisymmetric imperfections of the form wI(θ ) = −δ Pn(sin θ ),
where δ is the imperfection amplitude and n is related to R/t by (3.6). In the next section, it will be
seen that dimple-shaped imperfections are more critical for all but small imperfection amplitudes.

The example in figure 5 shows the effect of different imperfection amplitudes on the
post-buckling response of a shell with R/t = 103.5 and v = 0.3 corresponding to n = 18 and
wI(θ ) = −δ P18(sin θ ). The imperfection shape plotted in figure 1a has its largest magnitude at
the poles with wI(±π/2) = −δ. Shells having imperfections with amplitudes less than δ/t = 0.5
display a pressure maximum, pmax, in the early stage of deformation at wpole/t ≈ 1 followed
by diminishing pressure with increasing buckling amplitude. Under prescribed pressure, the
shell would become unstable and undergo snap buckling at pmax. The shells become unstable
just beyond attainment of pmax even under prescribed volume change for sufficiently small
imperfections, i.e. δ/t < ≈ 0.25. An unexpected finding is the fact that shells with imperfections
equal to or larger than approximately δ/t = 0.5 have no pressure maximum in the early stage of
deformation. For these shells, the pressure increases gradually until a peak is finally attained at
much larger deflections, e.g. wpole/t ∼= 10, as illustrated by the example in figure 5.

The normalized maximum pressure, pmax/pC, as a function of the imperfection amplitude,
δ/t, for four values of R/t is plotted in figure 6. The imperfection for each R/t is again taken
to be wI = −δ Pn(sin θ ), where the integer n is given exactly in terms of R/t by (3.6). Each case
corresponds to an even value of n and symmetry about the equator is invoked in the computations
carried out using the moderate rotation theory. As noted in connection with the example in
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Figure 6. Imperfection–sensitivity for shells having imperfections in the shape of the classical axisymmetric buckling mode,
wI = −δ Pn(sin θ ). Results for four values of R/t have been plotted and are almost indistinguishable from one another.
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figure 5, pmax is associated with a clearly defined peak pressure at relative small buckling
deflection, e.g. wpole/t < 1.5, for smaller amplitude imperfections satisfying δ/t < 0.45. For larger
δ/t in figure 6, no peak pressure is attained in the range of small buckling deflections. Thus,
for δ/t > 0.45, the range of pole deflections has been limited to wpole/t ≤ 5 and pmax is either the
peak pressure, if one occurs in this range, or the value of p at wpole/t = 5. Two notable features
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are evident in figure 6. First, for δ/t > 0.45, increasing the imperfection amplitude increases the
buckling pressure. Second, the imperfection-sensitivity curves are nearly independent of R/t,
increasingly so as R/t increases beyond 100. The issue of non-axisymmetric buckling from the
axisymmetric state will be addressed in §7. Except for the largest imperfections in figure 6 in
the range δ/t > 0.9, non-axisymmetric bifurcation does not occur at pressures lower than pmax

plotted. In fact, over most of the range for δ/t < 0.9, non-axisymmetric bifurcation does not occur
even at deflections well beyond the maximum pressure. In the range δ/t > 0.9, non-axisymmetric
bifurcation does occur just prior to attaining pmax in figure 6, implying that buckling in a
non-axisymmetric mode would be initiated. For example, for δ/t = 1, pbif/pC = 0.39 (m = 8) for
R/t = 47.2 and pbif/pC = 0.41 (m = 8) for R/t = 103.5.

Two aspects of axisymmetric spherical shell buckling described thus far have not been revealed
in earlier studies: (i) the nature of the localization transition of the buckling mode at the pole in
the post-buckling response almost immediately after the onset of buckling and (ii) the unexpected
increase in load-carrying capacity with increasing imperfection amplitude seen in figures 5 and
6 for the larger imperfections. Neither aspect could be expected to be uncovered from Koiter’s
[1] analytical approach for reasons already discussed. Koga & Hoff [22] were among the last
investigators in the 1960s to provide numerical results for the axisymmetric buckling of spherical
shells with axisymmetric dimple-like imperfections, but their method was not accurate and their
results overestimate the reduction in buckling load due to the imperfection. Moreover, the largest
imperfection amplitude these authors considered was δ/t = 0.5.

Numerical analysis is a powerful tool for accurately capturing the nonlinear phenomena
revealed here associated with spherical shell bucking, particularly because much interesting
behaviour is axisymmetric and therefore governed by nonlinear ODEs. It should be mentioned
that numerical analysis codes did exist beginning in the late 1960s which were capable of
uncovering the behaviour brought out in figures 5 and 6. Specifically, Bushnell [23] developed
accurate methods for solving nonlinear axisymmetric problems for shells of revolution which
later evolved into the BOSOR code [24]. Non-axisymmetric bifurcation from the axisymmetric
state could also be addressed by BOSOR. While this and other numerical codes had the
capabilities needed to advance the understanding of spherical shell buckling five decades ago,
such studies were not carried out. Upon completion of this paper, it came to our attention that
Bushnell, in his PhD thesis [25], carried out an extensive numerical analysis of the axisymmetric
buckling of clamped shallow spherical caps that did reveal the localization transition discussed
above for caps with sufficient height. Other than appearing in Bushnell’s thesis, this work has not
been published.

6. Imperfection sensitivity for dimple imperfections
Motivated by the tendency of the buckling mode to localize at the pole, attention is again focused
on axisymmetric behaviour of the shell but now for dimple imperfections located at the poles
specified by

wI(θ ) = −δ e−(β/βI)2
with β = θ − π

2
(at the upper pole). (6.1)

Here, βI sets the width of the imperfection. In all cases, the imperfection becomes exponentially
small for β 
 βI and is effectively zero at the equator. Attention is limited to deflections which are
symmetric about the equator. The localized nature of the buckling decouples behaviour above the
equator from that below, and there is essentially no difference in the imperfection sensitivity for
the symmetric case having identical imperfections at each pole and that for an asymmetric case,
for example, with the imperfection at only one pole.

Critical buckling wavelengths are proportional to
√

Rt, such that the scaling

βI = B(√
1 − ν2R/t

)1/2 (6.2)

ensures that the imperfection–sensitivity will be essentially independent of R/t, as will be seen.
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Figure 7. Imperfection–sensitivity based on axisymmetric buckling for dimple imperfections (6.1). (a) Shells with R/t= 100,
v= 0.3 and three imperfection widths set by B in (6.2). (b) Shells with different R/t, with B= 1.5 and dimple width scaling
according to (6.2). For B= 2 and δ/t> 1.6 in (a), amaximumpressure atmodest deflections does not occur and pmax is defined
as the pressure at wpole/t= 5. In all other cases, including those in (b), pmax is associated with a pressure maximum attained
for buckling deflections satisfyingwpole/t< 5. (Online version in colour.)

Plots of imperfection–sensitivity for three widths of the dimple imperfection are given in
figure 7a for R/t = 100. For relatively small amplitudes, e.g. δ/t < 0.5, imperfections with width
specified by B ∼= 1 give the largest reductions in buckling pressure, while for larger amplitudes
the largest reductions are caused by somewhat wider imperfections with B > 1. In almost all the
cases in figure 7, pmax is associated with a well-defined peak pressure, such as those cases shown
in figure 5, occurring at relatively small pole deflections. The only exceptions are the shells with
B = 2 and δ/t > 1.6 where no peak occurs at modest deflections. In these cases, pmax is defined as
either the maximum, if one occurs, or the pressure at wpole/t = 5, if no maximum has yet been
reached. The small jump in the imperfection-sensitivity curve at δ/t ∼= 1.6 in figure 7a for this case
results from this transition in behaviour. In §7, it is found that non-axisymmetric bifurcation from
the axisymmetric state prior to attainment of pmax does not occur for any of the cases presented in
figure 7. Comparison of the results in figure 7a with those in figure 6 reveals that an imperfection
in the shape of the classical mode does indeed reduce the buckling pressure slightly more than
the comparable dimple imperfection at sufficiently small amplitudes, i.e. δ/t < 0.5, but otherwise
the dimple produces larger reductions.

Figure 7b, for shells with dimple imperfection size specified by B = 1.5, demonstrates again
that there is essentially no dependence on R/t for thin shells as long as the imperfection width
scales according to (6.2). A remarkable feature of these imperfection-sensitivity trends is the lower
limit, or plateau, pmax/pC � 0.2, for buckling in the presence of imperfections with relatively large
amplitudes, independent of R/t. This is another feature which might have surfaced decades
ago had calculations at these larger imperfection amplitudes been performed. The plateau was
first noted by Lee et al. [6] in a combined experimental and theoretical study of the buckling of
clamped hemi-spherical shells. The plateau behaviour has important implications for identifying
the knock-down factor for spherical shell buckling which will be discussed in the concluding
remarks.

7. Non-axisymmetric bifurcation from the nonlinear axisymmetric state
The problem of non-axisymmetric bifurcation from the nonlinear axisymmetric solution is
addressed to ascertain whether non-axisymmetric buckling solutions at pbif exist prior to
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attainment of pmax in the axisymmetric state. Such a non-axisymmetric bifurcation would indicate
a lower buckling pressure than pmax. The bifurcation solution is linearized about the nonlinear
axisymmetric solution. Axial symmetry ensures a separated solution for the displacements in the
form

(uω, uθ , w) = R(sin(mω) ūω(θ ), cos(mω) ūθ (θ ), cos(mω) w̄(θ )), (7.1)

where m ≥ 1 is the unknown integer number of circumferential waves in the bifurcation mode.
From (2.2) to (2.5) for the moderate rotation theory, the linearized rotation and strain measures
have the form

(ϕω, ϕθ , ϕr) = (sin ω ϕ̄ω(θ ), cos ω ϕ̄θ (θ ), sin ω ϕ̄r(θ )),

(Eωω, Eθθ , Eωθ ) = (cos ω Ēωω(θ ), cos ω Ēθθ (θ ), sin ω Ēωθ (θ ))

and (Kωω, Kθθ , Kωθ ) = 1
R

(cos ω K̄ωω(θ ), cos ω K̄θθ (θ ), sin ω K̄ωθ (θ )),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.2)

where the barred quantities are readily obtained in terms of (ūω(θ ), ūθ (θ ), w̄(θ )), m and the rotation
ϕA

θ (θ ) in the axisymmetric state (see appendix C).
Denote the quadratic functional of the non-axisymmetric displacements governing bifurcation

from the axisymmetric state by P2(uω, uθ , w). Attention is limited to axisymmetric solutions that
are symmetric about the equator. This allows consideration of symmetric and antisymmetric
bifurcations with respect to the equator with P2 defined above the equator. The investigation of
non-axisymmetric bifurcation occurs in the range of small rotations where the dead pressure is an
excellent approximation to live pressure. As dead pressure is considerably simpler to implement,
it will be used for the bifurcation analysis. When use is made of the separated form of the
bifurcation mode listed above and the trivial integrations with respect to ω are carried out, one
can show that P2 can be reduced to the following dimensionless functional:

P̄2(ūω, ūθ , w̄, p) = 2(1 − ν2)
πR2Et

P2 =
∫π/2

0

[
(1 − ν)Ēαβ Ēαβ + νĒ2

γ γ + 1
α̂

((1 − ν)K̄αβ K̄αβ + νK̄2
γ γ )

]
cos θ dθ

+
∫π/2

0
[(EA

ωω + νEA
θθ )(ϕ̄2

ω + ϕ̄2
r ) + (EA

θθ + νEA
ωω)(ϕ̄2

θ + ϕ̄2
r )] cos θ dθ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.3)

where EA
ωω(θ ) and EA

θθ (θ ) are the strains in the axisymmetric solution, α̂ = 12(R/t)2 and the
dependence on p or wpole arises through the axisymmetric solution. Symmetry at the equator
requires ū′

ω = ūθ = w̄′ = w̄′′′ = 0 at θ = 0, whereas antisymmetry requires ūω = ū′
θ = w̄ = w̄′′ = 0. For

integers m > 1, conditions at the pole require ūω = ū′
ω = ūθ = ū′

θ = w̄ = w̄′ = 0. The mode for m = 1
does not require w̄′ = 0 at the pole; it is an unknown, representing a possible tilt of the shell
at the pole. For all the axisymmetric problems considered in this paper, wpole is monotonically
increasing and it has been used as the prescribed ‘loading’ parameter. For any non-zero set of
admissible bifurcation displacements (ūω, ūθ , w̄), P̄2 > 0 for wpole < (wpole)bif and there exist non-
zero displacements such that P̄2 < 0 for wpole > (wpole)bif. The pole displacement at bifurcation,
(wpole)bif, is the lowest value of wpole, considering all possible integers m for which an admissible
non-zero mode (ūω, ūθ , w̄) exists with P̄2 = 0. The associated pressure at bifurcation is denoted
by pbif.

The numerical solution of the non-axisymmetric bifurcation problem employs cubic splines
to represent each of the admissible displacements (ūω, ūθ , w̄) with nodal displacements as
unknowns. With aj, j = 1, M denoting the vector of unknowns, (7.3) becomes

P̄2(a, m, p) =
M∑

i=1

M∑
j=1

Aijaiaj, (7.4)
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where the symmetric matrix A is computed using numerical integration at each value of p, or
equivalently at each value of pole displacement wpole. For wpole < (wpole)bif, A is positive definite
for all integers m; (wpole)bif is the lowest wpole over all m such that |A| = 0.

As reported in the earlier sections, no non-axisymmetric bifurcation was found for the
axisymmetric post-buckling of the perfect shell for pole deflections as large as wpole/t = 10
in figure 3 once the axisymmetric bifurcation mode had been established. Furthermore, no
non-axisymmetric bifurcation was found for the axisymmetric solutions associated with the
dimple imperfection prior to attainment of the maximum pressure in the axisymmetric state.
In fact, for all cases investigated for the dimple imperfection, non-axisymmetric bifurcation
from the axisymmetric state did not occur even well past the maximum pressure. While
it is not possible to claim that non-axisymmetric bifurcation never occurs for axisymmetric
dimple-like imperfections, it appears from the examples investigated here that the axisymmetric
deformation becomes ‘locked in’ and resistant to non-axisymmetric deformation. As noted in §5,
for imperfections in the shape of the classical mode, the only instance where bifurcation from the
axisymmetric state was observed was for larger imperfections (δ/t > 0.9) in the range where the
maximum pressure increases with increasing imperfection amplitude. Although the imperfection
in the shape of the classical mode has potency at small amplitudes, it is not nearly as damaging
at larger amplitudes as the dimple imperfection and it is less realistic.

The study summarized thus far has established that an axisymmetric dimple imperfection
is likely to produce an axisymmetric buckling response when the spherical shell is subject to
uniform pressure. Imperfection amplitudes slightly larger than a shell thickness reduce the
buckling pressure to pmax/pC ∼= 0.2. We now show that axisymmetric imperfections at the equator,
the so-called beltline imperfections, can produce comparable buckling pressure reductions.
For these imperfections, buckling is associated with non-axisymmetric bifurcation from the
axisymmetric state.

The axisymmetric beltline imperfection is symmetric with respect to the equator and specified
by

wI(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−δ cos
(

2πRθ

�C

)
, 0 ≤ |θ | ≤ θA,

δp(5)(θ ), θA ≤ |θ | ≤ θB,

0, θB ≤ |θ | ≤ π
2 .

(7.5)

It is plotted in figure 8a for the specific choices, θA = 59.41° and θB = 74.71°, used in this paper.
Here, �C = 2πR/q0 is the critical axisymmetric wavelength �θ given by (3.9) with �ω → ∞, and
p(5)(θ ) is the fifth-order polynomial chosen such that wI and its first and second derivatives
are continuous at θA and θB. The region in the vicinity of the pole is imperfection free and the
maximum imperfection amplitude is δ attained in the vicinity of the equator.

The nonlinear axisymmetric solution for the beltline imperfection (7.5) does not display a
maximum until p becomes almost pC even for relatively large imperfection amplitudes. Thus,
if one restricted consideration to axisymmetric behaviour, one would have to conclude that the
beltline imperfection does not give rise to buckling imperfection sensitivity. The conclusion is
entirely different, however, when non-axisymmetric bifurcation from the axisymmetric solution
is considered. Results of the non-axisymmetric bifurcation study for a shell with R/t = 100 and
v = 0.3 are shown in figure 8b, where the normalized bifurcation pressure, pbif/pC, is plotted
versus the normalized imperfection amplitude, δ/t. In this plot, the number of circumferential
waves, m, associated with the bifurcation mode is shown. The slight rise seen in the bifurcation
pressure in figure 8b as δ/t approaches 2 has been evaluated carefully—it is not numerical
error. For δ/t > 0, as in figure 8b, the lowest bifurcation eigenvalue is associated with a mode
(ūω, ūθ , w̄) which is symmetric with respect to the equator, although the analysis assuming an
antisymmetric mode generates only slightly larger eigenvalues. For δ/t < 0, the critical mode is
antisymmetric and the imperfection-sensitivity curve is essentially identical to that in figure 8b.
The explanation of the underlying interaction of the non-axisymmetric mode with the membrane
stresses generated by the nonlinear axisymmetric solution is similar to that provided in the study
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Figure 8. Non-axisymmetric bifurcation from the axisymmetric state for axisymmetric equatorial, ‘beltline’, imperfections for
a spherical shell with R/t= 100 and v= 0.3. The imperfection, specified by (7.5), is plotted in (a) forδ/t= 1, withθ A = 59.41°
and θ B = 74.71°. The pressure at bifurcation computed for the full sphere using moderate rotation theory is plotted in (b) as
the curve which displays the number of circumferential waves m associated with the lowest bifurcation pressure. Included in
(b) are two results from [20] for the same imperfection based on an analysis of a shallow equatorial section of the shell. The
upper dashed curve is the asymptotic imperfection-sensitivity formula (7.6) and the lower solid line curve is a more accurate
analytical result not limited to small imperfections. (Online version in colour.)

of the effect of axisymmetric imperfections on the non-axisymmetric bifurcation of cylindrical
shells under axial compression [26].

Except for very small imperfections in the shape of the classical mode, the beltline imperfection
produces somewhat larger buckling pressure reductions than the other two shapes considered for
imperfection amplitudes with δ/t ≤ 1. For larger imperfection amplitudes, the beltline and dimple
imperfections both give rise to buckling pressure reductions that level out at p/pC ∼= 0.2.

Included in figure 8b are results from two analyses taken from Hutchinson [20] for a sinusoidal
imperfection with precisely the same form as (7.5) near the equator. The two analyses employed
DMV theory but did not consider a full spherical shell. Instead, the analyses exploited the short
wavelengths of the modes in the vicinity of the equator and considered periodic mode interaction
in a shallow section of the shell. The dashed curve in figure 8 is the relation

(
1 − pbif

pC

)2
= 9

√
3(1 − ν2)

8
δ

t
pbif

pC
, (7.6)

based on a Koiter-type asymptotic analysis. The second result, plotted as the lowest solid curve in
figure 8b, agrees with (7.6) asymptotically for small δ/t but is not restricted to small imperfections,
although it is approximate being based on the shallow analysis. This second curve is a slightly
more complicated analytic result taken from the appendix of [20]. These two results for pbif/pC do
not depend on R/t, and we strongly expect that the results from the full shell analysis in figure 8
will be essentially the same for all larger R/t. This has indeed been verified with R/t = 200 for
selected values of δ/t over the range shown in figure 8b. For these additional calculations, the
imperfection wavelength and the angles defining the transition to the imperfection-free pole are
changed consistent with the dependence on R/t in (7.5)

The imperfection-sensitivity prediction based on the numerical analysis of moderate rotation
theory for the full sphere in figure 8b is remarkably close to the analytical prediction given
in the appendix of [20] for δ/t ≤ 1. This agreement provides convincing evidence that Koiter
[1] is not correct in his assertion that by ignoring boundary conditions the shallow periodic
analysis produces an overly large pressure reduction. Koiter [1] modified the shallow analysis by
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modulating the periodic modes with an exponential function such that the modes decay to zero
outside the interaction region. His modification of the shallow analysis notably under-predicts
the buckling load reductions for the full sphere shown in figure 8. It can also be mentioned that
the one instance in the present work where we have found some divergence between calculations
based on DMV theory and the moderate rotation theory is in the range of larger imperfections
in figure 8b. At these larger imperfection levels, the bifurcation mode has a relatively low
circumferential wavenumber, m = 4, and thus it is not surprising that the shallow deformation
assumption underlying the approximations in DMV theory begins to break down. However, even
in the range 1.5 < δ/t < 2, the deviation of pbif/pC from DMV theory compared with the prediction
of moderate rotation theory is not more than 5%.

8. Conclusion
The major findings of this study are as follows:

(i) For the perfect spherical shell undergoing axisymmetric deformation, localization of the
non-uniform buckling deflection at the pole occurs almost immediately after the onset of
buckling. The localized mode bears little similarity to the classical buckling mode. This is
the reason that a post-bifurcation expansion with the classical mode as the dominant term
has such a small range of validity. Once initiated, the axisymmetric solution is resistant
to non-axisymmetric bifurcations.

(ii) Axisymmetric dimple imperfections located at the pole with amplitudes of one shell
thickness reduce the buckling pressure to approximately 20% of the buckling pressure
of the perfect shell, reaching a plateau with no further reduction produced by larger
imperfection amplitudes. Non-axisymmetric bifurcation from the axisymmetric solution
does not occur for these imperfection shapes prior to attainment of the maximum
pressure.

(iii) Axisymmetric sinusoidal imperfections in the vicinity of the equator, the so-called beltline
imperfections, produce reductions to the buckling pressure that are somewhat larger than
those caused by dimple imperfections but approach a similar plateau limit. Buckling
occurs as a result of non-axisymmetric bifurcation from the axisymmetric state.

(iv) Critical imperfection widths are proportional to
√

Rt and, for imperfection shapes
that scale accordingly, the imperfection-sensitivity curves obtained here are essentially
independent of R/t. Moreover, the buckling pressures are attained in the range of
relatively small deflections such that either moderate rotation theory or DMV theory is
accurate with virtually no distinction between live and dead pressure.

From a practical standpoint, the most important discovery for spherical shell buckling is the
levelling out of the imperfection-sensitivity curve on the plateau at roughly 20% of the buckling
pressure of the perfect shell. The plateau is also observed for the beltline imperfections. More
extensive analysis of the plateau for a wider range of dimple imperfection widths has been
presented by Lee et al. [6] for hemi-spherical shells clamped at the equator. These alternative
boundary conditions produce virtually no change in the imperfection-sensitivity curves from
those obtained here. It is found that, for an extended range of imperfection widths, the plateau lies
between 15% and 20% of the classical pressure. It is tempting to associate the buckling pressure
reduction on the plateau with the knock-down factor of 20% widely used for design against elastic
buckling of thin spherical shells. The plateau is associated with a wide range of realistic dimple
widths. More numerical and experimental work will be required to establish the robustness of the
plateau for other imperfection shapes and types, especially for non-axisymmetic imperfections.
Nevertheless, new experimental data for the elastic buckling of spherical shells obtained by Lee
et al. [6] support the existence of a plateau in the buckling pressure for larger imperfections. In
addition, trends in the experimental data for buckling of spherical shells collected in [27] give
further hope that the plateau may be relevant to the apparent lower limit of the buckling data.
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Figure 9. Prescribed volume change,�V = �VM, and post-buckling pressure of the perfect spherical shell at the Maxwell
condition where the elastic energies in the buckled and unbuckled states are equal. (Online version in colour.)

In addition to non-axisymmetric imperfections, this study leaves several other aspects
unexplored. These include questions of whether the non-axisymmetric bifurcation from the
axisymmetric state for the beltline imperfections is stable or unstable, and the relevance of the
minimum pressure in the post-buckling state of the perfect shell under prescribed volume change
or other such criteria. Even if the bifurcation from the axisymmetric state is stable such that the
shell can carry pressure above pbif, it is likely that the additional pressure-carrying capacity will
be quite small and that significant non-axisymmetric buckling deflections can be expected after
pbif is attained. Thus, even if the bifurcation is stable, the bifurcation pressure is almost certainly
a reasonable measure of the effective buckling pressure. In a related study [28] of the stability
of non-axisymmetric bifurcation of a cylindrical shell with an axisymmetric imperfection under
axial load P, it was found that the bifurcation is unstable for imperfection amplitudes such that
Pbif/PC was greater than about 20% and stable when Pbif/PC was less than 20%, where PC is the
buckling load of the perfect cylinder.

Figure 2 makes it fairly obvious that the minimum pressure of the perfect spherical shell in the
post-buckling state does not have any direct relevance to the buckling pressure of imperfect shells.
It is also questionable whether, even under prescribed volume change �V, either DMV theory or
moderate rotation theory can be used to accurately compute the minimum pressure. Note from
figure 5b that for a perfect shell with R/t = 103.5 the post-buckling pressure for �V prescribed to
be �VC is p/pC ∼= 0.13 occurring for wpole/t considerably larger than 10. This prediction may lie
outside the range for which moderate rotation theory is accurate.

It is possible to accurately compute the post-buckling pressure associated with the Maxwell
condition for prescribed volume change for the perfect shell using moderate rotation theory, and
this condition may be more relevant than the minimum post-buckling pressure. The Maxwell
volume change is defined as the prescribed volume change �VM for which the elastic energy in
the uniform state equals the elastic energy in the post-buckled state, with the elastic energy given
by Ψ in (2.12) without the pressure contribution. The associated pressure in the post-buckled state
is denoted by pM. Accurate results for �VM and pM as a function of R/t are plotted in figure 9.
Friedrichs [29] and Tsien [30] originally proposed the Maxwell pressure of the perfect shell pM
as a possible criterion for the lower limit of experimental buckling pressures but this idea seems
never to have been seriously pursued until recently [12,13]. The trend line for pM/pC in figure 9
suggests that this idea may have some merit. It will be further pursued in a subsequent paper.
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Appendix A. Specification of the ODE system for axisymmetric deformations
The moderate rotation equations are specialized to axisymmetric deformations such that uθ , w
and wI are functions of θ with uω = 0. Solutions symmetric about the equator can be analysed on
(0 ≤ θ ≤ π/2). Dimensionless displacements are defined as U = uθ /R, W = w/R and WI = wI/R.
Let d()/dθ = ()′. Then, with

ϕθ = −W′ + U and e ≡ eθθ = W + U′, (A 1)

the non-zero strains are

Eωω = W − U tan θ ,

Eθθ = e + 1
2
ϕθ

2 − W′
Iϕθ ,

Kωω = − 1
R

tan θ ϕθ

and Kθθ = 1
R

ϕ′
θ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)

Equilibrium equations are generated either by requiring δΨ = 0 for all admissible variations (δU,
δW) or, equivalently, by enforcing the principle of virtual work. The two equilibrium equations
for dead pressure are

m̄′′
θ + (tan θ m̄ω)′ − 1

(1 − ν2)
(n̂θ + n̂ω + (n̂θ (ϕθ − WI

′))′) + p̄ = 0 (A 3)

and

m̄′
θ + tan θ m̄ω + 1

(1 − ν2)
(n̂′

θ + tan θ n̂ω − n̂θ (ϕθ − WI
′)) = 0, (A 4)

where

(n̂ω, n̂θ ) = α̂

Et
cos θ (Nωω, Nθθ ),

(m̄ω, m̄θ ) = R
D

cos θ (Mωω, Mθθ )

and p̄ = R3

D
cos θ p,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 5)

and α̂ = 12 (R/t)2. The additional terms for live pressure have not been listed since they are
lengthy, but they are readily generated.

The equilibrium equations can be expressed through the constitutive equations and the strain–
displacement relations in terms of U and W or, equivalently, in terms of ϕθ and W with U = W′ +
ϕθ . The most highly differentiated terms are ϕ′′′

θ and W′′′ such that this is a sixth-order, nonlinear
ODE system. In all the problems considered in the paper, the axisymmetric behaviour is such
that the inward deflection at the pole, −W(π/2), increases monotonically, while the pressure, p̃ =
R3p/D, increases in the early stages and then usually attains a limit point after which it decreases.
For this reason, it is effective to treat p̃ as an unknown, to introduce an extra ODE, dp̃/dθ = 0, and
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to prescribe −W(π/2) as the ‘load parameter’. This augmented system can be reduced to seven
first-order ODEs in the standard form

dy
dθ

= f (θ , y),

where y = (ϕ′′
θ , ϕ′

θ , ϕθ , W′′, W′, W, p̃).

⎫⎪⎬
⎪⎭ (A 6)

When used in conjunction with a modern nonlinear ODE solver, this formulation provides highly
accurate results. In particular, the buckling pressure, i.e. the maximum pressure attained at the
limit point, can be accurately calculated. We have used the ODE solver routine DBVPFD in
IMSL,1 which incorporates Newton iteration to satisfy the nonlinear equations and automatic
mesh refinement to meet accuracy tolerances. As already noted, the inward pole deflection serves
as the loading parameter and it is increased in steps using a converged solution at one step as the
starting guess for the next step. The solution process is fast and robust. The results presented as
p/pC versus wpole/t or �V/�VC, which have been presented in the various figures, are generated
to an accuracy of three significant figures.

The components of f in (A 5) are given below.

ϕ′′′
θ = f1 = 1

cos θ

[
(2 + ν) sin θ ϕ′′

θ + (1 + 2ν) cos θ ϕ′
θ − ν sin θ ϕθ − tan θ m̄′

ω − m̄ω

cos2θ

+ n̂θ (1 + ϕ′
θ − WI

′′) + n̂ω + n̂′
θ (ϕθ − WI

′) + p̄
]

,

f2 = ϕ′′
θ , f3 = ϕ′

θ ,

W′′′ = f4 = −ϕ′′
θ − W′ − ϕ′

θ (ϕθ − WI
′) + ϕθ WI

′′ + tan θ (Eθθ + νEωω)

+ 1
α̂ cos θ

[n̂θ (ϕθ − WI
′) − tan θ (n̂ω + m̄ω) − m̄′

θ ]

and f5 = W′′, f6 = W′, f7 = 0.

In the above, m̄ω = − sin θ ϕθ + ν cos θ ϕ′
θ , m̄′

ω = ν cos θ ϕ′′
θ − (1 + ν) sin θ ϕ′

θ − cos θ ϕθ , m̄′
θ =

cos θ ( ϕ′′
θ − νϕθ ) − (1 + ν) sin θ ϕ′

θ , n̂ω = α̂ cos θ (Eωω + νEθθ ) and n̂θ = α̂ cos θ (Eθθ + νEωω), where
Eωω and Eθθ are given by (A 1) and (A 2), respectively, using U = ϕθ + W′. The derivative, n̂′

θ ,
is directly computed in terms of ϕθ and W and their derivatives.

At the equator (θ = 0), symmetry requires ϕθ = 0, ϕ′′
θ = 0 and W′ = 0. The functions ϕθ and W

are analytic at the pole, with ϕθ being odd and W even about the pole such that ϕ′′
θ = 0, ϕθ = 0

and W′ = 0 at θ = π/2. At the pole, f 2 = 0, f3 = ϕ′
θ , f 4 = 0, f5 = W′′, f 6 = 0 and f 7 = 0. A somewhat

lengthy expansion about the pole provides the following expression for ϕ′′′
θ at θ = π/2:

f1 = 3
8

[
2(− 1

3 + ν)ϕ′
θ + 2α̂(1 + ν)(ϕ′

θ + W′′ + W)(1 + ϕ′
θ − WI

′′) + p̃
]

. (A 7)

Again, the additional terms for live pressure have not been listed, because they are lengthy but
they are readily generated.

Appendix B. Solution method for axisymmetric deformations with the exact
formulation
The numerical methods for solving the axisymmetric problems in §4 based on the shell
formulation employing exact measures of the middle surface strains and curvature changes
and those for solving the non-axisymmetric bifurcation problem in §7 both employ splines to
represent the unknown fields with nodal values serving as unknowns. For the exact axisymmetric
formulation in §2c, u(θ ) and w′(θ ) are each represented by cubic splines and their values at the
nodes θ i = (i − 1)π/(2(N − 1)) for i = 1, N serve as unknowns. As both u(θ ) and w′(θ ) are odd
about the pole and the equator, it follows that they vanish at the pole and the equator. With

1IMSL (1994). Numerical analysis software copyrighted by Visual Numerics, Inc., USA.
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w(π/2) as the one additional unknown, w(θ ) is given by w(θ ) = w(π/2) − ∫π/2
θ w′(θ̃ ) dθ̃ , which

is integrated using the splines for w′(θ ). This representation has continuous first and second
derivatives of u(θ ) and continuous first, second and third derivatives of w(θ ). There are M = 2N − 3
unknowns, (ui, w′

i), i = 2, N − 1 and w(π/2), denoted by the vector a. For any a, the energy
functional Ψ (a, p) in (2.12) is evaluated by numerical integration. The attraction of this method is
that it is exceptionally straightforward and simple to program. The numerical evaluation of Ψ is
achieved with high accuracy using established integration formulae. It should be mentioned that
an alternative method would be to follow through the steps to generate a system of ODEs similar
to that described for the moderate rotation theory in appendix A. This alternative is feasible, but
the algebraic work is enormous, as is the programing due to the lengthy nature of the bending
strains and the more complicated stretching strain expressions.

The admissible set of displacements represented by a must render Ψ stationary, i.e.
∂Ψ (a, p)/∂aj = 0, j = 1, M. With (a0, p0) as an estimated solution to the stationarity equations, the
linearized equations for estimating improvements, �a and �p, are

∂2Ψ (a0, p0)
∂aj∂ak

�ak + ∂2Ψ (a0, p0)
∂aj∂p

�p = −∂Ψ (a0, p0)
∂aj

, j = 1, M (B 1)

with summation on k. This same set of equations can be used if �w(π/2) is the prescribed
change and �p is unknown. The partial derivatives in these equations are computed numerically.
The solutions generated in figures 2 and 3 were obtained by prescribing an increment of pole
deflection �w(π/2) and computing the remaining unknown increments �a and �p. Newton
iteration using (B 1) with �w(π/2) = 0 is also employed to converge at each step. The method
is efficient and effective as long as R/t is not too large. The number of splines N scales with

√
R/t.

Accurate solutions for R/t = 50 are obtained with N = 30. In contrast with the ODE method, a
drawback of this method is that it becomes difficult to obtain convergence for large R/t.

Appendix C. Solution to the non-axisymmetric bifurcation eigenvalue problem
The expressions for the rotation and strain quantities in terms of (ūω(θ ), ūθ (θ ), w̄(θ )) are

ϕω = sin mω ϕ̄ω = sin mω
( m

cos θ
w̄ + ūω

)
,

ϕθ = cos mω ϕ̄θ = cos mω (−w̄′ + ūθ ),

ϕr = sin mω ϕ̄r = sin mω
1
2

(
− m

cos θ
ūθ + tan θ ūω − ū′

ω

)
,

Eωω = cos mω Ēωω = cos mω
( m

cos θ
ūω − tan θ ū

θ
+ w̄

)
,

Eθθ = cos mω Ēθθ = cos mω (ū′
θ + w̄ + ϕA

θ ϕ̄θ ),

Eωθ = sin mω Ēωθ = sin mω
1
2

(
ū′

ω − m
cos θ

ūθ + tan θ ūω + ϕA
θ ϕ̄ω

)
,

Kωω = cos mω
1
R

K̄ωω = cos mω
1
R

( m
cos θ

ϕ̄ω − tan θ ϕ̄θ

)
,

Kθθ = cos mω
1
R

K̄θθ = cos mω
1
R

( ϕ̄′
θ )

and Kωθ = sin mω
1
R

K̄ωθ = sin mω
1

2R

(
ϕ̄′

ω + tan θ ϕ̄ω − m
cos θ

ϕ̄θ

)
,

where ϕA
θ (θ ) is ϕθ (θ ) from the axisymmetric solution and ()′ = d()/dθ .

As described in §7, cubic splines are used to represent (ūω(θ ), ūθ (θ ), w̄(θ )) in much the same
way as described in appendix B for the axisymmetric problems. In addition to involving ūω, the
method for the non-axisymmetric bifurcation represents w̄, not w̄′, using cubic splines. Thus, only
continuity of w̄ and its first two derivatives is ensured. Otherwise, the method is as described
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in §7. The search for the lowest eigenvalue requires systematic consideration of all integers m
and both symmetric and antisymmetric eigenmodes at each value of p or, equivalently, of wpole.
The number of splines N needed to represent each of the three unknown displacements scales
with

√
R/t, and N ∼= 2

√
R/t gave accurate results.
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