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Rolling at Small Scales
The rolling process is widely used in the metal forming industry and has been so for
many years. However, the process has attracted renewed interest as it recently has been
adapted to very small scales where conventional plasticity theory cannot accurately pre-
dict the material response. It is well-established that gradient effects play a role at the
micron scale, and the objective of this study is to demonstrate how strain gradient hard-
ening affects the rolling process. Specifically, the paper addresses how the applied roll
torque, roll forces, and the contact conditions are modified by strain gradient plasticity.
Metals are known to be stronger when large strain gradients appear over a few microns;
hence, the forces involved in the rolling process are expected to increase relatively at
these smaller scales. In the present numerical analysis, a steady-state modeling technique
that enables convergence without dealing with the transient response period is employed.
This allows for a comprehensive parameter study. Coulomb friction, including a
stick–slip condition, is used as a first approximation. It is found that length scale effects
increase both the forces applied to the roll, the roll torque, and thus the power input to
the process. The contact traction is also affected, particularly for sheet thicknesses on the
order of 10 lm and below. The influences of the length parameter and the friction coeffi-
cient are emphasized, and the results are presented for multiple sheet reductions and roll
sizes. [DOI: 10.1115/1.4031068]
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1 Introduction

The flat rolling process is widespread in the metal forming
industry, and it is applied to sheet thicknesses ranging from
several centimeters to fractions of millimeters (foil rolling). The
process has found multiple uses and it is under constant develop-
ment for new applications and new materials (see, e.g., Ref. [1]
for an overview). Currently, there is a push toward downscaling
the process aiming for high-throughput of ever thinner foils.
Efforts are also underway to create very small-scale features by
continuous imprinting with the rolling process (so-called roll-
molding [2]). Compared to flat rolling, the deformation field
developed during roll-molding is more complex as three-
dimensional features are allowed to form. However, even during
flat rolling, a nonhomogeneous deformation of the sheet takes
place as it is being forced between the rolls, making the contact
conditions and elastic unloading essential features of the model
solution [3–6]. Thus, strain gradients must be expected to evolve.

With large strain gradients come increased hardening at the
micron scale. The explanation for this is now generally accepted
to lie in the concept of geometrically necessary dislocations
(GNDs). GNDs must necessarily be stored when large plastic
strain gradients appear [7], and this gives rise to free energy asso-
ciated with the local stress field of the GNDs, as well as increased
dissipation when the GNDs move in the lattice. At small scales,
GNDs can become a substantial portion of the total dislocation
density, which is normally dominated by so-called statistically
stored dislocations at larger scales. Thus, a relatively larger
amount of energy is required to deform the material at small
scales in the presence of gradients, and this leads to an apparent
increase in yield stress and strain hardening. With rolling at a
small scale in mind, the questions to be addressed are: when do
the size effects influence the rolling process? and how will strain
gradient hardening affect the applied roll torque/force and the
contact conditions?

To tackle these issues and to develop an accurate numerical
framework, the material model must represent stresses over the
full range of length scales involved. For this, a vast amount of the-
oretical literature seeking to encapsulate the experimentally
observed gradient effects at micron scale has been put forward
[8–20]. The higher order elastic–viscoplastic theory by Fleck and
Willis [15] is employed in the current study, and the concept of
higher order stresses, work conjugate to the strain gradients, is
adopted to widen the range of length scales for which the model is
valid. Moreover, focus is on the steady-state rolling solution.
Thus, transient effects initiating the rolling process will not be
considered in the present study. For an efficient modeling
approach, the steady-state finite-element (FE) formulation pro-
posed by Dean and Hutchinson [21], suitable to history-dependent
material deformation, will be adapted to the rolling in the present
study (see also Ref. [6] for a similar approach in a conventional
plasticity context).

The paper is structured as follows. The material model and
steady-state formulation are presented in Sec. 2, while the bound-
ary value problem is outlined in Sec. 3. A steady-state modeling
framework that enables convergence, without having to deal with
the transient response of the rolling process, is employed. The
results are laid out in Sec. 4, and a conclusion is given in Sec. 5.

2 Model: Constitutive Relations, Steady-State

Formulation, and Contact Procedure

2.1 Rate-Sensitive Constitutive Material Model. The flat
rolling problem is analyzed using the gradient-enhanced
elastic–viscoplastic material model proposed in Refs. [11,12,15].
Here, a small strain formulation is employed. This is a reasonable
approximation to the rolling process as the overall straining is
proportional to the sheet reduction when limiting this to � 15%.
For small sheet reductions, the strains and the rotations remain
small—yet large plastic strain gradients can evolve (see, e.g.,
Fig. 7). An additive decomposition of the total strain is applied, so
that eij ¼ ee

ij þ ep
ij, where ee

ij is the elastic part and ep
ij is the plastic

part. The total strain field is determined from the displacements,
which together with the plastic strain components are determined
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based on the principle of virtual work for the current higher order
material. In Cartesian components, this can be written as

ð
V

ðrijdeij þ ðqij � sijÞdep
ij þ sijkdep

ij;kÞdV ¼
ð

S

ðTidui þMijdep
ijÞdS

(1)

where qij is the microstress tensor, rij is the Cauchy stress tensor,
sij ¼ rij � dijrkk=3 is the stress deviator, and sijk is the higher
order stresses, work conjugate to the plastic strain gradients, ep

ij;k.
Here, ðÞ;k denotes the partial derivative with respect to the coordi-
nate xk. The right-hand side of Eq. (1) includes both conventional
tractions, Ti ¼ rijnj, and higher order tractions, Mij ¼ sijknk, with
nk denoting the outward normal to the surface S, which bounds the
volume V.

The mechanisms associated with dislocation movement and/or
storage of GNDs [7,19,22] have been incorporated into the current
higher order theory by assuming the microstress, qij, and
higher order stress, sijk, to have a dissipative part only, such that

qij ¼ qD
ij , and sijk ¼ sD

ijk (all energetic contributions are omitted).

These dissipative stress quantities are written as [11,15]

qD
ij ¼

2

3

rC½ _Ep;Ep�
_Ep

_ep
ij; sD

ijk ¼
rC½ _Ep;Ep�

_Ep
ðLDÞ2 _ep

ij;k (2)

while the associated effective stress measure is

rC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
qD

ij qD
ij þ ðLDÞ�2sD

ijks
D
ijk

r
(3)

Assuming the form of the free energy to be

W ¼ 1

2
ðeij � ep

ijÞLijklðekl � ep
klÞ (4)

the conventional stresses are derived as rij ¼ @W=@ee
ij

¼ Lijklðekl � ep
klÞ, where Lijkl is the isotropic elastic stiffness ten-

sor. Moreover, a power-law relation for the viscoplastic behavior
is assumed, so that

_Ep ¼ _e0

rC

gðEpÞ

� �1=m

; with gðEpÞ ¼ ry 1þ EEp

ry

� �N

(5)

where N is the strain hardening exponent, m is the strain rate hard-
ening exponent, and _e0 is the reference strain rate. Thus,
rC½Ep; _Ep� ¼ gðEpÞ _Ep= _e0

� �m
.

In this model, the viscoplastic behavior becomes significant for
larger values of the strain rate hardening exponent, m, while the
current constitutive material model approaches the response of a
gradient-enhanced J2-flow type material in the rate-independent
limit (m! 0, see, e.g., Refs. [15,23,24]). Moreover, the response
of the gradient-enhanced model reduces to the prediction of its
corresponding conventional version as the length parameter goes
to zero (LD¼ 0). The numerical framework is, however, unstable
in the limit when LD ! 0, and thus a conventional material model
has been independently developed and coded for comparison. The
material properties considered in the present study are summar-
ized in Table 1.

2.2 Steady-State Formulation. The steady-state FE formula-
tion proposed by Dean and Hutchinson [21] is chosen over a clas-
sical transient Lagrangian modeling approach since it directly
brings out the steady-state field that appears stationary relative to
the rolls. Thus, convergence issues of any transient behavior are
avoided, making the steady-state formulation more precise and
less demanding in terms of calculation time (see also Ref. [6] for
a similar approach). Moreover, the modeling approach directly

accommodates elastic–plastic unloading and can be adapted to a
wide range of constitutive models.

Dean and Hutchinson [21] originally defined steady state in the
context of crack propagation as the condition at which the stress/
strain field surrounding an advancing crack tip remains unchanged
to an observer moving with the tip. A similar approach can be
adopted for the rolling process, where stationarity of the stress/
strain field must exist for a continuous feed of a homogeneous
sheet. Thus, the stress/strain field remains unchanged to an
observer at the rolls seeing the material pass by. Any time-derived
quantity, _f , in the constitutive model can thereby be related to
the spatial derivative through the sheet velocity, _a, along the x1-
direction, according to _f ¼ � _a @f=@x1ð Þ. An incremental quantity,
at a given material point ðx�1; x�2Þ, can thereby be evaluated by a
streamline integration along the negative x1-direction (see Fig. 1),
which starts well in front of the active plastic zone (upstream,
x1 ¼ x0

1 � 0; x2 ¼ x�2) and ends at the point of interest
(x1 ¼ x�1; x2 ¼ x�2). For example, the plastic strains are determined
as

ep
ijðx�1; x�2Þ ¼

ðx�
1

x0
1

@ep
ij

@x1

dx1; with
@ep

ij

@x1

¼ � 1

_a
_ep
ij (6)

and _ep
ij being the plastic strain rates. The spatial streamline integra-

tion is carried out using a standard forward Euler time integration,
with the point of interest holding the history of all upstream mate-
rial points.

In the chosen model formulation, the conventional principle of
virtual work for quasi-static problems can be used to determine
the displacement field, ui (which corresponds to minimum princi-
ple II in Ref. [15])

ð
V

LijklekldeijdV ¼
ð

S

TiduidSþ
ð

V

Lijkle
p
kldeijdV (7)

whereas a corresponding minimum principle can be formulated
for the plastic strain rate field (which corresponds to minimum
principle I in Ref. [15])

ð
V

qD
ij d _ep

ij þ sD
ijkd _ep

ij;k

� �
dV ¼

ð
V

sijd _ep
ijdV þ

ð
S

Mijd _ep
ijdS (8)

The displacement field and the related plastic strain rate field can
thereby be iterated upon in a “staggered” approach.

The numerical implementation follows that of Niordson
and Hutchinson [25]. Thus, based on the minimum principles in
Eqs. (7) and (8), a standard FE interpolation of the form

_ui ¼
X8

n¼1

NðnÞ _u
ðnÞ
i and _ep

ij ¼
X4

n¼1

NðnÞ _epðnÞ
ij (9)

can be introduced for the displacement increments and the plastic
strain rate field, respectively. Here, eight-node isoparametric
plane strain elements are used for the discretization of the dis-
placement field, and corresponding four-node elements are used
for the plastic strain rate field. Both element types are integrated

Table 1 Material properties

Parameter Significance Value

ry=E Yield strain 0.001–0.003
N Poisson’s ratio 0.3
N Strain hardening exponent 0.1–0.2
m Strain rate hardening exponent 0.01
_e0 Reference strain rate 0.002
LD=H Dissipative length parameter 0.05–1.00
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using Gauss quadrature, with 2� 2 Gauss points. The nodal solu-
tion is iterated upon following a steady-state integration procedure
similar to that in Refs. [21,26–28]. A detailed overview of the
algorithm can be found in Ref. [29].

3 Problem Formulation

In steady-state plane strain rolling, the translational displace-
ment of the sheet is large, but the strains remain small for moder-
ate thickness reductions. For example, let the position of a
material point at time t¼ 0 be (x1, x2) in the coordinate system
defined in Fig. 1 and denote the position of this same material
point at time t by (X1, X2). The displacements, uiðx1; x2Þ, used in
the formulation are defined by the relation of these two positions
of the same material point

X1 ¼ x1 � _atþ u1; X2 ¼ x2 þ u2 (10)

where _a is the constant velocity in the negative x1-direction of the
undeformed sheet feeding into the rolls. The displacements,
uiðx1; x2Þ, are relative to a frame translating with the feed velocity
of the sheet, so that the strains are: eij ¼ ðui;j þ uj;iÞ=2. Each itera-
tion in the process to solve for the displacements, strains, and
plastic strains in the current model setup involves two sequential
steps: (i) solving for the distribution of plastic strain rates, _ep

ij,
using minimum principle I in Eq. (8) and obtaining the plastic
strains by integrating along the streamlines as in Eq. (6); and (ii)
using minimum principle II in Eq. (7) to obtain the displacements
and strains.

The thickness of the undeformed sheet feeding into the rolls is
2H. The two circular cylindrical rolls of radius, R, are considered
to be rigid and the downward displacement, D, of the upper roll is
the depth of the minimum point on the roll surface below x2 ¼ H
(see Fig. 1). The lower roll is assumed to be displaced upward by
the same amount, thus symmetry conditions are enforced along
x2 ¼ 0 with u2ðx1; 0Þ ¼ 0 and _ep

12ðx1; 0Þ ¼ 0, such that only the
upper half of the sheet is meshed. The prescribed punch displace-
ment is D=H, which is the thickness reduction, ðH � hÞ=H, plus a
small elastic spring-back, cf., Fig. 1. In addition to the material
properties and the parameters controlling the rolling configuration
(R/H, D=H), a dimensionless feed velocity of _a=ðH _e0Þ ¼ 50 is
also prescribed. For the small values of the strain rate hardening
exponent, m, used to obtain the results in this study, there is virtu-
ally no dependence on the feed velocity, i.e., the rolling process is

Fig. 1 Parameterization of the rolling process under steady-state conditions, with symmetry applied at
x2 5 0. Throughout, _a=ð _e0HÞ5 50 and L=H 5 10, with the domain discretized by equal sized squared
elements of side length; LðeÞ=H 5 20, and unit thickness. The width of the sheet in the out-of-plane direction,
b, is not shown.

Fig. 2 Rolling at large scales (LD=H 5 0:05) with low friction
(l 5 0:005) and minimum prescribed pull force. (a) Applied tor-
que and (b) applied pull force for various punch displacements,
D=H (N 5 0.1, m 5 0.01, ry=E 5 0:003;R=H 5 100, and stick–slip
condition active). The width of the out-of-plane direction is
denoted b.
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essentially modeled rate-independent (for a rate-dependent study
see, e.g., Ref. [30]).

As will become evident in the discussion to follow, some load
cases require an added pull force, Fpull=Hbry, to ensure equilib-
rium. The pull force and the dimensionless torque applied to the
roll, T=ðHbryRÞ, are evaluated using the tractions at the interface
between the roll and the sheet, as well as those at the end of the
sheet (at x1 ¼ �L). The model is formulated so that the prescribed
pull force is over-ruled if it, combined with the roll torque, is
insufficient to make the prescribed sheet reduction (the plate
stops), or if it violates equilibrium (the plate accelerates). In both
cases, the pull force is set to obey equilibrium in order to achieve
the prescribed (constant) sheet velocity, _a. No force acts on the
sheet in front of the roll. To enforce this condition, a displacement
at the right end of the sheet, u1ðL; 0Þ ¼ DA, is prescribed and
adjusted each iteration such that the reaction force at this point is
nearly zero (on the order of 10�6 of the pull force) in the con-
verged solution. This constraint is enforced solely for numerical
reasons and prevents free body motions.

To initiate the iterative steady-state procedure, the roll is first
punched into the plate while restricting the movement of all nodes
that interact with its surface, so that these can only slide along the
circular path outlined by the rigid roll. For this, a linear constraint
is readily derived and enforced by a penalty approach. In
this way, a stress/strain field is created, whereafter the streamline
integration of the constitutive equations can be carried out. In the
subsequent iterations, the reaction forces on the roll are

continuously checked, and nodes are left free to move in the case
a negative pressure on the roll develops.

A “stick–slip” condition is employed at the contact interface
so that the friction forces obey Coulomb friction, whenever slip-
ping occurs, while the material is allowed to stick to the roll
whereby the friction forces are set by static equilibrium. Thus,
the maximum friction forces that can be transferred between the
surfaces are Ff ;max ¼ lFn, with l being the friction coefficient.
To ease the numerical analysis, all calculations are started by
letting the algorithm converge without any sticking, whereafter
this additional constraint is taken into account. Under full slip-
ping (free sliding), the friction forces are introduced by first cal-
culating the absolute sum of all nodal friction forces based on a
kinematic Coulomb model (Ff ¼ lFn), whereafter the direction
of the individual nodal friction forces is determined from static
equilibrium. Doing so, a discontinuous jump in the friction
forces will occur at the neutral point. Once the algorithm has
converged, the stick–slip condition is turned on, and sticking is
indirectly accounted for by imposing the constraint that the
straining in the rolling direction (along x1), at the top surface,
has to increase monotonically during contact. In case a
decrease in straining occurs, the applied nodal friction force will
be downscaled to mimic static friction conditions (with
Ff ;max ¼ lFn). The downscaling and adjustment of the friction
forces are made continuously during the iterative solution proce-
dure and allow for a “stick” region to evolve (where the friction
force gradually changes direction, see, e.g., Figs. 5 and 6).

Fig. 3 Rolling at large scales (LD=H 5 0:05) with low friction (l 5 0:005) and minimum prescribed pull force. (a)
Applied torque, (b) applied pull force, (c) applied punch force, and (d) input power determined as
P 5 ðFpull þ T=RÞ _a for T > 0 or P 5 Fpull _a for T £ 0 for various punch displacements, D=H (N 5 0.1, m 5 0.01,
ry=E 5 0:003;R=H 5 100, and stick–slip condition active). The width of the out-of-plane direction is denoted b.
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4 Results

To demonstrate the behavior and capability of the steady-state
model, a first comparison between the gradient-enriched material
model (described in Sec. 2.1) and the independently formulated
conventional J2-flow model is laid out in Fig. 2 for a case with
low friction (l ¼ 0:005). The results in this figure are a subset of
the full set of possible solutions associated with the prescribed
punch displacement, D=H. The solution in Fig. 2 is that corre-
sponding to the minimum possible pull force for which a solution
exists. Figure 2(a) is a plot of the dimensionless torque applied to
the roll, and Fig. 2(b) gives the associated minimum dimension-
less pull force. The gradient-enhanced results were computed with
a small material length parameter, LD=H ¼ 0:05, such that gradi-
ent effects are also expected to be small. The close agreement
with the prediction computed using a different code designed for
conventional J2 plasticity theory is notable, giving confidence in
the code for the strain gradient plasticity formulation. In Fig. 2, it
is seen that the torque is positive and thus, at the minimum pull
force, the roll torque and the pull force both do positive work on
the sheet.

The full set of solutions for the same set of parameters as those
in Fig. 2 is presented in Fig. 3. To understand the plots in Fig. 3,
first note that the results for the minimum pull force constitute the
lower curve for the pull force and the upper curve for the roll tor-
que. The other limit corresponding to the maximum allowable

pull force for any prescribed D=H is given by the upper curve for
the pull force and the lower curve for the roll torque. Note that the
roll torque corresponding to the maximum pull force is negative,
resisting the motion of the sheet. The dimensionless punch force,
being the required loading on the roll perpendicular to the sheet
top surface, is plotted in Fig. 3(c) and is seen to be almost inde-
pendent of the applied pull force. The dimensionless power
expended by the combined pull force and the roll torque is plotted
in Fig. 3(d) with the upper curve corresponding to the maximum
pull force, implying a negative roll torque (T< 0), whereas the
lower curve corresponding to a positive roll torque (T> 0). The
solutions corresponding to the minimum pull force, and thus mini-
mum power requirement, will have much of our attention.

For a prescribed punch displacement of D=H, solutions exist for
all pull forces lying between the lower and upper limits in Fig. 3.
A selection of these intermediate solutions is plotted in each part
of Fig. 3 associated with the curves connecting the minimum pull
force limit to the maximum pull force limit, as will be discussed
below in more detail.

Following the path “A-B-C-D” indicated in Fig. 3, for a pre-
scribed pull force of Fpull ¼ Hbry=10, the model goes through
three different stages as the punch displacement, D=H, gradually
increases; from “A” to “B,” the prescribed pull force is too large
for the combination of punch displacement and friction that has
been specified, and thus the sheet would accelerate if the pull
force was to be kept at its current level. This in spite the roll acts

Fig. 4 Effect of friction on rolling at different scales with minimum prescribed pull force. (a) Applied torque, (b)
applied pull force, (c) applied punch force, and (d) input power determined as P ¼ ðFpull þ T=RÞ _a for T > 0 or
P ¼ Fpull _a for T £ 0 for a fixed punch displacement of D=H ¼ 0:1. Results are shown for various length scales,
and with the stick–slip condition active (N 5 0.1, m 5 0.01, ry=E ¼ 0:003, and R=H ¼ 100). The width of the
out-of-plane direction is denoted b.
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as to brake the sheet (T< 0). The prescribed pull force is therefore
over-ruled to limit the power input (see Fig. 3(b)) and ensure equi-
librium. At point “B,” the specified combination of punch dis-
placement and friction gives rise to a braking torque coming from
the roll that exactly matches the prescribed pull force, and equilib-
rium can be fulfilled without having to make additional adjust-
ments. Seen from an energy point of view, this is the most
inefficient way of producing the specified sheet reduction as the
rolls counteract the power input coming from the pull force (see
Fig. 3(d)). From “B” to “C,” the punch displacement has increased
to a level where the roll torque is large enough to overcome the
pull, and hence the prescribed pull force can be maintained (con-
stant plateau in Fig. 3(b)). During this stage, the roll torque goes
from braking the sheet (T< 0), through being allowed to spin
freely2 (T¼ 0), and to dragging the sheet between the rolls

(T> 0). Thus, the model essentially shifts from the most ineffi-
cient branch and to the most efficient branch in the power input
diagram in Fig. 3(d). At point “C,” the combined maximum torque
transferred by the roll and the prescribed pull force act together
and match the forces needed to produce the specified sheet
reduction—making this an energy efficient configuration (see Fig.
3(d)). However, any additional increase in punch displacement
cannot be accommodated. This is also reflected in the final stage
from “C” to “D,” where an additional pull force is required to pro-
duce the specified sheet reduction. Due to the very low friction,
the roll simply cannot deliver a sufficient torque (and power
input); thus, the pull force has to be increased to ensure a constant
feed of the sheet.

It is worth noticing that the configuration of torque and pull
belonging to a point in the upper half-space of Fig. 3(a) is tied to
the lower branch of the power input (Fig. 3(d))—and hence to the
most energy efficient way of producing a specific sheet reduction.
This includes the upper branch for the torque (Fig. 3(a)) and the
lower branch for the pull force (Fig. 3(b)). Moreover, solutions for
constant sheet velocity only exist inside the branches brought out
by Figs. 3(a), 3(b), and 3(d), whereas the sheet either accelerates
or decelerates for configurations above and below the branches,
respectively.

The above example is an extreme case, and the friction level is
typically much higher than l ¼ 0:005 in reality. During large-
scale cold rolling, Richelsen [5] estimated the friction coefficient
to be on the order of l � 0:1� 0:2, for a Wanheim–Bay type
friction model [31,32], and similar values are expected for the
Coulomb friction model. For a sufficient friction level, the roll tor-
que increases, and hence the pull force can be completely omitted
in most cases. Model predictions for increasing friction are shown
in Fig. 4 in order to illustrate this transition. Results are shown for
a range of length parameters, and for a fixed punch displacement
of D=H ¼ 0:1. The smallest possible pull force is applied through-
out these calculations. By increasing the friction from zero, it is
seen that a pull force initially is needed to accommodate the speci-
fied sheet reduction since the roll cannot transfer sufficient torque
to keep the rolling process going. However, the need for addi-
tional pull gradually diminishes as the level of friction increases
(see Fig. 4(b)), and at l � 0:02, sufficient torque can be generated
by the roll to maintain a constant velocity of the sheet. From here
on, the pull force remains zero, while the roll torque increases

Fig. 6 Contact condition at the roll/sheet interface during
rolling at different scales. The normalized friction forces
(tangential traction) and normal forces (normal traction) for vari-
ous dissipative length parameters are shown (N 5 0.1, m 5 0.01,
l 5 0:1;ry=E 5 0:003;R=H 5 100;D=H 5 0:1, and stick–slip condi-
tion active). Zero pull force is applied.

Fig. 5 Contact condition at the roll/sheet interface during roll-
ing: (a) at large scales (LD=H 5 0:05) and (b) at small scales
(LD=H 5 0:50). The normalized friction forces (tangential
traction) and normal forces (normal traction) for various friction
levels are shown (N 5 0.1, m 5 0.01, ry=E 5 0:003;R=H 5 100;
D=H 5 0:1, and stick–slip condition active). Zero pull force is
applied.

2This condition essentially corresponds to the so-called “English Wheel” used in
metal forming, where the user exerts the pull force while the rolls spin freely.
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(somewhat linearly) with the friction (compare Figs. 4(a) and
4(b)).

Figure 4 includes results for the effect of the length parameter
and clearly demonstrates the influence of size on the rolling pro-
cess. As the length parameter increases (corresponding to rolling
thinner sheets), the relative forces increase, and so does the
stresses involved in the deformation process. This essentially
means that the required power input increases relatively at small
scale, which is also evident from Fig. 4(d). This has to do with the
increased yield resistance and hardening associated with GNDs
storage and movement in the lattice, and that the development of
large strain gradients requires additional energy. From Fig. 4(b), it
is noticed that the elevated forces at small scale lead to the
requirement of higher friction before the pull force can be omit-
ted, however, in most practical settings this difference will be too
small to be detected.

The contact conditions, at the interface between the rolls and
sheet, are illustrated in Figs. 5 and 6 for various levels of friction
and length parameters. The figures show the normalized contact
forces (the traction) as function of position, with F

ðeÞ
f being the

friction force, FðeÞn being the normal force, AðeÞ the element area,
and ry the yield stress.3 Figure 5 compares rolling at a large scale
(LD=H ¼ 0:05, see Fig. 5(a)) to rolling at a small scale
(LD=H ¼ 0:5, see Fig. 5(b)) for different friction coefficients.
Taking as off-set the large-scale rolling, the predicted contact con-
ditions compare well to previously published results (see, e.g.,
Ref. [5]), both with respect to the level and distribution of the sur-
face traction. In particularly, it is noticed that the steep peak in the
normal force at first contact is captured, and so is the secondary,
much smoother, peak near the stick region, where also the neutral
point exists (and where the friction forces change direction).
Moreover, a similar distribution for the absolute values of the fric-
tion forces is predicted, since Ff ¼ lFn during slipping, whereas
their gradual shift in direction within the sticking region demon-
strates a close match with the more computational demanding
model by Richelsen [5]. Note that the current steady-state model
provides the solution without having to deal with the transient
behavior.

The distribution of tractions found under small-scale rolling
displays close similarities to those at larger scales (compare
Figs. 5(a) and 5(b)). It is, however, noticed that the sticking region
becomes comparably more narrow for rolling at small scale, and
thus the change in direction for the friction forces is more abrupt.
Moreover, it is clear that the contact forces evolving at small scale
are relative higher, and a somewhat smoother peak is observed at
the point of first contact. This is due to the increased hardening

associated with the development of strain gradients, and thus the
strain gradient effect tends to smear out the plastic strain field.
The gradual change in the contact conditions when going from
large to small scale is evident from Fig. 6. Results are, here,
shown for a specified friction coefficient of l ¼ 0:1 and a fixed
punch displacement of D=H ¼ 0:1. The steep peak occurring at
large scale (LD=H ¼ 0:05) gradually smoothens and increases as
the length parameter increases (corresponding to rolling thinner
sheets). This smoothening effect can also be seen directly from
the plastic strain field. Figures 7(a) and 7(b) show the gradient-
enhanced effective plastic strain for the rolling process at large
and small scales, respectively, where the large-scale rolling dis-
plays close lying contours near the first point of contact (hence
large gradients), much more uniformly spaced strain contours are
captured for rolling at small scale.

From geometrical arguments, one can realize that the strain gra-
dients become larger near the point of first contact in case the roll
size decreases (keeping all other parameters fixed). This simply
has to do with the sheet reduction taking place over a shorter dis-
tance. Thus, the size of the roll becomes important when account-
ing for length scale effects as large strain gradients significantly
influence the material response. This is also clear from Figs. 8
and 9, where rolling at different scales and different roll sizes is

Fig. 7 Curves of constant effective gradient-enhanced plastic strain, Ep, for a fixed punch
displacement of D=H 5 0:1, and zero pull force. Here, two levels of the dissipative length
parameter (a) LD=H 5 0:05 and (b) LD=H 5 0:50 (N 5 0.1, m 5 0.01, ry=E 5 0:003;R=H 5 100;
l 5 0:1, and stick–slip condition active) are compared.

Fig. 8 Effect of roll size for various punch displacements,
D=H . The applied torque with zero pull force is prescribed.
Results are shown for various dissipative length parameters,
and with the stick–slip condition active (N 5 0.1, m 5 0.01,
ry 5 0:003, and l 5 0:1). Zero pull force is applied. The width of
the out-of-plane direction is denoted b.

3The chosen configuration of the figures yields the cleanest representation of
results, and a comparison with the stress level close to the top surface of the sheet
shows good agreement.

Journal of Manufacturing Science and Engineering APRIL 2016, Vol. 138 / 041004-7

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/ on 11/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



demonstrated. Figure 8 shows the roll torque versus the punch dis-
placement for three different roll radii (R=H 2 ½50; 100; 200�) and
two different scales. At large scale (LD=H ¼ 0:05), the model
response is nearly independent of the size of the roll, and the pre-
diction based on the gradient-enriched model falls on top of that
of the conventional model (employing a J2-flow material). On the
contrary, the roll size does influence the response at the small
scale (LD=H ¼ 0:5), and an relative increase in the required torque
is observed when the roll radius becomes smaller (zero pull force
is applied throughout). The results in Fig. 9 show a similar trend.
However, the roll torque versus the roll size for a fixed punch dis-
placement of D=H ¼ 0:1 is shown. As the roll size decreases the
torque increases, especially at the very small scale (LD=H ¼ 1),
whereas the response is nearly constant in the conventional limit.
The associated punch forces are displayed in Fig. 9(b).

The influence of conventional strain hardening is brought out in
Fig. 10. The figure shows the torque transferred to the sheet, as
well as the punch force, for various length parameters and two
levels of strain hardening. Obviously, an increase in strain

hardening leads to an increase in the forces involved in the rolling
process. It is, however, seen that similar trends for the length scale
parameter are obtained for both strain hardening values consid-
ered. Moreover, coinciding results with the corresponding J2-flow
model are found in the conventional limit (LD=H ! 0).

A similar study has been carried out for the effect of the yield
strain (/stress), and the results are presented in the Appendix.

5 Conclusion

Rolling at small scale is subject to the well-known size effects
owing to strain gradient hardening as the deformation that takes
place is nonhomogeneous. Thus, a nonlocal material model has
been adopted to accurately predict the material response over a
range of length scales in order to bring out size effects. For a
comprehensive study, the gradient-enhanced elastic–viscoplastic
material model by Fleck and Willis [15] has been employed,
together with a steady-state technique, suitable for history-

Fig. 10 Rolling at different scales with zero pull force. (a)
Applied torque and (b) applied punch force for various punch
displacements, D=H . Results are shown for various dissipative
length parameters, and for two levels strain hardening
(N 5 ½0:1; 0:2�) with the stick–slip condition active (m 5 0.01,
ry=E 5 0:003;R=H 5 100, and l 5 0:1). The width of the out-of-
plane direction is denoted b.

Fig. 9 Effect of roll size for a fixed punch displacement of
D=H 5 0:1, showing (a) applied torque and (b) applied punch
force. Results are shown for various dissipative length parame-
ters, and with the stick–slip condition active (N 5 0.1, m 5 0.01,
ry=E 5 0:003, and l 5 0:1). Zero pull force is applied. The width
of the out-of-plane direction is denoted b.
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dependent materials within the framework of FE analysis. The
developed modeling framework allows for an accurate representa-
tion of the material response over multiple length scales, including
the prediction of elastic–plastic unloading and thus residual
stresses and strains. The key findings of the study are:

(i) Rolling at small scale requires a relative larger power
input, as additional energy is needed to develop strain gra-
dients (see, e.g., Figs. 3(a) and 4). Thus, for a given punch
displacement, D=H, a higher torque has to be generated at
small scale to deform the sheet.

(ii) The importance of sufficient friction and the level required
to reach a given sheet reduction have been demonstrated
(see Fig. 4). As a specific case, the level of friction
required to reach a sheet reduction of �10%, without hav-
ing to include additional pull to the sheet, is estimated to
be l � 0:02 (for a strain hardening of N¼ 0.1). This value,
however, slightly increases as strain gradient becomes
important.

(iii) Downscaling the rolling process influences the contact
conditions. By adding strain gradient hardening, a
smoothed distribution of the interface traction is obtained,
e.g., the peak at first contact becomes less sharp. More-
over, the level of both the normal and tangential (friction)
traction increases at small scale—which relates directly to
the relative larger forces involved (see Figs. 5 and 6).

(iv) The roll size (i.e., the radius) becomes somewhat more im-
portant at small scales, and a detailed analysis shows strain
gradient hardening to increase as the role size decreases
(see Figs. 8 and 9). On the contrary, a negligible influence
of the roll size is found for rolling at larger scale.

In summary, the present study has found that gradient effects
begin to become noticeable when LD=H becomes roughly 0.25.
For many metal alloys, experimentally measured values of LD

usually fall in the range from 1 to 5 lm. For metals with
LD ¼ 5 lm, this implies that gradient effect should come into play
when the sheet thickness (2H) is roughly 10 lm. It is also worth
noting that the gradient effects lead to gradual modification of
the predictions of conventional plasticity and at LD=H ¼ 1, the
modifications are significant but not dominating.
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Nomenclature

_a ¼ sheet velocity
AðeÞ ¼ element area

b ¼ sheet width in out-of-plane direction
E ¼ Young’s modulus

Ep; _Ep ¼ enriched effective plastic strain and strain rate
FPull ¼ full force along rolling direction

FPunch ¼ punch force perpendicular to sheet

FðeÞn ;F
ðeÞ
f ¼ normal force and friction force

h, H ¼ deformed and undeformed sheet thickness
LD ¼ dissipative length parameter

LðeÞ ¼ element length
m ¼ strain rate hardening exponent

Mij ¼ higher order tractions
N ¼ strain hardening exponent

NðnÞ ¼ shape function belonging to node n
P ¼ power input

qij; q
D
ij ¼ total microstress and dissipative microstress

R ¼ roll radius

t ¼ time
T ¼ roll torque
Ti ¼ nominal surface traction
ui ¼ displacements
xi ¼ Cartesian co-ordinates
D ¼ punch displacement
_e0 ¼ reference strain rate

ep
ij;k; _ep

ij;k ¼ plastic strain gradient and strain gradient rates

eij; ee
ij; e

p
ij ¼ total strain, elastic strain, and plastic strain
l ¼ friction coefficient
� ¼ Poison ratio

rC ¼ gradient-enriched effective stress
rij; sij ¼ Cauchy stress and stress deviator

rY ¼ initial yield stress
sijk; sD

ijk ¼ total higher order stress and dissipative higher order
stress

W ¼ free energy
Lijkl ¼ elastic moduli

Fig. 11 Rolling at different scales with zero pull force. (a)
Applied torque and (b) applied punch force for various punch
displacements, D=H . Results are shown for three levels of initial
yield strain (ry=E 5 ½0:001; 0:002; 0:003�), with the stick–slip con-
dition active (N 5 0.1, m 5 0.01, l 5 0:1, and R=H 5 100). The
width of the out-of-plane direction is denoted b.
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Appendix: Effect of Yield Strain at Different Scales

The flat rolling process is adopted to a wide range of materials,
and thus it is important to analyze the influence of the material pa-
rameter specifying first yield. A collection of results for the effect
of the yield strain are included below. The results are obtained by
keeping Young’s modulus fixed and altering the yield stress. By
adopting the normalization used in the remaining figures, only a
fairly limited influence of the yield strain is observed, and the
effect is nearly identical at all scales (see Fig. 11).
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