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Abstract

Theories to extend plasticity to the micron scale have been in existence for over a decade, complemented by a growing body of exper-
imental data. Here, materials and mechanics aspects of two prominent strain gradient theories of plasticity, due to Nix and Gao and to
Fleck and Hutchinson, are assessed within the context of simple bending. Differences between the theories are highlighted. The theories
predict different trends relative to the size dependence of initial yielding and rate of hardening. The dislocation mechanics underpinning
the two theories is addressed. Distinctions between lower-order theories and higher-order theories are also drawn, emphasizing the flex-
ibility of higher-order theories to solve problems for a wide range of boundary conditions, especially those where, locally, the dislocations
are blocked (pile up) and the plastic strain is zero.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The elevation of the plastic flow stress in small volumes
is well documented [1–11]. The effects of configuration size
have been presented for indentation [1–6], torsion [7],
bending and thin film extension [8,9]. Microstructural size
effects include those due to grain boundaries (Hall–Petch)
[10] and particle reinforcements [11]. In all these cases,
strain gradients are involved and, in such instances, there
is general agreement that the size effect, which generally
manifests itself at the micron scale, can be attributed to
hardening enabled by geometrically necessary dislocations
(GND) [12]. The constitutive laws that ensue include a con-
tribution from the uniform plastic strain eP, and another
incorporating a length scale ‘, in conjunction with a plastic
strain gradient e�P � jdeP=dxj. The uniform strain is associ-
ated with the statistically stored dislocations (SSD), density
qSSD, and the gradient with the GND, density qGND [7]. To
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establish a viable computational scheme, these contribu-
tions must be combined in an appropriate manner. Almost
25 years after the introduction of the first theory of strain
gradient plasticity (SGP) [13], and following a decade of
active research into small-scale plasticity, the aim of the
present paper is to provide a critical assessment from the
vantage points of both mechanics and materials science
by delving into two basic approaches to combining the
strain and its gradient. One theory developed by Fleck
and Hutchinson [14,15] (FH) is based on plastic dissipation
and considers separate, additive contributions from the
SSD and GND. Another, introduced by Nix and Gao
[4,16–18] (NG), invokes an enhanced flow stress governed
by the density of the GND. Both formulations have the fol-
lowing commonalities: (i) they are phenomenological in
that they employ isotropic measures of the plastic strain
and its gradient; (ii) they aspire to extend the classical J2

theory of plasticity in the simplest meaningful manner into
the range where size dependence becomes important; (iii)
they reduce to J2 theory when the scale of the gradient is
large compared with ‘. Nevertheless, they predict different
trends in the flow stress. The distinctions between them will
rights reserved.
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be highlighted in the present paper by comparing and con-
trasting predictions for an especially straightforward load-
ing situation, described below. Thereafter, the merits and
limitations of the theories will be discussed and alternative
suggestions made.

The distinctions between the theories are most clearly
revealed by bending, because the total strain gradient is spa-
tially constant, inducing both SSD and GND as soon as
plastic flow commences. Data for the bending moment
induced in Ni foils as a function of curvature are used
(Fig. 1) [19]. Details of the experiments are given elsewhere
[19]. The principle of the test design is to bend a thin foil to a
prescribed curvature. When unloaded, the foil relaxes elas-
tically to a smaller, permanent curvature. The decrease in
curvature upon unloading provides a measure of the bend-
ing moment per width M, without requiring independent
measurement. The results of the bending measurements
conducted for foils of thickness h are presented as plots of
the normalized bending moment M/h2, as a function the
surface strain, eS = jh/2 and in terms of the reduced surface
strain, defined as the difference between the surface strain
and the surface strain due to M for elastic bending:
eR

S ¼ eS � 6ð1� m2ÞM=ðEh2Þ. (The elastic strain contribution
Fig. 1. Normalized moment M/h2 as a function of surface strain eS and reduced
g = 27 lm; (c and d) for three grain sizes with foil thickness h = 50 lm [19].
is of no significance for present purposes.) The normaliza-
tion used in these plots would collapse the data onto a single
curve in the absence of a material size effect. The results are
presented in a manner that highlights the separate depen-
dences on foil thickness and grain size. Those summarized
in Fig. 1a and c are for foils with the same grain size
(g = 27 lm) but differing thickness (10, 50 and 125 lm),
revealing the increase in flow stress with decrease in thick-
ness at a fixed grain size. The corresponding results in
Fig. 1b and d are all for foils with the same thickness
(h = 50 lm) but three grain sizes (6,14, and 27 lm). The
increase in flow stress with decrease in grain size is evident.
Tensile stress/plastic strain curves representative of those
for polycrystalline Ni at the four different grain sizes are pre-
sented in Fig. 2 [19–21]. These measurements will be
assessed in the context of the NG and FH theories.

In order to bring out differences between the theories,
two additional sets of measurements are invoked (Fig. 3).
One comprises the series of torsion tests conducted on
Cu wires of different diameter [7]. Note the strong influence
of the diameter on the yield strength, but relatively small
effect on the strain hardening. The other is the comparison
between the tensile response of thin foils with and without
surface strain eR for Ni foils: (a and b) for three thicknesses with grain size



Fig. 3. Upper plot: normalized torque vs normalized rotation for copper
wires of various radius a [7]. This normalization would collapse the data to
a single curve if there were no material size dependence. Lower plot: tensile
stress–strain data for thin copper films (0.34 lm) that are unpassivated
and passivated (on one surface) [9].

Fig. 2. Tensile stress–plastic strain data for foils with three grain sizes
[19–21].
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a passivated surface layer [9]. The presence of the passiv-
ated layer also increases the yield strength, with a much
smaller effect on the strain hardening.
The present assessment continues that initiated by Nix
and Gao [4] by focusing on the fidelity and underpinnings
of the simplest generalizations of conventional plasticity. It
also emphasizes the distinction between lower- and higher-
order gradient plasticity theories, to make the point that only
the latter is capable of solving important categories of prob-
lem, such as those involving dislocation pile ups. The unre-
solved issues it does not attempt to address are as follows:
(i) details of the higher-order formulations and the full scope
of the boundary conditions to which these apply [22,23]; (ii)
the partitioning of the plastic work due to strain gradients
into dissipative and recoverable contributions under highly
non-proportional multiaxial stressing [24] (not at issue for
pure bending); (iii) single crystal formulations of SGP,
whether cast within a continuum framework [25,26] or based
on discrete dislocations [27].

The paper is organized as follows. Basic aspects of plastic-
ity relevant to gradient effects are presented, the two formula-
tions are described and general trends elucidated. Thereafter,
the predictions of the theories for bending are compared with
the measurements, enabling conclusions to be reached about
their respective merits and deficiencies. Finally, the discussion
is broadened by introducing other measurements that support
the conclusions and by clarifying the scaling, as well as the
connection to dislocation-based concepts of hardening.

2. The interaction of plastic strains and strain gradients

2.1. Focus

The focus is on the manner whereby the plastic strains
and their gradients are combined in the SGP theories.
Issues related to the pertinence of lower- or higher-order
theories (Appendix A) do not explicitly affect the bending
assessment. However, because the distinction is crucially
important for certain classes of problems, one example
requiring the higher-order formulation is given in Section
4. The simpler deformation (rather than incremental) theo-
ries of plasticity are used, consistent with the bending
moments being measured at increasing curvature (Fig. 1),
involving monotonic plane strain tension or compression.

2.2. Definitions

The effective stress and plastic strain are, respectively,

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
and eP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eP

ije
P
ij=3

q
, with eP

ij the plastic

strain tensor, and sij the stress deviator. In uniaxial tension,
re and eP coincide with the stress and the plastic strain,
respectively, and the uniaxial stress–strain curve is charac-
terized by function f according to re = rYf(eP), with rY the
yield strength. This relation holds for proportional multi-
axial stressing in the absence of gradients. The associated
plastic work/volume is

UP ðeP Þ ¼ rY

Z eP

0

f ðeP ÞdeP ð1Þ



Fig. 4. Trends of average flow stress as a function of average plastic strain
eP for an object of size h subject to an average gradient of plastic strain
e� ¼ ceP=h: (a) FH; (b) NG formulations.
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2.3. The theories

The two theories each provide a length scale, designated
‘NG and ‘FH for Nix/Gao and Fleck/Hutchinson, respec-
tively. Definitions for these lengths, within the context of
the theories, will be provided in this section (see also
Appendix A). The interpretation of the lengths in terms
of the governing dislocation phenomena will be deferred
to Section 6. The theory introduced by Nix et al. [4,16] is
inspired by Taylor hardening, with flow stress governed
by the interaction of the mobile dislocations with the
SSD and GND, through a linear summation of their den-
sities, re � Gb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qSSD þ qGND

p
, where G is the shear modu-

lus, and b the Burgers vector. Interactions between the
SSD and GND are not considered. The theory is expressed
as a gradient-enhanced flow stress:

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½rY f ðeP Þ�2 þ va2G2be�P

q
ð2Þ

Here, e�P is the magnitude of the gradient of plastic strain,
v ¼ m2�r ffi 18, with m the Taylor factor connecting the ten-
sile yield stress of a polycrystal with the single crystal shear
yield stress (m = 3.06 for FCC), and �r ffi 1:85 the Nye fac-
tor. The Taylor hardening coefficient a is regarded as a
constant, expected to be in the range 0.2 < a < 0.4. In the
implementation of the NG theory, it has been treated as
a fitting parameter. The first term in Eq. (2) is attributed
to the SSD and reproduces uniaxial tension data. The sec-
ond is associated with the GND, as discussed further in
Section 6. The length parameter ‘NG is defined by

‘NG ¼ v
G
rY

� �2

a2b ð3Þ

such that

re ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf ðeP ÞÞ2 þ ‘NGe�P

q
ð4Þ

Both ‘NG and a will be presented when fitting the NG the-
ory to data.

The premise of the FH [14,15] theory is that the move-
ment of the SSD and GND results in plastic dissipation
governed by an effective plastic strain EP, re-expressed
from (1) as

UP ðEP Þ ¼ rY

Z EP

0

f ðeP ÞdeP ð5Þ

In the ensuing assessment, the preferred measure of EP is
the linear summation

EP ¼ eP þ ‘FHe�P ð6Þ
with ‘FH the associated material length parameter. The first
term provides the plastic dissipation caused by the motion
of the SSD, and the second term that attributed to the
GND. This choice reduces to classical theory in the limit
when gradients are small, with EP ffi eP. (More generally,
EP has been prescribed by the homogeneous composition

EP ¼ ðel
P þ ð‘FHe�P Þ

lÞ1=l ð7Þ
The version with l = 2 has been employed in most stud-
ies using FH theory. For reasons elaborated below and in
Appendix B, the linear summation with l = 1 is more
attractive and will be used hereafter.)

2.4. General trends

General trends can be revealed by considering the non-
uniform deformations of an object, size h, which experi-
ences average plastic strain eP and average strain gradient
e�P ¼ ceP=h (where c � 1). Trends are revealed most clearly
for a perfectly plastic solid, with f(eP) = 1. Upon approxi-
mating the average of the square root by the square root
of the average, the NG formulation predicts an average
flow stress

r � rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðc‘NG=hÞeP

p
ð8Þ

plotted in Fig. 4b for various h. Note that strain gradients
do not elevate the yield strength. Instead, they increase the
rate of strain hardening. Moreover, the gradient effect only
becomes important when (c‘NG/h)eP is of order unity. By
invoking a similar approximation, the corresponding
trends for the FH formulation are
P
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EP � ½1þ ðc‘FH=hÞ�eP ð9Þ
and

U P ðEP Þ ¼ rY ½1þ ðc‘FH=hÞ�eP ð10Þ
with average flow stress

r � rY ½1þ ðc‘FH=hÞ� ð11Þ
In this formulation (Fig. 4a), the gradient elevates the yield
strength but not the rate of hardening. Moreover, the flow
stress increases linearly with c‘FH/h independent of eP.

The foregoing distinction is persistent and represents
one of the major differentiators between the formulations,
i.e., the NG formulation increases the hardening rate, but
not the yield strength, while FH formulation increases
the yield strength, with a second-order influence on
hardening.

3. Application to pure bending

The size dependence of the moment–curvatures relation
in pure bending will be explored using the NG and FH
models. The tensile stress–strain data for the Ni foils
(Fig. 2) over the range of interest can be represented by

r ¼ Ee ðeP ¼ 0Þ; r 6 rY

r ¼ rY 1þ kðeP=eY ÞN
� �

; r > rY

ð12Þ

where eY = rY/E is the yield strain. The parameters rY, k
and N are chosen to fit data for each grain size (Table 1).
Elasticity will be taken to be isotropic with Young’s mod-
ulus E = 220 GPa. To simplify the analysis, elastic com-
pressibility will be neglected by taking Poisson’s ratio as
1/2, with little effect on the results of interest in the plastic
range. The only other input is the material length scale. For
each model, this will be chosen to fit the data.

The bending data are restricted to small strains, justify-
ing the use of linear strain–displacement theory. In pure
bending, the strain variation across the cross-section is
e11 � e = jy, with j the imposed curvature, and y the dis-
tance from the mid-plane. For plane strain with elastic
incompressibility, the effective plastic strain is related to
the component parallel to the foil by

eP ¼ 2jeP
11j=

ffiffiffi
3
p

ð13Þ
The plastic strain distribution eP(y) is the primary

unknown in all the theories. The strain at the surface of
a foil, thickness h, is eS = jh/2. The curvature at which ini-
tial yield occurs at the surface in the conventional solid
(‘ = 0) is jY ¼

ffiffiffi
3
p

eY =h, and the associated moment/length
is MY ¼ rY h2=ð3

ffiffiffi
3
p
Þ.
Table 1
Specification of uniaxial data.

Grain size g (lm) rY (MPa) k N

6 66 0.078 0.49
14 57.5 0.043 0.60
27 42 0.050 0.57
3.1. Foils with fixed grain size (g ffi 27 lm) at three different

thicknesses

Curves of moment against reduced surface strain based
on the NG model are plotted in Fig. 5. Details of the calcu-
lations are given in Appendix A. The length parameter was
chosen to fit the measurements for the foil with thickness
h = 50 lm (for which the data are most extensive) at eS =
2 	 10�3 (eR ffi 1.6 	 10�3, j/jY = 10.5, M/h2 ffi 20 MPa).
Thereafter, the same length is used to predict the remaining
curves. To obtain a fit, a large length, ‘NG = 25 mm, is
required such that a = 1.13. The corresponding fit plotted
in Fig. 5 for the FH formulation requires a much smaller
length parameter, ‘FH = 5 lm (computational details in
Appendix A).

3.2. Foils with the same thickness (h = 50 lm) but different

grain size (Fig. 6)

The analysis uses the input parameters summarized in
Table 1, with the length parameters chosen independently
Fig. 5. Predictions of the normalized bending moment M/h2 as a function
of the reduced surface strain, eR

S ¼ eS � 6ð1� m2ÞM=ðEh2Þ, for three foil
thicknesses, all with grain size g = 27 lm. In each case, the length
parameter was chosen to fit the experimental data in Fig. 1 for h = 50 lm.
Upper plot, predictions of NG theory with ‘NG = 25 mm (a = 1.13); lower
plot, predictions of FH theory (l = 1) with ‘FH = 5 lm.
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for each grain size to give the fit shown. Significantly, the
length parameters (‘NG and ‘FH) are only modestly depen-
dent on grain size. The trends in Figs. 5 and 6 in flow stress
and hardening elevation follow the pattern noted earlier.

The reason for the large ‘NG becomes apparent from Eq.
(4) upon noting that, for the size effect to be appreciable,
‘NGe�P must be comparable with f(e), which, in turn, is only
slightly larger than unity, i.e., because the plastic strains are
only of order 10�3, the gradient is e�P � ð10�3=hÞ, requiring
‘NG � 103 h for ‘NGe�P to be comparable with unity. The
existence of such large ‘NG is unprecedented and attributed
to its strong strain dependence. All previous assessments
have used stress data at much larger strains, inferring smal-
ler ‘NG. Notably, results for the torsion of copper wires
(Fig. 3) [17] twisted to surface strains of order unity gave
‘NG in the micron range, while indentation results (average
strains typically 0.1) typically infer tens of microns [6]. The
corresponding values of a are not constant. Instead, for
torsion and some indentation data, it falls in the range
0.2–0.4 while, for bending, a = 1.13. The implied strain
dependence (while less than that for ‘NG) is thus apprecia-
Fig. 6. Predictions of the normalized bending moment M/h2 as a function
of the reduced surface strain for three grain sizes all for foils with thickness
h = 50 lm. In each case, the length parameter was chosen independently
to give the best fit to the data in Fig. 1: upper figure, NG theory; lower
figure, FH theory.
ble, especially as the theory predicts an enhanced flow
stress that varies as a2.

By contrast, ‘FH is in the micron range for all cases:
small strain bending, large strain torsion and indentation.
The FH formulation does not give rise to appreciable strain
dependence for a given material because, in the definition
of the effective plastic strain EP, the plastic strain gradient
is ‘‘balanced” against the plastic strain. In other words, the
relative importance of the two contributions does not vary
with the overall strain level.

The comparison of the predicted and measured
moment/curvature curves in the plastic range (Figs. 7 and
8) reveals discrepancies for both models, notwithstanding
that some of the deviations are associated with measure-
ment fidelity at the smallest foil thickness, i.e., these mea-
surements (together with those in Fig. 2) provide a clear
indication of a yield strength elevation with thinness, at
variance with NG. However, FH is also at variance with
the bending measurements. It predicts (sometimes substan-
tially) larger yield strength elevations and lower hardening
rates than found experimentally. One implication is that
both models, in their simplest (foregoing) manifestation,
Fig. 7. Comparison between experimental data from Fig. 1 for three foils
with grain size g = 27 lm and theoretical predictions from Fig. 5: upper
plot, NG; lower plot, FH.



Fig. 8. Comparison between experimental data from Fig. 1 for three grain
sizes for foils with thickness h = 50 lm, and theoretical predictions from
Fig. 6: upper plot, NG; lower plot, FH.

Fig. 9. A plot illustrating the predicted size dependence in bending with
emphasis on the approach to the size-independent limit (1/h ? 0). This
example was computed using uniaxial stress–strain data for the foil with
g = 27 lm at imposed curvature j/jY = 5.24 (eS = 10�3) with size-inde-
pendent limit (M/MY)2 = 2.6. The length parameter for each theory was
calibrated such that the predictions coincide with (M/MY)2 = 7.4 at j/
jY = 5.24 for foils with h = 10 lm (at the right-hand side of the plot).
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are inadequate. Another is that a single comparison is
insufficient to distinguish the respective models. Neverthe-
less, the discrepancies have motivated the introduction of a
two-parameter FH model (described in Section 5) which
achieves closer correspondence between measurement and
theory.

For completeness, note that the FH theory with l = 2
(Appendix C) has the weakest correlation with the mea-
surements (due to lowest-order strengthening proportional
to ð‘e�P Þ

2).

3.3. The approach to the size-independent limit

The lowest-order strengthening dependence on ‘e�P is
exemplified by the appreciable body of Berkovitch nano-
indentation data [4]. These data reveal that, as the depth
of penetration d becomes large, the hardness H approaches
the limit for large indents H0, in accordance with ‘‘square
root” proportionality [(H/H0)2 �1 / ‘/d]. The analog in
bending is a plot of M2 against 1/h at a fixed surface strain
(es = 2j/h). The plot (Fig. 9) establishes that both the NG
and the FH theories (with l = 1) are consistent with this
trend: a direct consequence of the lowest-order dependence
of the formulations on ‘e�P .

4. An illustration of the importance of a higher-order theory

The foregoing bending solutions have assumed that the
plastic deformation at the surfaces is unconstrained
(Appendix A). Suppose, instead, that dislocation motion is
blocked by a thin passivation film, whereupon the plastic
strain vanishes at the surfaces (Fig. 3) [9]. Such a boundary
condition cannot be modeled by any lower-order theory.
But a higher-order theory includes the possibility of specify-
ing an additional boundary condition eP = 0 at the surfaces
(Appendix A). The basis for the difference is that, in the
lower-order theory, the gradient only affects the incremental
moduli: otherwise, it involves conventional measures of the
stress and strain. As a result, only conventional boundary
conditions can be enforced. By contrast, any theory based
on the plastic work is inherently higher-order, because the
work depends on the strain and its gradient, and both must
be retained as essential variables. There are two conse-
quences: (i) the theory embraces additional boundary condi-
tions; (ii) an additional stress-like quantity arises with
dimensions stress 	 length denoted by T. This new quantity
is referred to as a ‘‘higher-order stress” or, in some contexts,
as a couple or moment stress; T works through the strain gra-
dient to generate the stored energy and dissipation associ-
ated with the GND (Appendix A). An illustration showing
how T relates to material properties is presented in Appendix
B, along with examples of parameters with similar dimen-
sions familiar in dislocation theory.

The influence on the moment–surface strain relation
predicted by FH is plotted in Fig. 10 for foils with grain



Fig. 10. The role of passivated surfaces, as predicted by FH theory with
l = 2. The passivation layer blocks dislocations such that eP = 0 at the
surfaces, but is otherwise assumed to have negligible thickness. There is no
constraint on eP for the unpassivated surface, as in all the previous figures:
lower figure, normalized moment vs surface strain eS; upper figure,
distribution of eP across the upper half of the foil at j/jY = 10.3.
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size g = 27 lm and thickness h = 50 lm. The correspond-
ing distributions of effective plastic strain (at j/jY = 10.3)
are also shown in Fig. 10. Note that the effect of passiv-
ation in bending is large because yielding starts at the sur-
faces where plasticity is severely constrained.

It is re-emphasized that no conventional plasticity theory
or lower-order theory of any kind could distinguish between
passivated and unpassivated surfaces. The higher-order for-
mulation provides the flexibility needed to specify boundary
conditions not encompassed by lower-order theories. This
flexibility is illustrated through schematics of the spatial
organizations of the GND in bending (Fig. 11) along with
the associated continuum plastic strain distributions, eP

11ðyÞ
(cf., Fig. 10). For these distributions, the dislocation density
is qGND ¼ b�1deP

11=dy. The dislocations exit through an
unpassivated surface (a dislocation pile up cannot be sus-
tained), whereupon, at the surface, qGND ¼ b�1deP

11=dy ¼ 0,
and T vanishes. By contrast, dislocations pile up at the pas-
sivated surface, with non-zero qGND and T, while the plastic
strain vanishes. The mathematical structure of the higher-
order theory, including the definition of T and how it relates
to the boundary conditions, is presented in Appendix A.
5. Formulation with a strain-dependent length scale

An attractive feature of both the NG and FH models is
that they require the specification of only a single material
length parameter in addition to the standard inputs to con-
ventional J2 plasticity theory (Appendix A). As evident
from the comparison between predictions and the data in
Figs. 7 and 8, this simplicity also constrains the ability of
the theory to reproduce measurements. Both models can
incorporate additional parameters, permitting greater flex-
ibility. The process is illustrated for the FH model by gen-
eralizing Eq. (7), through a strain-dependent length scale,
according to

EP ¼ eP þ ‘ðeP Þe�P ð14Þ
as described in Appendix A. The specific example in Fig. 12
for the foil with g = 27 lm and h = 50 lm introduces two
parameters, ‘0 and a0, as

‘ðeP Þ ¼ ‘0½1þ a0ðeP=eY Þ� ð15Þ
where a0 clearly invokes a linear dependence of the length
scale on the plastic strain. By decreasing the initial
strengthening and increasing the rate of hardening, the
parameters chosen in Fig. 12 clearly give a better fit to
the data. While adding another parameter is hardly desir-
able, nevertheless it is comforting to establish that the the-
ories can be extended in a relatively straightforward
manner to replicate more closely a wide range of measure-
ments incorporating strain gradients.
6. Interpretation of the length scale

Strain gradient theories have not been comprehensively
embraced for several reasons. Most importantly, the
ambiguities surrounding the length parameters that
emerge upon fitting predictions from different theories to
measurements are a source of confusion which the forego-
ing bending tests highlight. A further hindrance is the lack
of clarity associated with the interpretation of the theories
within an explicit dislocation dynamics context [28]. The
following discussion provides rudimentary connections
between the length scales and dislocation-based
phenomena.

Before proceeding, the authors recall that both the NG
and FH formulations appeal to GND as the source of the
size effects, and both relate the density of GND to the plas-
tic strain gradient in essentially the same manner (see
Appendix A), motivated by explicit connections between
the density of GND and gradients of plastic strain in single
crystal theory [14,29]. Divergences between the two theo-
ries arise from the manner in which the strain and the strain
gradient are combined, as expounded in Section 2, leading
to the huge differences between the length parameters. Nei-
ther theory makes the distinction that the GND induced by
the strain gradients are closely correlated, whereas the SSD
are relatively uncorrelated. Moreover, neither theory
accounts for interactions among the dislocation categories.



Fig. 11. Schematic of dislocation and plastic strain distributions in bending for foils with unpassivated and passivated surfaces.

Fig. 12. Prediction from FH theory incorporating a strain-dependent
length parameter, ‘(eP) = ‘0(1 + a0(eP/eY)). The values ‘0 = 2 lm and
a0 = 0.2 were chosen both to fit the data for the foil with h = 50 lm at
eR = 10�3 and to represent better the initial increase in strength and
hardening of the foil with h = 10 lm.
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The connection in Eq. (3), ‘NG = v(G/rY)2a2b, under-
pins the physical basis of the NG formulation [4]. If the
yield strength is set by the current density of SSD, Taylor
hardening gives rY � Gb

ffiffiffiffiffiffiffiffiffi
qSSD

p � Gb=s, with s representing
an effective spacing between obstacles (dislocation cell size
or precipitate spacing). Neglecting numerical factors

‘NG � s2=b ð16Þ
The spacing estimated from Eq. (16) in conjunction with
the inferred length scale ‘NG = 25 mm is credible:
s � 2.5 lm. Nevertheless, the previously noted discrepancy
between a as a fitting factor and its interpretation as the
Taylor hardening coefficient persists. For example, for
the bending measurements at g = 27 lm (rY = 42 MPa),
formula (3) predicts ‘NG = 2.8 mm when the usual choice
of a is used (a = 0.4): much smaller than ‘NG = 25 mm
(with a = 1.13) inferred by reproducing the data.

The clearest microscopic interpretation of ‘FH emerges
upon letting DqSSD and DqGND be the densities of mobile
SSD and GND associated with the plastic strain eP and
gradient e�P , respectively, and �d the average distance they
travel (again set by dislocation cell size or precipitate spac-
ing). The plastic dissipation is

UP � rY ðDqSSDb�d þ DqGNDb�dÞ ð17Þ
Given that eP � DqSSDb�d and e�P � DqGNDb

UP � rY ðeP þ �de�P Þ: ð18Þ
Based on Eqs. (5) and (6)

UP � rY EP ¼ rY ðeP þ ‘FHe�P Þ
The identity ‘FH � �d implies that the length scale is deter-
mined by the average distance between obstacles. This out-
come is consistent with the statement that ‘FH sets the scale
of the gradient, whereupon the motions of the GND and
SSD contribute equally to the dissipation. It is also notable
that, for all the cases interpreted using FH, there is a strong
inverse correlation between ‘FH and the yield strain



Fig. 13. A plot of the length scale ‘FH against the size-independent tensile
yield strain. The length scale was ascertained by FH theory using
indentation data for Ir [3], a superalloy [30], copper [5] and silver [2],
together with the present finding for bending of Ni foils.
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(Fig. 13). That such a correlation exists is consistent with
the proposed dependence of ‘FH on the distance moved
by the dislocations, which, in turn, dictates the plastic
strain. Similar trends can be ascertained from the NG the-
ory provided that the originally conceived notion that a is
constant be abandoned. Indeed, fitting to the theory reveals
that a � 1 for the low yield strain Ni foils in bending,
a � 0.3 for indentation of Ag and Cu, and a � 0.05 for
indentation of the high-strength superalloy [30].

The two microscopic interpretations of the length scale
are not necessarily in conflict. Both estimates are within
the realm of possibility. Recall that, instead, the important
divergences between the formulations are twofold: (i) the
strong strain dependence of ‘NG contrasts with the relative
strain invariance of ‘FH; and (ii) the size effect in the NG
theory involves increases in rates of hardening, with little
initial strength increase, whereas the FH theory predicts a
substantial increase in yield strength with a smaller increase
in the rate of strain hardening. The strong strain depen-
dence of ‘NG can also be problematic. For example, inden-
tation tests are one of the simplest and most robust ways to
determine the material length parameter. However, unless
the strain dependence of the fitting factor a in Eq. (3) were
determined independently, it would not be possible to use
‘NG ascertained from indentation tests to predict the small
strain bending of foils.

7. Concluding remarks

By pursuing the two prominent strain gradient theories
within the context of a benchmark problem, simple bend-
ing, the following important differences were highlighted.
The strong strain dependence of ‘NG contrasts with the rel-
ative strain invariance of ‘FH. The size effect in NG theory
involves an increase in hardening, with little effect on initial
yield: whereas FH theory predicts a substantial increase in
yield strength with only a small increase in strain harden-
ing. Both theories deviate from the bending measurements
but, in a broader context, other measurements reveal a lar-
ger effect of the gradient on yielding than on strain harden-
ing. By adding an extra coefficient, the theories can be
adjusted to attain levels of strengthening and strain harden-
ing that more closely match the measurements. This capa-
bility was illustrated for the FH theory.

The length scales inferred by fitting to experimental
measurements have the following rudimentary connections
to dislocation phenomena. The strengthening in the NG
theory is governed by the spacing between the GND. The
FH theory is based on the plastic dissipation, enabling
the length scale to be related to the average distance
between obstacles moved by the GND. This correlation
is the basis for the inverse dependence of ‘FH on the yield
strain.

The difference between lower-order (conventional NG)
and higher-order (FH) theory was emphasized and illus-
trated by the example of surface passivated foils in bend-
ing. The distinction is that the low-order theory is
restricted in terms of the boundary conditions that can be
imposed, excluding the solution of various important
problems. The higher-order theory does not have this
restriction, because it introduces a new quantity (with
dimensions stress 	 length) governing the plastic work
within the strain gradient: analogous to the dissipation
within dislocation pile ups. Accordingly, higher-order the-
ory can solve problems involving locations where the plas-
tic strain is zero owing to the blockage of dislocations.

The version of FH pursued in the present paper used the
linear summation of the plastic strains and their gradients
(l = 1) because this choice correlates with well-established
‘‘square root” size scaling trends found in hardness and
other tests. Most prior applications conducted using FH
used l = 2, largely because the numerical implementation
is most straightforward for this case. However, given the
disconnect between this version and scaling trends, it is
proposed that it be abandoned or restricted to the mid-
range of the size effect. The ensuing challenge is that, to
progress further with the linear version of FH, non-stan-
dard numerical methods must be devised to obtain solu-
tions to generalized problems.

The uncertainties that remain from this assessment sug-
gest continued critical evaluation of the basic formulations
with input guided by fundamentals of dislocation mechan-
ics. Further progress requires better experimental data for
a range of materials using bending, torsion and shear as
benchmarks. While the forgoing bending data represent
an advance over prior data, its limitations in spanning
the relevant range of foil thickness and strain are neverthe-
less apparent. Further experimental data, such as those in
Fig. 3 (comparing the behavior of films with and without
passivation) [9] but applied to thin wires in torsion and foils
in bending, would provide an especially critical assessment
of the higher-order formulation. In turn, these aspects are
closely tied to the thickness of boundary layers and shear
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bands, only amenable to characterization by a higher-order
formulation.
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Appendix A. Synopsis of low- and high-order theories

Within the framework of single crystal plasticity, explicit
connections exist between densities of GND and the gradi-
ents of plastic strain [14,29]. The starting point for all phe-
nomenological isotropic theories is the definition of a
measure of the gradient of plastic strains e�P . The FH for-
mulation uses the most general measure based on the three
quadratic invariants Ii(i = 1,3) of the gradients eP

ij;k:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2

1I1 þ ‘2
2I2 þ ‘2

3I3

q
� ‘FHe�P ð19Þ

Definitions of these invariants, which are non-negative and
have dimensions (length)�2, are given in [14,15]. Three
length parameters, ‘i(i = 1,3), arise. For bending in plane
strainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2

1I1 þ ‘2
2I2 þ ‘2

3I3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

5
‘2

1 þ ‘
2
2 þ

6

5
‘2

3

r
je0P j � ‘FHe�P ð20Þ

The NG formulation [16,17] also employs Eq. (19), but
the number of length parameters is reduced to one by fixing
the ratios as ‘1 = ‘2 = ‘3.1 The measure of plastic strain
gradients is taken as

gP ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2 þ I3

p
ð21Þ

and the contribution to the flows stress in Eq. (2) is ‘gP. In
plane strain bending

‘gP ¼ ‘
ffiffiffi
3
p

2
je0P j � ‘NGe�P ð22Þ

Note that the length parameter ‘, as defined by Gao et al.
[16,17], is 2=

ffiffiffi
3
p

times the length ‘NG employed in the pres-
ent paper.

Distinctions between lower- and higher-order gradient
theories are illustrated within the context of pure bending.
For an elastically incompressible material in plane strain
and subject to j > 0, the relations introduced earlier hold
for y P 0:

e11 � e ¼ jy; eP ¼ 2eP
11=

ffiffiffi
3
p

; e�P ¼ jdeP=dyj ð23Þ
In both formulations, the conventional stresses are given
by
1 This restriction is in accord with the fact that the three lengths are not
associated with distinct physical mechanisms. While a single length
reduces somewhat the flexibility to fit data from different types of
deformations (e.g., wire torsion and indentation [5]), the restriction taking
the three parameters to be equal is a good compromise as discussed in Ref.
[17].
r11 ¼ ð4=3ÞEðe11 � eP
11Þ ¼ ð4=3ÞEðjy �

ffiffiffi
3
p

eP=2Þ ð24Þ
with r33 = r11/2, and the effective stress is re ¼

ffiffiffi
3
p

r11=2.
Because the two non-zero stress components are functions
only of y, the conventional equilibrium equations, rij,j = 0,
are identically satisfied.

A.1. Lower-order gradient theory: NG as an example

Most applications of NG have made use of the lower-
order theory [18] (albeit that higher-order versions have
been proposed [16,17]). For problems more complicated
than pure bending, a numerical technique (typically finite
elements) is needed to obtain solutions for the stresses,
based on the incremental equations governing stress–strain,
equilibrium and strain–displacement. These equations have
the same form as conventional plasticity, except that the
incremental moduli relating stress and strain increments
in the plastically deforming regions would have an addi-
tional dependence on the gradient of plastic strain. The
effects of the gradients are innocuous in that they do not
fundamentally alter the structure of conventional plasticity
[31]. In particular, they do not require, or permit, specifica-
tion of extra boundary conditions, such as the constraint
on plastic flow imposed by passivation described in Section
4.

Bending subject to increasing j is sufficiently simple that
the following direct approach is the most straightforward
way to produce the solution. Let eY = rY/E be the initial
tensile yield strain and jY ¼

ffiffiffi
3
p

eY =h be the curvature at
which yielding starts at the surface (y = h/2). When
j > jY, the region y 6 Y �

ffiffiffi
3
p

eY =ð2jÞ is elastic (eP = 0),
while yielding (eP P 0) occurs for y > Y. By Eq. (24)

eP
11 �

ffiffiffi
3
p

2
eP ¼ jy �

ffiffiffi
3
p

2

rY

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðeP Þ2 þ ‘NGe�P

q
ðy 
 0Þ ð25Þ

where the gradient-enhanced NG flow stress re from Eq.
(2) is introduced. Solving for e�P ¼ deP=dy and introducing
�eP ¼ eP=eY and g = 2y/h gives a first-order ordinary differ-
ential equation for �eP :

d�eP

dg
¼ 1

ð2‘NG=hÞeY

j
jY

g� �eP

� �2

� f ð�eP Þ2
" #

ð26Þ

The only boundary condition that can be enforced is the
requirement that �eP ¼ 0 at the elastic–plastic boundary at
y = Y (g = gY � jY/j). It is not possible to constrain the
plastic strain additionally at the surface. The results pre-
sented in the body of the paper are obtained by integrating
Eq. (26) numerically from gY to the surface at g = 1. For
j > jY, the moment/length is

M ¼ 2

Z h=2

0

r11ydy ¼ MY
jY

j

� �2

þ 3

Z 1

gY

j
jY

g� �eP

� �
gdg

	 

ð27Þ

where MY ¼ rY h2=ð3
ffiffiffi
3
p
Þ is the moment/length at the onset

of plastic yielding. The equation governing the plastic
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strain distribution for conventional plasticity is obtained
from Eq. (26) in the limit ‘NG ? 0, i.e., �eP þ f ð�eP Þ
¼ ðj=jY Þg.

A.2. Higher order gradient theory: FH as an example

The FH formulation employs the plastic work required to
deform a material element UP(EP), with EP given by Eq. (6).
Attention is again focused on the upper half of the beam. For
the deformation theory formulation, the energy/length
required to deform the beam to curvature j > jY is

U ¼ 2

Z h=2

0

1

2
r11e

e
11 þ UP ðEP Þ

� �
dy

¼ 2

Z h=2

0

2

3
E jy �

ffiffiffi
3
p

2
eP

 !2

þ UP ðEP Þ

2
4

3
5dy

ð28Þ

The first term is the elastic energy and the second is the
plastic work. For the case of no constraint on plastic flow
at the surface, the plastic strain distribution eP(y) is deter-
mined by minimizing U with respect to all continuous dis-
tributions eP that vanish for y 6 Y and are non-negative
for y > Y. The first variation in U with respect to eP is

dU ¼ 2

Z h=2

Y
� 2ffiffiffi

3
p E jy �

ffiffiffi
3
p

2
eP

 !
deP þ

@U P

@eP
deP

"

þ @U P

@e0P
de0P

�
dy

¼ 2

Z h=2

Y
�redeP þ

@UP

@eP
deP þ

@U P

@e0P
de0P

� �
dy

ð29Þ

with ()0 = d()/dy. The inevitable consequence of the depen-
dence of energy on the gradient of plastic strain is that a
new quantity with dimensions stress 	 length (N m�1)
arises, not present in conventional plasticity. This parame-
ter, designated T, is the work conjugate to the plastic strain
gradient e0P and identified as

T ¼ @U P=@e
0
P ð30Þ

That is, Tde0P is interpreted as the contribution to the plastic
work increment due to the GND. Integrating the third
term in Eq. (29) by parts gives

dU ¼ 2

Z h=2

Y
½�re þ Q� T 0�deP dy þ 2½TdeP �h=2

Y ð31Þ

where Q = oUP/ oeP. The requirement that dU = 0 for all
deP, satisfying eP = 0 at y = Y, provides the equilibrium
equation for the higher-order stress and the extra boundary
condition at the surface:

T 0 � Qþ re ¼ 0 on Y � y � h=2 ð32Þ
and

T ¼ 0 at y ¼ h=2 ð33Þ
For the case where plastic flow is blocked at the surface, the
admissible distributions must be additionally constrained
such that eP = 0 at y = h/2; then T does not vanish at the
surface. Because dU = Mdj, one can show that M is again
given by Eq. (27).

In summary, for bending in the lower-order theory, a
first-order, ordinary differential equation governs eP, and
the only condition that can be enforced is that eP vanish
at the elastic–plastic boundary. The equilibrium equation
for the higher-order theory, Eq. (32), when expressed in
terms of eP, becomes a second-order, ordinary differential
equation. Boundary conditions at both the elastic–plastic
boundary and at the surface can be imposed, modeling
either blocked or unblocked dislocation motion (or even
intermediate conditions with further embellishment [23]).

Inclusion of a strain dependence of the length parameter
‘FH(eP), as illustrated by Eq. (15), creates no difficulties.
The dependence ‘FH(eP) appears in EP and in UP(EP) and
is directly accounted for in the quantities Q = oUP/ oeP

and T ¼ @UP=@e0P . In other words, the additional flexibility
afforded by the strain-dependent length parameter creates
no theoretical or computational obstacles [32].The results
presented in the figures were obtained by minimizing U
with respect to eP(y) subject to the constraints enumerated
above, with

UP ðEP Þ �
Z EP

0

redeP ¼ rY EP þ
keY

ðN þ 1Þ
EP

eY

� �Nþ1
" #

ð34Þ

The minimization process was implemented numerically.
For l > 1, various methods can be used, including a one-
dimensional finite element method with a piecewise linear
approximation to eP(y). For l = 1, the choice of methods
narrows, because the minimum is not necessarily analytic,
and the solution for eP(y) can have discontinuities in its first
derivative. In the present paper, the interval Y 6 y 6 h=2
was subdivided into equal elements, a piecewise linear
approximation to eP(y) was used, and the minimum of U
was obtained using a standard routine for constrained opti-
mization. To apply this formulation to two- and three-
dimensional problems, efforts will have to be made to iden-
tify efficient and robust numerical solution methods.

Appendix B. An explicit illustration of the higher-order

stress T

The origin of the higher-order stress T is illustrated for
the uniform rectangular array of edge dislocations in
Fig. 14 associated with pure bending of a beam of thickness
h. The dislocation array produces a macroscopic curvature,
j = b/sd, and uniform plastic strain gradient, e0P ¼ j
¼ b=sd. All the dislocations are geometrically necessary.
The beam is unloaded with traction-free upper and lower
surfaces and no net axial force and bending moment. The
plane strain elasticity problem for the stress distribution
in the infinitely long beam can be solved exactly [33]. The
stress acting in the horizontal direction rxx on a vertical
plane midway between any two columns of dislocations is
plotted in Fig. 14, for an example, with 15 dislocations
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across the beam thickness. The stress oscillates with the
scale of the dislocation spacing, modified in the vicinity
of the free surfaces.

In this example, only the elastic energy associated with
the dislocations is considered. Dissipation associated with
GND formation and motion is neglected. The elastic en-
ergy/volume U scales with the dislocation energy/length
(/Eb2) divided by the area/dislocation (s/d). Specifically,
with c as the radius of the dislocation core, the functional
form for U for dislocations away from the free surface is

U ¼ Eb2

ð1� m2Þsd
f

c
d
;

s
d
; m

� �
ð35Þ

The elastic energy was computed numerically for vari-
ous values of the arguments of Eq. (35). As an example,
with c/d = 10�4 and m = 1/3, U is accurately approximated
by

U ¼ Eb2

ð1� m2Þsd
2:80þ 0:42

s
d

h i
; for s=d 
 1; ð36Þ

If the beam contains many dislocations across its thickness,
U can be regarded as the continuum average of the energy/
volume. Moreover, Eq. (35) can be rewritten in terms of the
plastic strain gradient as
Fig. 14. Horizontal stress distribution halfway between dislocation
columns in the upper half of a slab containing a uniform rectangular
array of dislocations. The slab is subject to pure bending due to the array
with no external loads.
U ¼ Eb
ð1� m2Þ 2:80e0P þ 0:42

b

d2

� �
ð37Þ

Suppose e0P ¼ b=sd is increased by decreasing the vertical
spacing between the dislocations s, with d held fixed.
Recalling the definition of T in Eq. (30),

T ¼ @U
@e0P
¼ 2:80

Eb
ð1� m2Þ ; for s=d 
 1 ð38Þ

In summary, this idealized example illustrates that the en-
ergy associated with the array of GND depends on the plastic
strain gradient, and not on the plastic strain. Consequently,
the increment of the energy/volume, dU ¼ Tde0P , naturally
involves a parameter T, with dimensions stress 	 length.
Mathematically, T is work conjugate to de0P .

It is emphasized that the stored elastic energy of the
GND in this example represents their free energy. The dis-
sipative contribution to the work of moving them has not
been considered. Generally, the free energy contribution
only becomes dominant at very small dislocation spacing.

A parameter with the same dimensions (stress 	 length)
familiar in dislocation theory is the force on a dislocation
(per unit length): namely, the product of the shear flow
stress and the Burgers vector. The elastic energy of a dislo-
cation per unit area of slip plane also has the same
dimensions.

Appendix C. The exponent in FH theory

The FH formulation employing the effective plastic
strain (Eq. (7)) with exponent l = 1 is used in the body
of the paper because it captures the size dependence with
more fidelity than the more widely used version with
l = 2. The original studies of Fleck and Hutchinson
[14,15] and others favored l = 2 over l = 1 primarily on
mathematical grounds and not on the basis of physical con-
siderations. The following difficulties emerge when using
the choice l = 2. A length parameter ‘FH = 12 lm fits the
data for the foil with grain size g = 27 lm and thickness
h = 50 lm. However, the behavior predicted for the other
two thicknesses is poorly represented and, in particular,
the bending moment of the thinnest foil is substantially
overestimated. Conversely, if ‘FH had been chosen to fit
the data for the thinnest foil, the strengthening for the
thicker foils would be underestimated. As already noted,
this inadequacy arises because, when the gradient contribu-
tion is relatively small, the version with l = 2 predicts
strength increases on the order of ð‘e�P Þ

2, while the NG for-
mulation and the FH version with l = 1 both predict
strengthening of order ‘e�P .
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