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We study the effect of a dimple-like geometric imperfection
on the critical buckling load of spherical elastic shells under
pressure loading. This investigation combines precision ex-
periments, finite element modeling and numerical solutions
of a reduced shell theory, all of which are found to be in
excellent quantitative agreement. In the experiments, the ge-
ometry and magnitude of the defect can be designed and pre-
cisely fabricated through a customizable rapid prototyping
technique. Our primary focus is on predictively describing
the imperfection sensitivity of the shell to provide a quanti-
tative relation between its knockdown factor, as a function
of the amplitude of the defect. In addition, we find that the
buckling pressure becomes independent of the amplitude of
the defect beyond a critical value. The level and onset of this
plateau are quantified systematically and found to be affected
by a single geometric parameter that depends on both the ra-
dius to thickness ratio of the shell and the angular width of
the defect. To the best of our knowledge, this is the first time
that experimental results on the knockdown factors of imper-
fect spherical shells have been accurately predicted, through
both finite element modeling and shell theory solutions.

1 Introduction
The buckling of shells has long been a canonical prob-

lem in the mechanics community [1–3]. The first prediction
for the critical buckling load of a thin spherical shell under
uniform external pressure was proposed by Zoelly [4], who
followed a linear buckling analysis to obtain

pc =
2E√

3(1−ν2)
η
−2, (1)

where E is Young’s modulus, ν is Poisson’s ratio, η = R/t is
the dimensionless radius of the shell, of radius R and thick-
ness t. For decades, this theoretical prediction was found
to be in disagreement with experimental results [5–10] and
attempting to reconcile the two has been a cornerstone in

structural mechanics [3]. Throughout this paper, we focus
exclusively on spherical shells.

In Fig. 1, we plot a survey of historical experimental
results from the literature for the knockdown factor κd =
pmax/pc, defined as the ratio between the experimental buck-
ling load pmax and pc, from Eq. (1), as a function of the di-
mensionless shell radius, η. In all these combined exper-
imental studies, the dimensionless shell radius was varied
in the range 76 ≤ η ≤ 2834, resulting in a wide spread of
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Fig. 1. Experimental results of the knockdown factor, κd, versus
the radius to thickness ratio, η = R/t , of spherical shells. Most
of the previous experiments [5–9] (open symbols) were conducted
with shallow spherical segments and resulted in a large variation in
κd =0.17-0.9. Carlson [10] used complete spherical shells and in-
creased the knockdown factor from 0.05 to 0.86 by improving the
shell surface and loading conditions. Our near perfect shells (closed
circle) have a small variation in κd =0.61-0.92, which can be lowered
significantly by engineering a ‘dimple-like’ defect (closed square).



knockdown factors: 0.17 ≤ κd ≤ 0.9. The general trend of
these data is that κd decreases for increasing values of η,
albeit with a broad spread. Low precision spherical shells
produced by metal spinning [6, 7] or plastic vacuum draw-
ing [8] were found to buckle at relatively low values of the
critical pressure (0.17 < κd < 0.8), compared to the classic
prediction of Eq. (1), presumably due to significant material
and geometric imperfections imparted through the fabrica-
tion process. By contrast, high precision shells fabricated
by machining aluminum [9] tended to attain higher buck-
ling pressures (0.45 < κd < 0.9), but still with considerable
scatter. Note that most of these experimental investigations
were conducted with shallow spherical shell caps. Complete
spherical shells were fabricated by electroforming [10, 11],
with a quality of surface finish that could be systematically
improved through a chemical polishing treatment, thereby
increasing the knockdown factor from κd = 0.05 to 0.86.
Combined, all these findings have led to the now well es-
tablished recognition that the critical buckling load of a shell
structure is highly sensitive to imperfections.

Karman, Tsien, and Dunn [12–14] offered an explana-
tion for the large discrepancies between theory and exper-
iments by finding equilibrium states of the shell involving
large deflections that can be maintained by a much lower ap-
plied load than pc, thereby proposing that the knockdown
factors were connected with the elastic postbuckling behav-
ior of shells. Subsequently, Tsien [5] assumed the exis-
tence of arbitrary disturbances and attributed the knockdown
factors to the highly unstable postbuckling behavior of the
shells, and compared his theory against experiments.

In 1945, Koiter [15] made a groundbreaking contribu-
tion to the field by developing the general theory of stabil-
ity for elastic systems subject to conservative loading. In
this work, he introduced an asymptotic method to connect
the initial postbuckling behavior with the sensitivity to im-
perfections. Following the English translation (from Dutch)
in 1967 of Koiter’s seminal work, there was an upsurge of
research on the imperfection sensitivity of the buckling of
slender structures and his general theory was applied to a va-
riety of shell structures and loading conditions [16]. In these
investigations, the discrepancies between theory and exper-
iments were attributed to variations of the shell thickness,
nonuniformity of loading [17], boundary conditions [18],
influence of prebuckling deformations [19], and deviations
from the perfect shell geometry [20]. Focusing on cylindri-
cal shells, Babcock [1] performed a direct comparison of the
effect on buckling between different types of imperfection
from these various studies [17–20] and concluded that the
most important factor was the presence of geometric imper-
fections.

As noted by Babcock [1], fundamental experimental re-
search to help advance the understanding of imperfection
sensitivity has typically lagged significantly behind theoret-
ical analysis and computation. As a result, the practical de-
sign of shell structures tends to be based on classical results,
such as Eq. (1), together with empirical corrections [2]. Still,
attempts to experimentally validate theories on imperfection
sensitivity were done extensively for cylindrical shells [3]

and, in fewer cases, for spherical shells [8, 21]. In these ex-
periments, the shape of the specimen was precisely measured
prior to carrying out the buckling test. However, experimen-
tal fabrication protocols typically impart randomness to the
size and shape distributions of shell defects. As such, deter-
ministic relationships have rarely been found between rep-
resentative imperfection distributions and the load bearing
capacity of the shell. To circumnavigate this, statistical ap-
proaches have been developed to study the problem of shell
buckling [3] but these have not yet been widely adopted for
design purposes due to the lack of high-precision experimen-
tal information on the characteristic distributions of the im-
perfections and knowledge of their influence on buckling.

More recently, a rapid, versatile and precision fabrica-
tion technique has been developed to manufacture thin elas-
tic shells with controlled geometrical and mechanical proper-
ties [22]. This technique involves the coating of hemispher-
ical molds with a polymer (elastomer) solution, which upon
curing yields an elastic shell of nearly uniform thickness.
Elastomeric shells allow for large elastic deformations to oc-
cur at operating pressures that are significantly lower than
that for metallic shells, which significantly reduces experi-
mental complexity. While thermoplastic shells can be pro-
duced through injection, rotational and blow molding, these
techniques are typically geared for mass production and less
suitable to a laboratory research setting, where reproducible,
adaptable, and inexpensive prototyping tools are desirable.
Still, to make the experimental technique developed in [22]
relevant to the study of imperfection sensitivity, there is a
need to adapt it to also fabricate shells that contain precisely
designed defects of known geometric properties. Concur-
rently to these experimental developments, recent computa-
tional advances have yielded powerful and accurate numeri-
cal tools for large systems of highly nonlinear ordinary dif-
ferential equations (ODEs) that can be readily ported to solve
the shell buckling equations [23]. The time is therefore ripe
to readdress the canonical mechanics problem of buckling
of imperfect shells, with the goal of developing a predictive
framework that relates the geometry of defects and the criti-
cal buckling conditions.

Here, we combine experiments and numerical analysis
to revisit the buckling of spherical elastic shells under pres-
sure loading, with an emphasis on determining the geometric
role of precisely engineered imperfections on the buckling
pressure. First, we develop a novel experimental technique to
fabricate thin elastomeric shells containing a single ‘dimple-
like’ defect of known geometry, and measure their buckling
strength under pressure loading (Sec. 2). In Fig. 1, we plot
the knockdown factors of our shells (20≤ η≤ 108 for nearly
perfect shells and η = 108 for shells containing a geometric
imperfection), on top of other experimental studies from the
literature. We find that κd spans a wide range, but in a way
that can be controlled, reproduced, and predicted. Finite el-
ement method (FEM) simulations (Sec. 3) are used to char-
acterize the shape of these defects and analyze the buckling
behavior of our imperfect shells, in excellent agreement with
experiments (Sec. 4). Moreover, a first order shell theory is
specialized to both perfect and imperfect spherical shells and



a set of nonlinear ODEs is derived to describe the mechan-
ical response of our shells and solved numerically (Secs. 5
and 6). Excellent agreement is found across the triangle of
experiments, FEM and ODE simulations for both the critical
buckling pressure as a function of the amplitude of the imper-
fection and the load-deformation behavior (Sec. 7). Finally,
we find that beyond a critical defect amplitude, the buckling
pressure becomes independent of the amplitude of the defect
(Sec. 8) and quantitatively characterize this plateau.

Overall, our results demonstrate that small deviations
from the spherical geometry result in large reductions in the
buckling pressure, in a way that can be accurately predicted
by knowing the shape of the defect.

2 Experiments
We have performed precision model experiments to in-

vestigate how the buckling strength of hemispherical elas-
tic shells, under pressure loading, is affected by a geomet-
ric imperfection. In this section, we start by describing the
rapid prototyping technique used to fabricate our elastomeric
shells containing a well-defined ‘dimple-like’ defect at their
pole. The profile of this dimple defect is then characterized
through digital image processing. Finally, we present the
experimental apparatus used to pneumatically load the thin
shells and measure the critical pressure at which buckling
occurs.

2.1 Fabrication of precisely imperfect thin elastic shells
Our thin elastic shells were manufactured by coating a

spherical mold with a polymer solution, following a protocol
similar to that introduced in a previous study [22], the basis
of which is highlighted next. Two variations of this technique
enable us to first fabricate flexible (elastic) molds, which are
then used to produce thin elastic shells containing a single
dimple-like defect.

The hemispherical elastic molds were fabricated by
coating the surface of a rigid hemisphere (radius R =
24.85 mm, machined out of polyacetal by CNC milling) with
a polymer solution of Vinylpolysiloxane (VPS, Elite Double
32, Zhermack); a silicone based elastomer. VPS was mixed
with a ratio of base to curing agent 1:1 in weight, for 10 s
at 2000 rpm (clockwise), and then 10 s at 2200 rpm (coun-
terclockwise) using a centrifugal mixer (ARE-310, Thinky
co.). The VPS solution was poured onto the hemisphere and
cured in approximately 20 min at room temperature (20◦C).
Upon curing and peeling from the rigid hemisphere, a VPS
shell of thickness t = 195 µm was produced. Repeating the
process multiple times, enabled us to systematically increase
the thickness of the shell, which once thick enough, itself be-
came the flexible mold employed to fabricate the thin shells
used in the experiments. Three different molds were fabri-
cated with thicknesses, tmold ={585, 975, 1170} µm, by re-
peating the coating 3, 5 and 6 times, respectively. The
Young’s modulus of cured VPS was measured to be E =
1.255 MPa and its Poisson’s ratio was assumed to be ν= 0.5.

The actual thin spherical specimens used in the experi-

ments were fabricated following the same protocol described
above, but using the thick elastic shells, themselves em-
ployed as molds. The VPS solution was poured onto the con-
cave underside of the mold, and turned upside down to drain
the excess polymer and produce a thin lubrication film. The
curing of this liquid film yielded a thin shell with t = 230 µm.
Note that this value of t was slightly higher than that reported
above for a single coating step of the mold due to a slightly
longer waiting time (between the mixing of the polymer and
pouring onto the mold) [22], to allow sufficient time to pre-
pare the apparatus and indent the pole (more below). The
thin shells obtained this way had uncontrollable imperfec-
tions that were intrinsic to the fabrication process, for exam-
ple: systematic variations of the shell thickness (6.6% stan-
dard deviation from pole to equator [22]), air bubbles, homo-
geneity of the polymer mixture, and surface roughness of the
mold. Still, these imperfections were overshadowed by the
single ‘dimple-like’ defect that was precisely introduced in
the shell fabrication protocol, as is described next.

In Fig. 2, we present a series of photographs, along with
corresponding schematic diagrams, that illustrate the fabri-
cation protocol of our imperfect thin hemispherical shells,
containing a precisely engineered defect. After filling the
mold with VPS and draining the excess liquid, the pole of
the mold was indented by a flat plate attached to an universal
testing machine (5943, Instron). We assume that the mold
indentation results in the same displacement of the shell
pole from its perfect spherical geometry, such that it defines
the amplitude, δ, of the defect (this is validated in Sec. 3.1
through FEM simulations). To set δ, we programmed the
Instron to move the indentation tip at a constant velocity
(0.3 mm/min) until a specific load was detected by a 10 N
load cell, corresponding to the targeted amplitude (based on
the linear load-displacement relation), and then fixed this po-
sition. The defect amplitude δ was therefore defined as the
distance between the position where the onset of a non-zero
load was first detected and the position at which the target
load was reached. While holding the indentation constant,
the VPS solution cured inside of the deformed mold. Upon
curing and peeling from the mold, the final shells had thick-
ness, t = 230± 11 µm (uncertainty is standard deviation of
10 fabricated shells), resulting in a radius to thickness ratio
of η = 108. Moreover, this procedure of deforming the mold
through indentation allowed us to produce shells with a sin-
gle ‘dimpled-like’ defect at its pole, whose amplitude could
be varied in the range 0 < δ [µm]< 542. A localized thicker
band (2 mm thickness) at the equator due to the accumula-
tion of excess polymer ensured that the boundary conditions
there were clamped.

2.2 Experimental profile of the ‘dimpled-like’ defect
Whereas the fabrication technique presented above en-

ables us to control the amplitude of the defect, δ (through
the depth of the indentation), the precise shape of the dim-
ple is self-selected by the elastic properties, and hence the
deformation, of the mold. In particular, we are interested in
characterizing the defect by the radial deviation from a spher-
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Fig. 2. Fabrication of the thin shell specimens. (a) Photographs and (b) schematic diagrams of the fabrication protocol used to produce thin
spherical shells with a ‘dimple-like’ defect. (1) A thick VPS mold shell is filled with liquid VPS and (2) turned upside down. (3) A ‘dimple-like’
defect is introduced by indenting the pole of the mold shell with an Instron machine, immediately after pouring of VPS. (4-5) Upon curing, a
thin elastic shell containing a geometric defect is peeled off from the mold.

ical shape, wI , as a function of the zenith angle, β. Experi-
mentally, we have measured this wI(β) profile through dig-
ital imaging (Nikon D3200 camera, with a Micro-NIKKOR
60 mm lens) and then extracted the shell contour by an edge
detection algorithm (image processing toolbox, Matlab). A
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Fig. 3. (a) Profiles of the indented mold calculated by FEM with
tmold =585 µm and 30≤ δµm≤ 300 (in steps of 30 µm) are plot-
ted in (x,y)-coordinates. Inset: Magnified profiles at the vicinity of
the pole. (b) Angular profile of the defect versus zenith angle for
shells with δ =207 µm: experiments with tmold ={585, 1170}µm
(solid lines) and FEM with tmold ={585, 975, 1170}µm (dashed,
dash-dot-dot, and dash-dot lines, respectively).

circle was fit to the region away from the pole, where the
effect of the indentation is negligible, corresponding to the
profile of the defect-free spherical shell. The difference be-
tween this circle and the digitized profile defines wI(β). Two
representative examples of experimental imperfection pro-
files are provided in Fig. 3b, for two shells fabricated using
molds with tmold = 585 and 1170 µm, both at the same de-
fect amplitude δ = 207 µm. This profiles exhibit an inward,
radially symmetric and ‘dimple-like’ deflection at the vicin-
ity of the pole (for β . 20◦), beyond which the shell remains
spherical [wI(β & 20◦)≈ 0]. We have also done FEM simu-
lations to corroborate these findings, the details of which will
be presented in Sec. 3.1.

2.3 Measuring the critical buckling pressure
The experimental critical buckling pressure, pmax, was

measured for each shell using the following procedure. The
shell was mounted onto an acrylic plate with a hole at its cen-
ter, and connected to both a syringe pump (NE-1000, New
Era Pump Systems, Inc.) and a pressure sensor (MPXV7002,
NXP semiconductors). The air inside the shell was extracted
at the imposed constant flow rate of 0.1 ml/min, while moni-
toring its internal pressure at an acquisition rate of 1 Hz using
the pressure sensor. The internal pressure decreased gradu-
ally with time, until a minimum value was reached, at which
the shell buckled. The maximum pressure differential be-
tween the outside (atmospheric pressure) and the inside of
the shell was defined as the critical buckling pressure, pmax.

2.4 Experimental procedure and range of parameters
We proceed by describing the experimental procedure

used to measure pmax for a collection of shells containing
precisely designed geometric imperfections, of different am-
plitude and width. First, 60 shells were fabricated follow-
ing the protocol detailed in Sec. 2.1, using the three elas-
tic molds with tmold ={585, 975, 1170} µm (to change the
width of the defect), and systematically varied the mold in-
dentation depth (to obtain defect amplitudes in the range
0 ≤ δ [µm]≤ 542). Throughout, the radius and thickness of



the shell were kept fixed at R = 24.85 mm and t = 230 µm,
such that η = R/t = 108. For each shell, three identical
experimental runs were conducted; each experimental data
point represents the average of these measurements and its
error bars represent the standard deviation, although these
are typically smaller than the symbols size (e.g., in Fig. 4).

3 Finite Element Simulations
The FEM simulations were performed using the com-

mercial package Abaqus/Standard. The model was simpli-
fied to be two-dimensional by assuming rotational symme-
try. This reduced the computational cost by a factor of ≈ 20,
compared to an equivalent model using a three-dimensional
description of the structure using shell elements. The shells
were treated as incompressible Neo-Hookean solids, and re-
duced hybrid axisymmetric elements CAX4RH were em-
ployed. A convergence study was performed, which led to
the selection of a regular mesh with 1000 elements in the
zenith direction and an equivalent mesh size in the radial di-
rection (between 6 and 30 elements, depending on the shell
thickness). All analyses considered a nonlinear geometry.

Two different sets of FEM simulations were performed
for the following purposes: (i) characterize the shape of the
shells obtained through the fabrication process; and (ii) cal-
culate the buckling load and postbuckling response of the
shells under external pressure, for shells with a variety of de-
fect geometries.

3.1 FEM of the profile of the imperfect shells
The goal of this first set of FEM simulations was to

model the fabrication procedure and determine the shape of
the engineered defect, for different levels of indentation of
the flexible molds. Each mold was modeled as a flexible
shell (thicknesses tmold = {585, 975, 1170} µm) and the in-
dentation plate was modeled as a rigid surface using RAX2
elements. A frictionless general contact was defined between
all free surfaces. The indentation loading was modeled by
imposing the vertical displacement of the plate, which re-
sulted in the deformation of the mold. At the end of the
simulation, the position of the inner surface of the mold was
extracted and assumed to be equal to the outer surface of the
fabricated shell. The defect is defined as the radial displace-
ment w as a function of the zenith angle, β. The amplitude
of the defect, δ, is equal to the deflection at pole, wI(0).

Our simulations show that the width of the defect, de-
fined as the zenith angle at which the deflection wI becomes
negligible, increases with both the thickness of the mold and
the amplitude, δ. Figure 3a shows the profiles of shells with
tmold = 585 µm and 30≤ δ [µm]≤ 300. The defect is highly
localized near the pole (β = 0), and the small variation of the
profile of the shell for increased values of δ can be seen in
the zoomed inset of Fig. 3a.

The shape of different defects can be more easily com-
pared when wI(β) is normalized by δ. In Fig. 3b, we compare
the defect profiles obtained from FEM and experiments (see
Sec. 2.2), finding excellent agreement. The results used in

this comparison correspond to shells with the same ampli-
tude, δ = 207 µm, fabricated using two molds of thickness,
tmold = 585 and 1170 µm. The clear difference between the
profiles obtained with both molds demonstrates that the over-
all shape of the defect (e.g., its width) can be controlled by
varying the thickness of the mold.

Given the good agreement between FEM and experi-
ments, for the remainder of this paper, the reported defect
amplitudes and the corresponding profiles will be computed
from FEM from the corresponding experimental parameters,
given the laborious procedure that would be required to sys-
tematically extract the same quantities from the experiments.

3.2 FEM of the imperfection sensitivity
A second set of simulations was then performed to in-

vestigate the effect of the geometry of the imperfections on
the buckling load of depressurized shells. In this case the
loading was modeled as live pressure, applied on the outer
surface of the shells. We found that using the BUCKLE anal-
ysis in Abaqus significantly overestimates the buckling pres-
sure, even with an existent defect. The reason is that this is a
linearized buckling analysis, that does not take into account
the deformation that takes place in the principal solution,
prior to the instability. In order to account for the nonlinear
geometry, and given that the collapse of the shells is unsta-
ble [24], the simulations employed the Riks method [25] to
simultaneously solve for loads and displacements, with the
progress of the analysis measured by the arc-length of the
load-displacement. The buckling pressure was then defined
as the maximum pressure attained in the analysis.

The thickness of the shell was set to t = 230 µm, and
the geometric imperfections were directly introduced in the
mesh. Two approaches to define the shape of the defect were
followed. First, for direct comparison with the experiments,
the profile of the shells was directly taken from the com-
plete modeling of the full fabrication process (detailed in
Sec. 3.1). In this set of simulations, the geometry of the de-
fects changed for every value of the thickness of the mold,
and the applied indentation. The results from these simula-
tions are shown and compared with experimental results in
Figs. 3 and 4. Secondly, in order to more thoroughly decou-
ple the effect of the amplitude and the width of the defect,
we chose the simpler defect profile of a Gaussian dimple

wI =−δe−(β/β0)
2
, (2)

where β0 controls the width of the defect. This simple pa-
rameterization allowed us to perform a systematic study of
the effect of the dimple geometry on the buckling pressure
of the shells, presented in Secs. 7 and 8.

Moreover, and to eventually help us establish parallels
with existing literature, we introduce the geometric parame-
ter [6]

λ =
{

12(1−ν
2)
}1/4

η
1/2

α, (3)



where α is the edge-angle of a shallow spherical shell mea-
sured from the axis of symmetry. Kaplan [6] showed that the
nonlinear buckling behavior of a shallow spherical shell is set
by λ, and subsequent studies have tended to present the buck-
ling pressure as a function of this geometric quantity [6–9].
In the results presented in Sec. 8, we will use a definition of
λ that replaces α by the angular width of the imperfection
β0 from Eq. (2), thereby assuming that the nonlinear defor-
mation occurs only in the region of the shell containing the
‘dimple-like’ defect. This is similar to the approach followed
in the classic numerical analysis of Koga and Hoff [26].

4 Comparison between experiments and FEM
We now follow the methodologies presented in Secs. 2.4

and 3.2 to compare experimental and FEM results. In
Fig. 4, we plot the knockdown factor, κd = pmax/pc (nor-
malized critical buckling pressure), as a function of the di-
mensionless amplitude, δ̄ = δ/t (normalized by the shell
thickness), of a single ‘dimple-like’ defect. Three data
sets are presented for shells fabricated from molds with
tmold ={585, 975, 1170} µm, resulting in defects of increas-
ingly larger angular width, as characterized in Secs. 2.2 and
3.1.

Focusing first on the experiments, for a shell without
an engineered defect (δ̄ = 0), we find a knockdown factor
of κd = 0.69±0.06, due to the uncontrollable imperfections
that are intrinsic to the fabrication and experimental proce-
dures. These include variations in the shell thickness from
the pole to the equator [22], small air bubbles trapped in the
elastomer during fabrication and self-weight, all of which are
not taken into account in the classic prediction of Eq. (1).
With the presence of a defect, beyond δ̄ > 0, the knock-
down factor varies widely in the range 0.15 < κd < 0.75, but
in a way that can be robustly and reproducibly set by sys-
tematically varying the geometry of the defect. The κd(δ̄)
data first decreases sharply for 0 < δ̄ . 1.5, but, eventually
reaches a plateau when δ̄ & 1.5 at κd ∼ 0.2. For δ̄ . 1.5,
shells with wider defects (e.g., obtained by using molds with
tmold = 1170 µm) have knockdown factors that are slightly
higher than narrower defects (e.g., tmold = 585 µm), but this
trend is inverted for δ̄ & 1.5, even if the differences between
the three datasets are relatively small.

The experimental results presented above corroborate
the seminal numerical predictions by both Hutchinson [27]
for defect shaped with the critical buckling mode at onset,
and by Koga and Hoff [26] for axisymmetric dimple-like de-
fects. Note, however, that the defect shape considered by
Hutchinson was different from ours and Koga and Hoff over-
estimated the effect of the dimpled defects [23]. Moreover,
the maximum defect amplitude considered by both of these
previous studies was δ̄ = 0.75 [27] and 0.5 [26], such that
they did not observe the development of the plateau, whereas
we were able to fabricate shells up to δ̄ = 2.36.

In Fig. 4, we superpose numerical FEM results onto
the experiments, for identical parameter values, and find re-
markable quantitative agreement. Specifically, the FEM data
show the presence of a clear plateau at high values of δ̄, as
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well as the crossing and subsequent inversion in the relative
buckling strength for shells with different angular widths,
when δ̄ & 1.5. For the parameters explored, the level of this
plateau lies in the range 0.17 < pplateau/pc < 0.20, such that
the buckling pressure has a lower bound at these values. In
Sec. 8, we will further explore the FEM simulations to sys-
tematically quantify the level and onset (in δ̄) of the plateau,
as functions of the defect geometry.

To the best of our knowledge, this is the first time that
experimental results are reported showing a direct relation-
ship between the critical buckling pressure of spherical shells
and the systematically varied geometric properties of an im-
perfection. Moreover, for a given defect geometry, we are
able to accurately predict the associated knockdown factors
through FEM. Our results are in stark contrast to the broad
spread in the experimental data extracted from the literature
shown in Fig. 1, as well as the inability for the classic theo-
ries, e.g. Eq. (1), to predict them.

We proceed by supporting this comparison between
FEM and experiments with an analytical description based
on a first order shell theory. Specializing this theory for shells
containing a single ‘dimple-like’ defect yields a set of non-
linear ODEs that will then be solved numerically and com-
pared directly with FEM (in Sec. 7).

5 Formulation of the shell theory
We now formulate shell buckling equations using a

small strains and moderate rotations theory [23]. By focus-
ing on the maximum pressure that the shell can support, we
shall demonstrate that middle surface strains remain ‘very
small’ and rotations remain ‘moderately small’. In nonlinear
shell theory, this translates into middle surface strains ε sat-



isfying |ε| � 1 and rotations ϕ satisfying ϕ2� 1. Rotations
about the middle surface tangents are the most important,
while rotation about the normal to the shell middle surface
turns out to be small in the spherical shell buckling problem.
Nevertheless, the equations employed accommodate moder-
ate rotations about the normal. Our analysis indicated that
there is essentially no difference between dead and live pres-
sure for the behavior of interest in the current study. Accu-
rate equations for first order shell theory with small strains
and moderate rotations were given by Sanders [28], Koi-
ter [29,30] and Budiansky [31]. These are specialized below
for initially perfect spherical shells followed by the introduc-
tion of initial imperfections (in Sec. 6) that resemble those of
our experimentally fabricated shells (presented in Sec. 2.1).

Euler coordinates (ω,θ,r) are employed with r as the
distance from the origin, ω as the circumferential angle and
θ = π/2− β as the meridional angle ranging from 0 at the
equator to π/2 at the pole. The radius of the undeformed
middle surface of the shell is R. A material point at (ω,θ,R)
on the middle surface of the undeformed shell is located on
the deformed shell at

r̄ = uωiω +uθiθ +(R+w)ir, (4)

where (iω, iθ, ir) are unit vectors normal and tangent to
the undeformed middle surface associated with the respec-
tive coordinates. For general deflections, the displacements
(uω,uθ,w) are functions of ω and θ. For axisymmetric de-
flections, uω = 0, while the other two displacements are func-
tions only of θ.

The nonlinear strain-displacement relations make use
of the linearized middle surface strains (eωω,eθθ,eωθ) and
the linearized rotations (ϕω,ϕθ,ϕr) with the rotation compo-
nents about iω, iθ and ir, respectively, which read

eωω =
1
R

(
1

cosθ

∂uω

∂ω
− tanθuθ +w

)
,

eθθ =
1
R

(
∂uθ

∂θ
+w
)
,

eωθ =
1

2R

(
∂uω

∂θ
+

1
cosθ

∂uθ

∂ω
+ tanθuω

)
,

(5)

and

ϕω =
1
R

(
− 1

cosθ

∂w
∂ω

+uω

)
,

ϕθ =
1
R

(
−∂w

∂θ
+uθ

)
,

ϕr =
1

2R

(
1

cosθ

∂uθ

∂ω
+ tanθuω−

∂uω

∂θ

)
.

(6)

In the small strain/moderate rotation theory, the middle

surface strains are nonlinear

Eωω = eωω +
1
2

ϕ
2
ω +

1
2

ϕ
2
r ,

Eθθ = eθθ +
1
2

ϕ
2
θ +

1
2

ϕ
2
r ,

Eωθ = eωθ +
1
2

ϕωϕθ,

(7)

while the bending strains are linear

Kωω =
1
R

(
∂ϕω

∂ω
− tanθϕθ

)
,

Kθθ =
1
R

∂ϕθ

∂θ
,

Kωθ =
1

2R

(
∂ϕω

∂θ
+

1
cosθ

∂ϕθ

∂ω
+ tanθϕω

)
.

(8)

In this paper, imperfections in the form of a small, ini-
tial stress-free radial deflection of the middle surface wI from
the perfect spherical shape are considered with (uω,uθ)I = 0,
but imperfections in the form of thickness variations or resid-
ual stresses will not be investigated. In addition, our atten-
tion is limited to axisymmetric imperfections such that wI is
a function of θ, but not of ω. Assuming that wI itself pro-
duces small middle surface strains and moderate rotations (a
condition easily met in all our examples), EI

αβ
denotes the

strains in Eq. (7) arising from wI . The total strains due to
(uω,uθ,wI +w), where w is additional to wI , are denoted by
EI+U

αβ
and the strains that give rise to stress arising from dis-

placements additional to wI are Eαβ = EI+U
αβ
−EI

αβ
:

Eωω = eωω +
1
2

ϕ
2
ω +

1
2

ϕ
2
r ,

Eθθ = eθθ +
1
2

ϕ
2
θ +

1
2

ϕ
2
r −

1
R

dwI

dθ
ϕθ,

Eωθ = eωθ +
1
2

ϕωϕθ−
1

2R
dwI

dθ
ϕω.

(9)

Given that the bending strains are linear in the dis-
placements and their gradients, the same process reveals that
Eqs. (8) still hold for the relationship between the bending
strains and the additional displacements, with no influence
of wI . From hereon, the additional displacements (uω,uθ,w)
will simply be referred to as ‘the displacements’. An im-
perfection contribution also arises for live pressure loading
which will be introduced shortly.

The stress-strain relations for a shell of isotropic mate-
rial in this first order theory are

Nαβ =
1

(1−ν2)Et

[
(1−ν)Eαβ +νEγγδαβ

]
,

Mαβ = D
[
(1−ν)Kαβ +νKγγδαβ

] (10)



with bending stiffness D = Et3/[12(1− ν)2]. The resultant
membrane stresses are (Nωω,Nθθ,Nωθ) and the bending mo-
ments are (Mωω,Mθθ,Mωθ). With S denoting the spherical
reference surface specified by r = R and the Euler angles
(ω,θ), the strain energy in the shell is

SE(uω,uθ,w) =
1
2

∫
S

{
MαβKαβ +NαβEαβ

}
dS. (11)

For a perfect shell, the potential energy PE of the uni-
form inward pressure p on the shell is the negative of the
work done by the pressure. For dead pressure (per unit orig-
inal area of the middle surface and acting radially), we have

PE = p
∫

S
wdS. (12)

For live pressure (per area of the deformed middle surface
and acting normal to the deformed middle surface), the po-
tential energy is the negative of the pressure times the change
of volume ∆V within the middle surface. The exact expres-
sion for ∆V is a cubic function the displacements and their
gradients when expressed as an integral over the reference
spherical hemispherical surface [23]. It is worth recording
that Koiter [30] has given an expression for ∆V which ap-
pears to include errors or misprints. For axisymmetric dis-
placements and live pressure,

PE = p∆V =p
∫

S

[
w+

1
3
{ϕθuθ +w(eωω + eθθ)

+(R+w)eωωeθθ + eωωϕθuθ}
]

dS.
(13)

This result is applicable to either a full spherical shell or
any shell segment, such as the hemisphere considered here,
which is constrained and uθ vanishes on the boundary.

We proceed by introducing the effect of an axisymmet-
ric initial imperfection wI using the process described above
for the strains, where w becomes additional to wI . Because
it is linear in w, PE for dead pressure remains as Eq. (12).
For live pressure, the process using Eq. (13) gives a lengthy
expression which is abbreviated here as

PE = p
(
∆V I+U −∆V I) . (14)

The energy of the loaded shell system is therefore

Ψ = SE(uω,uθ,w)+ pF(uω,uθ,w), (15)

where PE = pF , with F given by Eq. (12) for dead pressure
or Eq. (14) for live pressure.

As an aside, it is worth noting that Donnell-Mushtari-
Vlasov (DMV) shell theory also generates accurate solutions
for the problems considered in this paper. The equations for

that theory for a spherical shell are immediately obtained as
follows: one omits ϕ2

r in the strains in Eq. (9), and the in-
plane displacements, uω and uθ, are also neglected in the ro-
tations in Eq. (6). In addition, the expression for dead pres-
sure given by Eq. (12) is usually assumed for DMV.

6 Axisymmetric deformations of clamped hemispheres
containing axisymmetric imperfections: a set of non-
linear ODEs
The equations presented in the previous section are now

specialized to axisymmetric deformations such that uθ, w,
and wI are functions of θ and uω = 0. Hemispherical shells
(0≤ θ≤ π/2) clamped at the equator and subject to uniform
inward pressure p are considered. Dimensionless displace-
ments are defined as U = uθ/R, W = w/R and WI = wI/R.
Let d()/dθ = ()′. Then, with

ϕ≡ ϕθ =−W ′+U,

e≡ eθθ =W +U ′,
(16)

the non-zero strains are

Eωω =W −U tanθ,

Eθθ = e+
1
2

ϕ
2−W ′I ϕ,

Kωω =− 1
R

tanθϕ,

Kθθ =
1
R

ϕ
′.

(17)

Equilibrium equations are generated either by requiring
δΨ = 0 in Eq. (15) for all admissible variations (δU,δW )
or, equivalently, by enforcing the principle of virtual work.
The two equilibrium equations for the case of dead loading
are

m̄′′θ +(tanθm̄ω)
′

− 1
(1−ν2)

[
n̂θ + n̂ω +

{
n̂θ(ϕ−W ′I )

}′]− p̂ = 0,
(18)

and

m̄′θ + tanθm̄ω

+
1

(1−ν2)

{
n̂′θ + tanθn̂ω− n̂θ(ϕ−W ′I )

}
= 0,

(19)

where (n̂ω, n̂θ) = α̂

Et cosθ(Nωω,Nθθ), (m̄ω, m̄θ) =
R
D cosθ(Mωω,Mθθ), p̂ = R3

D cosθp, and α̂ = 12(R/t)2.
There are additional terms in these equations for live
pressure multiplying p̂ which have not been shown. The
clamping boundary conditions at the equator require
U(0) =W (0) =W ′(0) = 0.



The equilibrium equations can be expressed through the
constitutive equations and the strain-displacement relations
in terms of U and W or, equivalently, in terms of ϕ and
W , with U = W ′+ϕ. The most highly differentiated terms
are ϕ′′′ and W ′′′, thereby yielding a sixth order, nonlinear
ODE system. In all the problems considered in this paper,
the axisymmetric behavior is such that the inward deflection
at the pole, −W (π/2), increases monotonically, while the
dimensionless pressure, p̃ = R3 p/D, increases in the early
stages and then usually attains a limit point after which it
decreases. For this reason, it is effective to treat p̃ as an un-
known, to introduce an extra ODE, d p̃/dθ = 0, and to pre-
scribe −W (π/2) as the ‘load parameter’. This augmented
system can be reduced to seven first order ODEs in the stan-
dard form

dy
dθ

= f(θ,y), (20)

where y = (ϕ′′,ϕ′,ϕ,W ′′,W ′,W, p̃). Next, we provide the ex-
pressions for f(θ,y) in Eq. (20), for the case of dead pressure
(expressions for live pressure involve additional terms multi-
plying p̂):

f1 = ϕ
′′′ =

1
cosθ

[
(2+ν)sinθϕ

′′+(1+2ν)cosθϕ
′

−νsinθϕ− tanθm̄′ω−
m̄ω

cos2 θ

+ n̂θ(1+ϕ
′−W ′′I )+ n̂ω + n̂′θ(ϕ−W ′I )+ p̂

]
,

f2 = ϕ
′′, f3 = ϕ

′,

f4 =W ′′′ =−ϕ
′′−W ′−ϕ

′(ϕ−W ′I )+ϕW ′′I

+ tanθ(Eθθ +νEωω)+
1

α̂cosθ

[
n̂θ(ϕ−W ′I )

− tanθ(n̂ω + m̄ω)− m̄′θ

]
,

f5 =W ′′, f 6 =W ′, f7 = 0.
(21)

with m̄ω = −sinθϕ + νcosθϕ′, m̄′ω = νcosθϕ′′ − (1 +
ν)sinθϕ′ − cosθϕ, m̄′

θ
= cosθ(ϕ′′ − νϕ)− (1 + ν)sinθϕ′,

n̂ω = α̂cosθ(Eωω + νEθθ), and n̂θ = α̂cosθ(Eθθ + νEωω),
where Eωω and Eθθ are given by Eqs. (16) and (17) using
U =ϕ+W ′. The derivative, n̂′

θ
, is directly computed in terms

of ϕ, W and their derivatives.
At the equator (θ = 0), the clamped condition requires

ϕ = 0, W ′ = 0 and W = 0. The functions ϕ and W are an-
alytic at the pole, with ϕ being odd and W even about the
pole such that ϕ = ϕ′′ = W ′ = W ′′′ = 0 at θ = π/2. At the
pole, f2 = 0, f3 = ϕ′, f4 = 0, f5 = W ′′, f6 = 0 and f7 = 0.
A somewhat lengthy expansion about the pole provides the
following expression for ϕ′′′ at θ = π/2:

f1 =
3
8

[
2
(
−1

3
+ν

)
ϕ
′

+2α̂(1+ν)(ϕ′+W ′′+W )(1+ϕ
′−W ′′I )+ p̃

]
.

(22)

Solving Eqs. (20) using a modern nonlinear ODE solver
provides highly accurate results. In particular, the buckling
pressure, i.e., the maximum pressure attained at the limit
point, can be calculated accurately and efficiently. We have
used the ODE solver routine DBVPFD in IMSL [32], which
incorporates Newton iteration to satisfy the nonlinear equa-
tions and an automatic mesh refinement to meet accuracy tol-
erances. As already noted, the inward pole deflection serves
as the loading parameter and it is increased in incremental
steps using a converged solution at one step as the starting
guess for the next step. The solution process is fast and ro-
bust. As will be illustrated, solutions can be readily obtained
at deflections well past the limit point, beyond the onset of
buckling. For the problems that we shall consider, our sim-
ulations have shown there is virtually no difference between
predictions for dead and live pressure. The results reported
throughout have been computed assuming live pressure.

Thus far, we have exclusively considered imperfections
that are radially symmetric, and both the FEM and ODE
analyses assume axisymmetry. It is conceivable that non-
axisymmetric bifurcations could occur for this system. Nev-
ertheless, a recent analysis [23] found no evidence for such
bifurcations, neither for perfect shells (even for large pole
deflections up to w/t = 10), nor for shells containing a dim-
ple imperfection (before the maximum pressure of the ax-
isymmetric state). On the other hand, previous experimen-
tal and FEM studies with thin elastic shells under a variety
of loading conditions [33–36] have found that an originally
axisymmetric buckled shell may develop non-axisymmetric
localized angular structures, referred to as s-cones, in the ad-
vanced postbuckling regime. This mechanical behavior is,
however, beyond the scope of our work and, the remainder
of this paper focuses entirely on an axisymmetric analysis
and response. We therefore leave a more detailed investi-
gation of the possibility of non-axisymmetric imperfections
and/or response for a future study.

7 Comparison between ODE and FEM results
We proceed by comparing the results for the mechanical

response of the shells obtained from both the ODE solution
and FEM, which also serves as a joint verification of the two
frameworks. Figure 5 shows the effect that imperfections
with different amplitudes have on the postbuckling behavior,
with a focus on the evolution of the internal pressure during
deformation. For the remainder of this paper, no results are
provided for very small values of defect amplitude: δ̄ < 0.15
for FEM, δ̄ < 0.2 for ODE. The reason is that such deflec-
tions are too small to be accurately and reliably taken into
account by the respective numerical algorithms.

In Fig. 5a, we plot the normalized pressure, p̄ = p/pc
versus the normalized volume change, V̄ = ∆V/V0, where
V0 is the total volume change of the perfect shell immedi-
ately prior to the onset of buckling, for both the ODE solu-
tion (solid lines) and FEM (dashed lines). For a nearly per-
fect shell with a small imperfection δ̄ = 0.03 (black lines),
the pressure first increases linearly with increasing V̄ and
reaches a maximum value, p̄max = pmax/pc, just before buck-
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Fig. 5. Comparison between ODE (solid lines) and FEM (dashed
lines) of the load-carrying behavior of imperfect shells. (a) Normal-
ized pressure, p̄, as a function of the normalized volume change, V̄ .
(b) Normalized pressure, p̄, versus the normalized displacement at
the pole, w̄. Shells with radius to thickness ratio η =100 containing
a Gaussian dimple, Eq. (2) with β0 =8.83◦ and δ̄ ={0.03, 0.1, 0.3,
1} were used.

ling occurs. Past this point, p̄ decreases with decreasing V̄ ,
closely following the upward branch, and then turns around
to eventually decreases with increasing V̄ . If V̄ is imposed
and increased monotonically, then the shell becomes unsta-
ble and undergoes snap-buckling almost immediately after
the maximum normalized pressure p̄max is attained. If the
shell were perfect there would be a pressure drop when V̄ = 1
to the lower branch at p̄ ≈ 0.2, after which p̄ would con-
tinue to decrease for increasing V̄ . For shells containing de-
fects with higher values of δ̄, the volume change required
for buckling decreases and the peak pressure is progressively
lower. Thus, even though increasing δ̄ weakens the shell,
buckling is less catastrophic. When the imperfection am-
plitude is sufficiently large (e.g., δ̄ ≥ 1), the pressure de-
creases smoothly after the maximum value is attained, with-
out a pressure jump. It is important to highlight that in all of
these results, the FEM and ODE data (dashed and solid lines,
respectively) are nearly indistinguishable, which serves as a

joint verification of both numerical approaches.
In Fig. 5b, the same data presented in Fig. 5a is now re-

plotted as a function of the normalized displacement of the
shell pole, w̄ = w/t, to obtain the load-displacement behav-
ior. For all curves (different values of the defect amplitude,
δ̄), p̄ initially increases sharply with w̄ in the early stages of
deformation (linear response), until a maximum pressure is
reached at w̄ ≈ 1, after which the pressure decreases. With
increasing p̄max, the value of κd decreases and the postbuck-
ling decrease of p̄ with w̄ becomes less abrupt. Note that
all the p̄(w̄) curves for the different values of δ̄ explored ap-
proach one another in the later stages of deformation (w̄> 5).
Again, excellent agreement is found between the ODE solu-
tions (solid lines) and FEM (dashed lines) results, with at
most 0.9% relative difference in p̄max between the two.

8 Parametric exploration of the knockdown factor
Having characterized the load bearing capacity of the

imperfect shells with defect of different amplitudes, δ̄, we
now return to characterize the knockdown factor. First, we
use a single geometric parameter to characterize the imper-
fect shells and then focus o the plateau observed for δ̄ & 1.5
(first reported in Sec. 4). In particular, we focus on the de-
pendence of the level and onset of this plateau on both the
angular width of the defect, β0 [Eq. (2)], and the radius to
thickness ratio of the shell, η = R/t. Given the excellent
agreement found in Sec. 4 between experiments and FEM
(validation), as well as between FEM and the ODE solutions
in Sec. 7 (verification), we center this discussion exclusively
on the FEM and ODE results.

8.1 Characterization of the imperfect shell by a single
geometric parameter

Following the works of Kaplan [6] and Koga and
Hoff [26], we report our results with respect to the geo-
metric parameter λ introduced in Eq. (3), but with α = β0,
which considers the combined effect of η and β0 for a di-
mensionless characterization of the defect geometry. We per-
formed FEM simulations and ODE calculations for two sets
of shells with η ={100, 200} containing defects in the range
1≤ λ≤ 5 (2.34◦ ≤ β0 ≤ 16.54◦). In Fig. 6, their correspond-
ing knockdown factors are plotted versus the imperfection
amplitude, δ̄.

In Fig. 6a, we plot κd = p̄max versus δ̄ for 1.5 ≤ λ ≤ 5
(in steps of 0.5). For each value of λ, the ODE solutions
(solid lines) and the FEM (dashed and dotted lines) all col-
lapse onto grouped curves. This indicates that for fixed λ,
the buckling behavior is not affected by different values of
η. Moreover, these results demonstrate that the single ge-
ometric parameter λ characterizing the defects governs the
imperfection sensitivity of our imperfect shells. All curves
exhibit an initial decrease of κd with δ̄, followed by a plateau.
As the geometric parameter of the defect is increased, the
plateau appears at higher values of δ̄, and with a level that
decreases monotonically with λ. For example, the small de-
fect with λ = 1.5 has an initially sharp decrease of κd(δ̄) and
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Fig. 6. Knockdown factor, κd, versus the normalized defect ampli-
tude, δ̄, for a variety of λ. (a) Solid lines represents the results of the
ODE solutions, and dashed and dotted lines correspond to FEM sim-
ulations for different η ={100, 200}, respectively, with 1.5≤ λ≤5,
in steps of 0.5. (b) FEM results for 1≤ λ ≤5, in steps of 0.25. The
lower bounding envelope (thick solid line) is determined by fitting;
Eq. (23). (c) Critical geometric parameter of the defect, λc, at which
κd exhibits its minimum possible value for a given value of δ̄.

the plateau is attained at δ̄ ≈ 1, whereas the largest defect
considered (λ = 5) exhibits a slower initial decay and the
plateau is only reached after δ̄≈ 3.

In Fig. 6b, we focus exclusively on FEM and present the
same data as in Fig. 6a, but with a higher density of data in
the range 1≤ λ≤ 5, in steps of 0.25. At each value of δ̄, there
is a critical λc that corresponds to the lowest buckling pres-
sure, which is plotted in Fig. 6c. The stepwise nature of these
data stems from the discrete increase of λ in steps of 0.25,
and a more continuous curve would have been obtained for
a finer variation of this parameter. Koga and Hoff [26] also
studied the critical conditions that minimize κd, for dimple-
like defects with amplitudes in the range 0.1 ≤ δ̄ ≤ 0.5, and
reported a value of λc = 4. By contrast, we observe that λc
increases monotonically with δ̄, within the range of param-
eters studied, from λc = 1.875 at δ̄ = 0.15, up to λc = 5 at
δ̄ = 3. This discrepancy is likely due to the rudimentary (but
pioneering) computational tools available at the time of their
study, as pointed out by Hutchinson [23].

It is also interesting to note that there is a lower bound-
ing envelope (thick solid curve in Fig. 6b) that encloses all
of the κd(δ̄) curves. Empirically, we have found that this
minimum envelope is well described by

κd = 0.068+
0.25

0.28+ δ̄
. (23)

The empirical description of Eq. (23), together with the data
in Fig. 6c, provide a design guideline for the shape that a de-
fect should have in order for a shell to buckle at the lowest
possible pressure. Whereas traditional applications in struc-
tural mechanics would typically seek to maximize κd, these
findings could be useful for the more recent movement of
utilizing buckling as a mechanism for functionality [37, 38].

8.2 Buckling plateau for large amplitude defects
Finally, we quantitatively characterize the pressure level

and onset amplitude of the plateau in the κd(δ̄) data of
Fig. 6b. The dimensionless pressure level of the plateau,
〈κd〉plateau, is the average of κd over the extent of the plateau
and its onset ,δ̄plateau, is determined from

∣∣∣dκd

dδ̄

∣∣∣≤ ξ, (24)

where ξ is a threshold whose sensitivity is evaluated by
choosing different values, ξ = {0.005, 0.01, 0.025, 0.05}.
In Fig. 7a, we plot 〈κd〉plateau versus λ and find a mono-
tonic decrease, from 〈κd〉plateau = 0.45 at λ = 1, down to
〈κd〉plateau = 0.15 when λ = 5. The level of the plateau is
insensitive to the chosen values of ξ (with a variation of at
most 0.35% across the four cases).

Figure 7b plots the onset of the plateau, δ̄plateau as a func-
tion of λ. For small defects in the range λ < 2, δ̄plateau is
approximately constant, but with a value that depends on the
choice of ξ. As λ is increased, δ̄plateau also increases but



the curves with different values for the thresholds converge.
Overall, we conclude that the plateau starts when the am-
plitude of the imperfection is at least larger than the shell
thickness (δ̄plateau & 1).
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Fig. 7. (a) Pressure level of the plateau versus the geometric pa-
rameter, λ, of the defect. (b) Normalized defect amplitude at onset of
the plateau versus λ. The various values of the threshold, ξ, used to
define the plateau are provided in the legend.

9 Conclusions
We have reported results from experiments on the crit-

ical buckling load of spherical elastic shells under pressure
loading, with an emphasis on how their knockdown factors
are affected by an engineered ‘dimple-like’ imperfection. A
fabrication method was developed to produce elastomeric
spherical shells containing a single defect with geometric
properties that could be accurately controlled and systemati-
cally varied. Precision experiments were performed to mea-
sure the critical pressure for the onset of buckling for these
shells. The experimental results showed a direct relationship
between the critical buckling pressure and the geometry of
the imperfection (amplitude and angular width). In addition,

FEM simulations and ODE numerical analyses were con-
ducted, showing excellent quantitative agreement with each
other and with experiments. To the best of our knowledge,
this is the first time that experimental results on the knock-
down factors of imperfect spherical shells have been accu-
rately predicted.

Our study is well aligned with efforts currently under-
way by NASA and others interested in large shell structures
to replace the old empirical knockdown factors employed in
design codes by an approach that: (i) first, measures the to-
pographic distributions of imperfections, (ii) then, predicts
buckling loads from the measured data, and (iii) finally, de-
termines the corresponding knockdown factors [39, 40]. In
contrast to a statistical approach that starts from measur-
ing uncontrollable imperfections, here we have precisely and
systematically controlled a single imperfection and were able
to predict the associated knockdown factors. We also found
a buckling plateau for large amplitudes of the imperfection
and presented the results of FEM simulations and ODE solu-
tions to characterize it. Both the level of the plateau and its
onset are functions of a single geometric parameter set by the
angular width of a defect and the radius to thickness ratio of
the shell. Existing experimental data collected from the lit-
erature on the buckling of spherical shells (Fig. 1) provides
an indication that the plateau may be connected to the ap-
parent lower limit of the ensemble of historic buckling data.
This suggests that replacing the current empirical lower limit
curves [2] by a deterministic framework may be a goal worth
pursuing.

We hope that our results will instigate a resurgence
of interest on the mechanics of thin spherical shells and
motivate future explorations on the effect of other types of
imperfections on their buckling behavior. Shell buckling, in
addition to its canonical status in structural mechanics, con-
tinues to be an industrially relevant problem. Furthermore, it
is also of interest for the life sciences, such as in the contexts
of viruses [41], capsules [42] and pollen grains [43]. This is
therefore an area of mechanics research that is as relevant as
ever, and deserves further attention.

Acknowledgment
This work was supported by the National Science Founda-
tion (CAREER CMMI-1351449).

References
[1] Babcock, C. D., 1983. “Shell stability”. ASME J. Appl. Mech.,

50(4b), pp. 935–940.
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