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ABSTRACT 

CKA~K growth initiation and subsequent resistance is computed for an elastic-plastic solid with an idealized 
traction separation law specified on the crack plane to characterize the fracture process. The solid is 
specified by its Young’s modulus, E, Poisson’s ratio, v, initial tensile yield stress, (or, and strain hardening 
exponent, N. The primary parameters specifying the traction-separation law of the fracture process are 
the work of separation per unit area, To. and the peak traction, 6. Highly refined calculations have been 
carried out for resistance curves. K,(Arr), for plane strain, mode I growth in small-scale yielding as 
dependent on the parameters characterizing the elastic-plastic properties of the solid and its fracture 
process. With K,, = [El-,/( I ~ v’)] ’ 2 as the intensity needed to advance the crack in the absence ofplasticity, 
K,J& is presented in terms of its dependence on the two most important parameters, d/nr and N, with 
special emphasis on initiation toughness and steady-state toughness, Three applications of the results are 
made : to predict toughnesss when the fracture process is void growth and coalescence, to predict the role 
of plasticity on interface toughness for similar materials bonded together, and to illuminate the role of 
plasticity in enhancing toughness in dual-phase solids. The regime of applicability of the present model to 
ductile fracture due to void growth and coalescence, wherein multiple voids interact within the fracture 
process zone, is complementary to the regime of applicability of models describing the interaction between 
a single void and the crack tip. The two mechanism regimes are delineated and the consequence of a 
transition between them is discussed. 

1. INTRODUCTION 

SUBTLETIES aside, the Griffth criterion for elastic crack growth is 

3 = 1-“, (1.1) 

where IO is the work of separation per unit area required to create the two crack 
surfaces and 9 is the energy release rate as calculated for a line crack using elasticity 
theory. In attempting to apply Griffith’s approach to metals in the early 1950s Orowan 
and Irwin realized that dissipation caused by the high stresses in the plastic zone 
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surrrounding the crack tip played a major role in the work balance. However. a 
fundamental relation between the total work of fracture and the work of the fracture 
process I-,, was not to be found. Even today. there are essentially no quantitative 
results available specifyin g this relationship for plant strain, mode I crack growth. 
This is the objective of the prcscnt paper. It is rnoti~,~te~i by the desire to have a more 
fundamental understanding of the role of plasticity in contributing to toughness of a 
wide ran&c of ductile materials. While long experience contributes to this undcr- 
standing for metals, there is little experience on which judgement can be based for 
systems such as particulatereinforced metal matrix composites and materials joined 
at an interface where at least one material has some ductility. 

The approach which did emerge in the 1960~ largely due to Irwin, was pheno- 
menological. Under conditions of small-scale yielding (and, for definiteness, assume 
also tnodc I, plane strain behavior) the criterion for crack advance is taken as 

9 = I-,<(AN). (1.2) 

where the crack growth resistance, T,<(Arr), for a particular material under given 
environmental conditions is to be determined by experiment. The fact that ~,<(ALI) 
usually increases with increasing A.ct reflects the fact that the plastic field at the crack 
changes as the crack advances. Plastic dissipation evidently depends on both I-,, and 
All. 

This criterion can be restated as an intensity-based condition. With K as the plane 
strain, mode I stress ~ntellsity facror. Irwin’s relation, 

‘q zz ( I .- I“)K’;E. (1.3) 

permits (I .?) to be written as 

K = K,,(An), (1.4) 

where KK = [ET,i(l --Y’)]’ ‘. 11 is Poisson’s ratio, and E is Young’s modulus. In 
this paper the concern will be exclusively with small-scale yielding, rate-independent 
behavior under monotonically increasing K or !q. The intensity-based criterion is 
completely equivalent to the energy equation (I .2) under these circumstances. 

A tnore fundatnental approach to crack growth resistance was initiated by M&~.Iv- 
TOCK and IRWIN (1965) who used small-scale yieldin, . 0 solutions for growing cracks 

in mode III, together with a model prop~lg~tion criterion based on the ~t~~illnient of 
a critical strain at a characteristic distance ahead of the tip. This approach culminated 
in the work of Rice and coworkers ( RICIY and SORENSEN, 1978 ; RI~I: et d., 1980) on 
plant strain, mode I. In the mode I work, solutions for the crack opening profile 
behind the advancing tip were obtained. The refined numerical calculations of SHAM 
(19X3) were used to establish the relation of the opening profile on K and Arr. A 
propagation criterion was imposed on the solution requiring that the near-tip opening 
profile be invariant once propagation is under way. The outcome of the approach 
was the prediction of the crack growth resistance curve, K,<(Ao). 

The approach adopted in this paper goes one step further than that just described 
by directly coupling a model of the fracture process to the elastic -plastic field of the 
growing crack. Plastic dissipation and crack growth resistance are then c~llcul~tcd in 
terms of the parameters characterizing the fracture process and the continuum prop- 
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erties of the solid. The fracture process is modeled by a tractionseparation boundary 
condition specified along the crack plane. The approach taken here is similar in many 
of its aspects to studies by NEEDLEMAN (1987, 1990) on decohesion at interfaces in 
the presence of plastic deformation. 

1.1. The parumeters and implications from dimensional analysis 

The traction-separation relation used to model the fracture process in the present 
study is shown in Fig. 1. The work of separation per unit area is 

(1.5) 

This separation law is fully specified by To, 6, S,/S,. and d2/dC, where the latter two 
parameters can be thought of as “shape” parameters. 

The elastic-plastic solid has an initial tensile yield stress, gY, and a true stress 
logarithmic strain curve in uniaxial tension specified by 

F = o/E 0 < Ok, 

= (cY/E)(o/oY)“” D 3 oy. (1.6) 

The limit of zero strain hardening index, N, corresponds to an elastic-perfectly plastic 
solid. The tensile behavior is generalized to multiaxial stress states assuming isotropic 
hardening and using the mises yield surface. as discussed in the next section. Thus, 
the continuum behavior of the solid is characterized by the set of parameters E, v, oy 

and N. 
The complete list of parameters characterizing the fracture process and the defor- 

mation of the solid is : 

To, ci, 6, /S, and 6J6,. (fracture process), (1.7a) 

a,,N,Eandr (solid). (1.7b) 

61 62 6c 

FIG. I. Traction separation relation for fracture process. 
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Two reference quantities will now be defined which will be used to present results. 
The reference intensity factor 

K,, G [EI-,,,;( I -P)] ’ 1 (I.81 

is the intensity needed to advance the crack in the absence of plasticity (n) + ‘XI). 
according to the Griffith criterion (I. I) with (I .3). A reference length is defined by 

This reference value scales with the extent of the plastic zone size when Kg K,,. In 
small-scale yielding, (K/aY)‘/(37r) is often used as an estimate of the size of the plastic 
zone. 

The results of highly relined calculations will be presented for the resistance curve, 
K,((Aa). and for the steady-state toughness, K;; = K,<(Au) as AN + CC, together with 
other quantities of interest. Dimensional analysis reveals that the solution must depend 
on dimensionless combinations of the parameter set (I .7) in the following way : 

and 

(1.10) 

(I.1 I) 

where F,$ is the limit of F as AU/R,, + CC. Other combinations of the nondimensional 
parameters could be used, but this particular choice has the advantage that the most 
important nondimensional parameters are found to be 6/o, and N, as well as Arr:‘R,, 
for the transient growth behavior. Note that (I, I 1) is equivalent to 

I;; = I-,, F,‘,[ci;‘o, . N. . .]. (1.12) 

which follows directly using (I .3) and (I .8). Thus, steady-state toughness, measured 
as a critical energy release rate. necessarily scales with the work of the fracture process. 
I,,. In a steady state it can be rigorously stated that the total energy release rate, I;;. 
equals the work of the fracture process, I,,, plus the additional contribution, 
T,,(F,‘, ~ I), which is mainly plastic dissipation together with a small amount of elastic 
energy locked in the crack wake. Thus the numerical results presented later in this 
paper provide a rigorous partitioning of the total work of fracture into these two 
contributions when the crack is growing in the steady state. The equivalent statement 
with respect to transient growth is not correct since the elastic strain energy within 
and just outside the plastic zone is not constant but changes as the zone size increases 
and as the wake of plastic strains develops. Only in a steady state is the stress field 
unchanging for an observer advancing with the tip, and thus only in this limiting 
condition is the distribution of elastic strain energy density invariant with respect to 
the advancing tip. In the transient period, which includes initiation, the changing 
elastic energy distribution makes its own significant contribution to the work balance. 
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Attempts to identify the parameters of the traction-separation law with charac- 
teristics of specific fracture mechanisms will be postponed until Sections 4 and 5. 
There the results will be applied to a fracture process involving void growth and 
coalescence under conditions in which multiple interacting voids in a “void-sheet” 
ahead of the crack tip form the fracture process zone. It will be argued that this 
situation constitutes a mechanism regime distinct from the situation where most of 
the interaction is confined to a single void interacting with the crack tip. Predictions 
for these two regimes will be compared. The basic model is applicable to crack 
propagation along an interface where two identical solids have been bonded together. 
In this case, where the parameters of the fracture process describe interface separation, 
a clear picture emerges as to whether or not plastic dissipation in the adjoining material 
halves will contribute to the effective interface toughness. In addition, application of 
the model results will be made to draw qualitative conclusions about the role of 
plasticity in enhancing toughness of dual-phase solids with one phase much harder 
than the other. 

2. SPECIFICATION OF THE MODEL 

The present analyses of plane strain mode I crack growth are carried out for 
conditions of small-scale yielding. Due to symmetry about the crack plane only half 
of the solid needs to be analyzed, and the numerical computations are carried out for 
a semicircular region with initial radius A,,, as shown in Fig. 2. The x’-axis is in the 
crack plane and the initial crack tip is located at x’ = x2 = 0. 

The traction-separation relation used to model the fracture process (see Fig. 1) is 
specified everywhere on the boundary X’ > 0, .Y’ = 0 of the region analyzed, while 
zero tractions are specified for .Y’ < 0, .I? = 0. On the outer semicircular boundary 
displacements are specified according to the K-field around the crack tip as the origin. 
Thus, the loading is applied by incrementally increasing the amplitude K of the 
displacements on the semicircular boundary. 

Finite strains are accounted for in the analysis, and the deformations are taken to 
be described by J2 flow theory. A convected-coordinate, Lagrangian formulation of 
the field equations is used, in which y,, and G,, are metric tensors in the reference 
configuration and the current configuration, respectively, with determinants y and G, 
and II,, = i(G,, -g,,) is the Lagrangian strain tensor. 

The contravariant components 5” of the Kirchhoff stress tensor on the current base 
vectors are related to the components of the Cauchy stress tensor 0” by T" = JGisa? 
Then, in the finite-strain generalization of J2 flow theory discussed by HUTCHINSON 

(1973), the incremental stress-strain relationship is of the form ?‘I = Liik’qk,, with the 
tensor of instantaneous moduli given by 

L - i/A/ _ , F& ; (G’“GI’+G’/G’k)+ i;2; G’I@l_fi _3/2(EI!‘- ‘1 f”“’ 1 E/E,-(1 -2v)/3 q! 

--:(G’h~“+G’/‘~“+G”~‘X+c~‘~‘~) (2.1) 

where the effective Mises stress is ge = (3,y,s”/2) I’?, s” = r”-G’/~i/3 is the stress 
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c Ao Ao 
I ’ 4 

(a) 

deviator, and the value of/j is I or 0 for plastic yielding or elastic unloading. respcc- 
Lively. Furthermore, E is Young’s modulus, Y is Poisson’s ratio, and E, is the slope of 
the true stress vs natural strain curve (I .6) at the stress level G,.. In the case of an elastic 
perfectly plastic material [A’ = 0 in (1.6)] the instantaneous tnoduli are obtained from 
(2. I) as the limit E,,IE = 0. 

It is noted that the stress cr used in the traction-separation relation (Fig. I) is 
defined as a true stress. This is important in cases where crack tip blunting starts to 
occur, since then elements near the crack tip are strongly deformed by finite straining, 
and the true stress carrying capacity in the interface vdjacent to strongly deformed 
elements would far exceed the assumed maximum value ri if nominal slresses wet-c 
applied in the tractionseparation relation rather than true stresses. However, in most 
of the computations to be reported here all strains remain rather small. so th:tt 
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applying true stresses or nominal stresses in the traction-separation relationship 

would not make much difference. 
The value of the J-integral is calculated on several contours to check agreement 

with the prescribed amplitude K of the edge displacements. In the finite-strain context 

the expression for J is (RICE, 1968; ESHELBY, 1970) 

s s 

‘1V 
J = [W ds’- T’u,,, d.$ W = o z”cb/,,, (2.2) 

r 

where r is some path, in the reference configuration, from the lower crack surface to 
the upper crack surface, ds is an arc length element along this path, and T’ are the 
nominal tractions on the boundary of the region enclosed by the contour r. AS long 
as the radius AC1 is chosen large enough, very good agreement is found between the 
prescribed K value and the J values found on several outer contours. 

The crack growth analysis to be carried out here is somewhat similar to NEEDLEMAN’S 
( 1987) numerical study of the debonding of an inclusion from a metal matrix and the 
subsequent numerical study of crack growth at an interface (NEEDLEMAN, 1990). 
These studies were based on an interface potential that specifies a traction-separation 
relation similar to the dependence of interatomic forces on interatomic separation. 
Analogous computations for debonding and fiber pull-out in a metal-matrix com- 
posite have also been carried out recently by TVERGAARD (1990). 

In the principle of virtual work the cohesive stresses cr and the corresponding 
separations 6 (Fig. I) give an additional contribution to the internal virtual work [see 
TVERCAARD (1990)]. Approximate solutions are obtained by a linear incremental 
method, based on using a finite-element approximation of the displacement fields in 
the incremental version of the principle of virtual work. The elements used are 
quadrilaterials each built-up of four triangular, linear-displacement elements. An 
example of the mesh used for the computations is shown in Fig. 2, where it is seen 
that a uniform mesh region with initial length f?(, in front of the initial crack tip is 
used to model crack growth. A special Rayleigh-Ritz finite-element method is used 
to control nodal displacements at the interface within the fracture process zone [see 
also TVERGAARII (I 990)]. Prescribing increments of the edge displacements in terms 
of increments of the applied K is quite stable in the initial stage; but clearly this will 
not function in the later stage, where K has reached the steady-state value while the 
crack still grows. Also in the intermediate stage, where Kgenerally grows for increasing 
crack length and would grow monotonically in a continuum formulation, the element 
discretization results in small oscillations of the K value during debonding. Thus. K 
even has transient decays, and it is necessary to be able to prescribe monotonic growth 
of the separation at the crack tip node. Such control of instabilities during debonding 
is effectively handled by the special Rayleigh-Ritz finite-element method. 

AS shown in Fig. 2 a uniform mesh region of length B, is used in front of the initial 
crack tip to model crack growth. The length of one square element in this uniform 
mesh region is denoted A,,, and thus B,, = 30A. for the mesh shown in Fig. 2. Most 
of the computations have been carried out for 6, = O.lA,, with 6,/S, = 0.15 and 
62/d, = 0.5. A few computations with different values of the ratios 6,/A,,, 6,/6, or 6?/6, 
have been carried out as well, to test the effect of these parameters. The radius of the 
outer boundary used for the mesh in Fig. 2 is specified by A,,jA,, = 2000. 
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The reference length R,, defined by (I .9) scales with the extent of the plastic zone 
size, and therefore the ratio Ro/Ao gives some indication of how well the mesh is able 
to resolve the stress and strain fields around the crack tip. As an example, for a 
material with a,/E = 0.003, the work of separation (1.5) specified by 6 = 3.5a,, 
6,/A” = 0. I, 6 ,/S, = 0.15 and d2/ijc = 0.5 results in R,,/Ao = 9.18, which gives a reason- 
able resolution of the near-tip fields and the fracture process zone. A better resolution 
is obtained by choosing A,) smaller to 6, ; but this does not reduce the value of R,, and 
thus the minimum values of A0 needed to ensure small-scale yielding. Furthermore, 
B. must exceed the minimum crack growth length needed to reach steady-state 
conditions, and this length also scales with R,). Thus, halving the values of Ao/S, gives 
a significant increase of the required mesh size, which strongly increases the need for 
computing time and storage. The mesh in Fig. 2 has been used for computations with 
relatively small values of S/a,, whereas a larger mesh with B, = 60A. and A,, = 9OOOA,, 
was found necessary for larger values of G/or. The larger computations required about 
75 CPU hours on an Apollo 10.000 computer. 

A case has been tested with different values of A,,/S( It has been found that doubling 
values of Ao/6, gives noticeably lower steady-state values of Kg/K,,, while halving the 
value of A,,/8 gives slightly higher predictions of F;;/K,,. Thus, the degree of mesh 
refinement chosen here gives a reasonable approximation of the accurate resistance 

curves. 

3. PREDICTKNS 

Computed crack resistance curves are presented in Fig. 3 for four values of 8/a, 
with N = 0.1, o,/E = 0.003 and r = 0.3. The calculations were continued until K, 

ceases to increase, or almost ceases to increase, implying that steady-state conditions 

0 ’ 
0 1 2 3 L 5 ’ Aa/ 7 

RO 

FIG. 3. Crack growth resistance curves with ~J~;E = 0.003. N = 0.1. 1% = 0.3. ii,:6, = 0.15 and ri,,‘cj, = 0.5. 
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FIG. 4. Crack tip quantities. 

were attained or almost attained. Several features of the near-tip field and the fracture 
process zone which will be discussed in detail are labeled in Fig. 4. 

3.1. Initiution qf growth 

In Fig. 3 it can be seen that crack growth initiates at K = Kc, or, equivalently, at 
CC? = TO. Initiation of growth is associated with 6 attaining 6,. at the original tip and 
the beginning of nonzero Au, where Aa is measured from the end of the fracture 
process zone where all traction is lost. The initiation prediction can be understood by 
making use of the J-integral in (2.2) to connect the remote field to the fracture process 
zone (RICE, 1968). Under the assumption that the deformation theory of plasticity is 
a good model of the incremental flow theory prior to any crack growth, the J-integral 
can be shrunk from a remote contour surrounding the tip, where J = Y, to a contour 
along the fracture process zone giving 

(3.1) 

where 6, denotes the opening displacement at the original tip. Initiation of growth 
occurs when 6, = 6, giving 

??-e,, = TO or K,,. = K,. (3.2) 

This result holds for finite-strain deformation theory. Its applicability to the 
incremental flow theory formulation used in the present calculations rests on the 
condition that stressing be proportional, or nearly proportional, in the plastic zone. 
Nonproportional stressing effects are all-important when crack growth occurs, exclud- 
ing the use of this J-integral argument. However, the deformation theory model 
has been widely used and justified for stationary cracks. Its applicability here is 
corroborated by the fact that the present results in Fig. 3 confirm (3.2). Thus, the 
present model implies that the critical energy release rate at initiation depends on the 
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work of fracture. r,,. but is otherwise independent on other details of the fracture 
process and on 0, and N. 

Let K)j denote the limiting value of K, attained as the cracks grows and approaches 
steady state. The nondimensional parameters which determine K)j/K,, are listed in 
(1. I I). The dependence on k/a, and N is revealed in Fig. 5. The solid-line curves were 
computed with n,/E = 0.003 and v = 0.3. A few calculations were also performed 
with rr,/E = 0.006 and N = 0. I. and these results are shown as a dashed-line curve 
close to the corresponding curve for n), IE = 0.003 and N = 0.1. It is concluded that 
a,:~!? has relatively little influence on K)j/ K,,. although (T, itself has a major influence 
through the dependence on g/o,. The dependence on the shape of the traction 
separation law as mcasurcd by ci,ici, and b,:cS( appears to bc relatively weak as 
well. Computations for 0) ,'E = 0.003 and N = 0. I were repeated using d, ,‘A,, = 0.12. 
d,:‘6, = 0.125 and d,:‘h, = 0.25. and these results are also seen to lie near the cor- 
responding curve in Fig. 5 for O;, ,;A,, = 0. IO. (i ,/6, = 0. I5 and (jli(i, = 0.5, the values 
used in all the other computations. The adjustment in 6,/A,, maintained a fixed ratio 
R,,:‘A,, and thus comparable resolution in the two sets of computations. 

The steady-state toughness is only slightly above the initiation toughness when G/U, 
is less than about 2.5. This is readily understood in terms of the traction which 
develops directly ahead of the crack tip in a fully developed plane strain plastic zone. 
For the line crack with no process zone in an elastic--perfectly plastic solid, the traction 
acting on the plane ahead of the tip in the plastic Lone is (RICE rt d., 1980) 

6 

k’ 
KO 

5 

3 

2 

‘, N=0.2 
t- I I 

0 1 2 3 I. 5 +,, 6 
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Hardening leads to even higher values of cZ2/ay ahead of the tip in a fully developed 
zone. Thus, if the peak traction required for the fracture process is less than about 

2.50,, the crack initiates and advances without permitting a fully developed plastic 
zone to form. Plastic dissipation is then small compared to the work of the fracture 
process. It is important to appreciate that this is not precisely the same as saying that 
the plastic zone is negligible in size. The size of the plastic zone scales with R. in (1.9). 
which is proportional to To. The essential point is that plastic dissipation only becomes 
significant compared to To when fully developed plastic zone can form. 

Strain hardening as measured by N has a significant effect on steady-state toughness 
in Fig. 5. In the absence of strain hardening (N = 0), Ki/Ko increased dramatically 
as ti approaches 2.970,, since a traction greater than this cannot be achieved ahead 
of a crack in an elastic-perfectly plastic material. Without strain hardening and 
with 6 > 2.97g,, the model predicts that a will never attain 6 so that the opening 
displacement will lie in the range 0 < 6 < 6, in Fig. 1. The effective length of the 
fracture process zone will increase with increasing K, the crack tip will undergo increas- 
ing blunting, but crack advance will not take place. This feature is specific to the 
perfectly plastic limit and to the assumed model of the fracture process. 

If the material strains hardens, Kg/K,, increases monotonically with c?/o,. For fixed 
l-,,, 6 and o>, increasing N decreases Kg. as can be seen in Fig. 5. Strain hardening 
increases the traction ahead of the tip and makes it easier to attain the peak stress c?. 
For a similar reason, increasing or decreases Kjj when To, ci and N are held fixed. 

The length of the fracture process zone I, shown in Fig. 4, measures the distance 
between the point where all traction is lost and where the peak stress is first attained 
at 6 = ii,. This length varies little once crack growth has been initiated. For example, 
for 610, = 3.00, N = 0.1 and o,/E = 0.003, I/R,, = 0.47 when AaIR,, = 0.30 and 
l/R,, = 0.51 when Au/R, = 2.08. For 8/o, = 3.75, N = 0.1 and o,/E = 0.003, 
I/R,, = 0.17 when Au/R,, = 0.54 and l/R. = 0.20 when Au/R, = 5.8. Moreover, I/R(, 
was found to be virtually independent of o,/E, judging from a comparison of the 
calculations with a,/E = 0.006 with those for a,/E = 0.003. The steady-state value, 
I"/Ro, depends primarily on ~?/a, and N, and this dependence is shown in Fig. 6. 

After the crack has advanced a distance of about Ro, the opening profile in the 
fracture process zone, and in the region just behind the process zone, settles down to 
a fixed shape. This profile can be approximately characterized by a crack opening 
angle x, as illustrated in Fig. 4. The values of 1 in this plot are defined as (6-6,)/d, 
where 6 is the opening displacement a distance d behind the point where 6 = 6,. 
The steady-state value of Erjo, (the value attained after the largest crack advance 
computed) is plotted in Fig. 7. The parameter Eoc/o, has been used since, to a fairly 
good approximation, c( is proportional to a,-/E, as can be seen from the curve for 
oy/E = 0.006 and N = 0.1. 

The characterization of the opening profile in the vicinity of the fracture process 
zone by a crack opening angle is only approximate. The following dependence of the 
steady-state opening angle on the choice of d for the case N = 0.1 and &‘/cr, = 3.6 
is typical: a = 4.05, 3.50, 2.99 and 2.53 for d/A0 = 3, 6, I2 and 24, respectively. 
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Nevertheless. if the opening profile behind the advancing tip is invariant, then an 
effective opening angle based on a fixed choice of d can be used as a measure of the 
profile amplitude. This measure has been used to characterize the critical intensity of 
the near-tip field for growing cracks in numerical simulations (SHIH et al., 1979; 
KANXINEX ef trl., 1979). 

4. TNITIATIQN AND STEADY-STATE TOUGIINESSES FOR SOLIDS FAILING BY 

Vom GROWTH AND G~AI.ESCEN~-~; 

Ma:~y metals which fail by the void growth mechanism display a single fracture 
plane on which voids have grown and coalesced. This fracture process involves 
localization of plastic flow in a planar zone of essentially one void spacing in thickness, 
as evidenced by the fact that voids away from the planar zone display little or no 
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growth. The model developed below assumes a pre-existing population of roughly 
similar sized voids that give rise to a localized void sheet comprising the fracture 
process zone. The length 1 of this zone is assumed to be large compared to the 
void spacing. Thus the present model envisions a fracture process with many voids 
interacting on a plane ahead of the crack tip. The present model complements the 
RICE and JOHNSON (1970) model which assumes that the fracture process involves just 
one void interacting with the crack tip. Conditions determining the applicability of 
these two models will be discussed below. Neither the present model nor the Rice- 
Johnson model is applicable to the so-called zigzag mode of fracture which appears 
to involve shear localization on planes making an angle to the overall cracking plane. 

We use the GURSON (I 977) model for an elastic--plastic solid containing voids to 
predict the tractiondisplacement law associated with the fracture process zone. We 
will idealize the process by assuming that localization occurs in a layer of initial 
thickness I,. Later this thickness will be identified with the average void spacing, or 
some multiple of that spacing of order unity. The failure process is further idealized 
by assuming that voids are initially present with a void volume fraction ,f;, or, equiv- 
alently, an area fraction ,fo. The role of nucleation of the voids is discussed below. 

The yield condition of the Gurson model is 

@(a<,, o,n .f’) = 
O‘, * 0 ~ +2q,f’cosh -[I +(q,.f’?*] = 0, 

where err is the effective stress, of,, = axA/ is the mean stress, 6 is the current effective 
stress associated with the matrix, fis the current void volume fraction, and q, is the 
Tvergaard adjustment factor which will be taken to be 3/2 in the present study. The 
Gurson model was developed as a continuum model for dilatational plasticity, but 
the yield condition (4.1) was derived using a cell model to account for the interaction 
between voids. Thus, application of the model to compute the traction-displacement 
relation for the single plane of voids shown in Fig. 8 is fully consistent with its original 
derivation. 

The tractiondisplacement relation is computed assuming the failing layer under- 
goes uniusiul straining in the direction normal to the plane (i.e. iZZ > 0 with 
d, , = i33 = 0). Prior to attainment of the peak stress 6, when localization becomes 
fully established, the constraint associated with uniaxial straining somewhat over- 
estimates the actual constraint ahead of the crack tip. Once ci is attained, however, 
uniaxial straining conditions are fully in effect. ANDERSSON (1977) used these con- 
ditions in his model of void growth on the fracture plane ahead of a crack tip in plane 
strain. 

The full set of equations for the Gurson model will not be listed here. They can be 
found in the original paper by Gurson or in the review article by TVERGAARD (1989). 
The true stress-logarithmic strain curve, c? vs C, characterizing the matrix is taken to 
be the same as used in the crack growth calculations, (1.6). The calculations reported 
below were carried out with v = 0.3 and various choices of o,/E. These, together with 
N and ,fo which will be reported below, fully specify the model. Results are computed 
using a finite-strain formulation. 

A set of traction-displacement curves is shown in Fig. 8 for four values of the initial 
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6, 

void volume fraction ,f;, with N = 0.1 and o-/E = 0.003. In uniaxial straining, the 
true traction and the nominal traction are identical and here equal to 0: d is the 
displacement of the top face of the layer relative to the bottom face. The initial 
thickness of the layer, i,, enters as a scaling length in all the results below. The curves 
have been terminated, with the traction dropped abruptly to zero, when the void 
volume fraction ,I’ reaches 0.2. This choice is somewhat arbitrary but is consistent 
with the observation [cf. discussion in TVERGAARD (19X9)] that fine-scale localization 
involving necking down of the ligaments between voids sets in at a value of.f’between 
0.15 and 0.25. This final stage of the coalescence process is not captured by the Gurson 
model. The abrupt termination of traction at ,f’ = 0.2 undoubtedly neglects some 
additional work of fracture. In the absence of a micromechanics model of this stage 
of the process, this simplification seems warranted, especially in the prcscnt exploratory 
application. 

A plot of the normalized peak traction. cijrr,, as ;1 function of,/;, is shown in Fig. 

9(a) for three values of the strain hardening index. The work of fracture, I-,, = j (T dij, 
is plotted as M/ = F,,!(o,L) in Fig. 9(b). While W depends on N. it is relatively 
insensitive to ,f;,. Curves showing the influence of 0) /E on ci:‘cr, and Ware shown in 
Fig. IO. The values of 6/(~~ and W computed for the Gurson model will be used, 
together with the results of Section 3. to predict initiation and steady-sLate toughncsses 

as functions of N, ,f;, and a,:‘E. First, however. a remark will be made on how 

nucleation of voids can be expected to affect the fracture process. 
Traction displacement curves such as those in Fig. 8 were computed using a pre- 

existing void volume fraction ,f;,. In effect. nucleation is assumed to have occurred at 
zero stress. Very little void growth occurs by the point where the peak stress is attained. 
If no voids pre-exist but are nucleated by a volume fraction of particles, ,I;,. at ~1 stress 
hclo~ the associated peak 6 in Fig. 8, then the subsequent details of the traction 
displacement curve will not differ greatly from the curve calculated with the voids 
present at the start (HUT~HIXSON and TVERGAARIX 1989). In particular, the peak ci’ 
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FIG. 9. V~iri~[i~ns of the two most impor~nt fracture process parameters as a function of initial void 
volume fraction. 

will be only slightly greater and the work of fracture I-,, will be nearly the same. Thus, 
it can be argued that the predictions which follow are not very sensitive to the stress 
level at which the voids are nucleated, assuming that stress falls well h&u* the peak 
stress associated with pre-existing voids measured by j;,. Nucleation stresses lying 
cthoce the peak are expected to substantially enhance the toughness, as will be discussed 
below. 

The shapes of the traction-displacement curves in Fig. 8 are somewhat different 
from those in Fig. 1 which were used to carry out the crack growth calculations. 
Nevertheless, the results reported in Section 3 indicate that the shape parameters have 
a relatively small influence and that the most important two parameters of the fracture 
processes are To and 5. We will use these parameters from Figs 9 and IO, togethet 
with the results for K,,, and K; in Section 3, to study the dependence of these 
toughnesses on the basic material parameters. 

As mentioned earlier. this approach requires that the length of the fracture process 
zone, 1, be long conpared to the thickness of the layer, i., which itself is on the order 
of the void spacing. if the calculated value of A,// turns out to be larger than l/2, say, 
then the process zone tnodeled here involving multiple interacting voids will not occur. 
Instead, one woul~;l expect the fracture process to entail a single void interacting with 
the tip, as modeled by RICE and JOHNSON (1970). By (I .9). 

(4.2) 
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Fit;. IO. Dependence of fracture process pammetcrs on cr,:E. 

Recall that l/R,, never differs much from its steady-state value plotted in Fig. 6 and is 
essentially independent of rr,/E. Curves of 211 as a function off;, are plotted in Fig. 
I 1. These were determined using the steady-state results for Ilip, and the dependence 
of 6/E and W’ on ,f;, in Figs 9 and 10. One concludes that the fracture process zone 
will involve many interacting voids as long as ,fo is not too small. The transition from 
the multiple-void regime to the single-void process zone is shown in Fig. 12, where 
the transition curves correspond to ;.j/ = 0.5. Results will be displayed below only 
when values of A/l are less than 0.3. 

From (3.2). the iiziti~7ti~t? t~~~~~ziz~.~.~ is given by k;,. Based on the present ~Iculations 

K,, = [ET”/( 1 ~ v’)] I:? = [Eo,l./( 1 -I!‘)] I>2 w’ 1, (4.3) 

where W is plotted in Figs 9(b) and 10(b). Thus. 

(4.4) 

The numerical coefficient [W/( 1 - v’)] I” is between 0.7 and 1 and depends only weakly 
on ,f;,, N and cr,,IE. This result is very similar to the initiation toughness prediction of 
RICE and JOHNSON (1970). They argue that initiation of growth takes place when the 
void nearest to the tip begins to coalesce with the tip. They estimate that this will 
happen when ii, = cX,,, where ci, is the crack tip opening displacen~ent, X0 is the 
average spacing between voids. and c is a number which depends weakly on,T;,, varying 
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FIG. il. Ratio of the thickness of the fracture process zone to its length as a function of initial void volume 
fraction. The thickness of the zone is approximately equal to the average void spacing. 

from about 2 for f0 = 0.001 to about 1 at f = 0.05. Using the small-scale yielding 
es timate, 6, z 03 I- v~)X”/(ECT~), the Rice-Johnson prediction is 

(4.5) 

If E. in the present model is identified with the averaging spacing between the voids, 
Co, then (4.4) and (4.5) differ only in their numerical coefficients. The coefficient in 

lu, for the Rice-Johnson model is in the range of about 1.5-2 times that for the 
present model. Experimentally measured toughnesses generally do fall below the Rice- 
Johnson prediction (MCMEEKING, 1977; GARRISON and MOODY, 1987), unless the 
materials are highly resistant to void nucleation. Accounting for small-scale voids 
between larger voids nucleated from inclusions reduces the theoretical toughness below 
(4.5) [e.g. ARAVAS and MCMEEKING (1985) and NEEDLEMAN and TVERGAARD (I 987)], 

a situation which may not be too different from that modeled in the present study. 
There is nothing in either (4.4) or (4.5) which suggests that KIC could decrease with 

0010 - 

%! 
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i 

Multiple-void fracture 
process zone 
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FIG. 12. Transition between regime in which the fracture process involves just one void interacting 
the tip to regime involving multiple voids interacting ahead of the tip. 

with 
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increasing (r,, a trend which has been reported for a number of structural alloys which 
are hardened [e.g. GARRISON and Moonu (1987)]. Even if the initial void volume 
fraction ,/;, wcrc to increase along with (T),, due, for example, to more void nucleation 
at the higher stress, the dependence of each prediction on ,f;, is too weak to result in 
a drop in K,, One possible explanation for a drop in initiation toughness with 
increasing (T) may bc a transition from the single- to the mulCple-void mechanism 
mapped in Fig. 12. Suppose. for example, that a combination of n) and ,I;, lies within 
the single-void regime, to the left of the transition line in Fig. 12. Then suppose that 
hardening the alloy derives the combination of (T ) and ,f;, across ~hc transition into 
the regime whcrc multiple voids comprise the fracture process. An incrcasc in U) 
increases the factor (Eo, X,,) ’ ’ in each of (4.4) and (4.5). but crossing the transition 
results in a t/~o/7 of a factor between I .5 and 2 associated with the lower coefficient in 
(4.4) compared to (4.5). The net result would be a drop in K,,, assuming CT) was 
increased by less than about a factor of 3 in the process. 

Sfe~~~~.rtcrtr tou~qh~~es.s. K;;, is determined using the fracture process parameters 
ci/rr, and U’in Figs 9 and IO together with the plot of Kjj;‘K,, in Fig. 5. By (4.3), 

K;;:‘[Eu&(l -v2)]’ ’ = (K;:‘K,,)W’ 2 (4.6) 

and this is the ordinate in Fig. 13. Strain hardening reduces the sensitivity of the 
steady-state toughness to initial void volume fraction ,f;,. With no hardening (N = 0). 
the toughness is very large for ,f;, < 0.01 and drops precipitously in the range 
0.01 < ,f;, < 0.015. As seen in Fig. 9(a), this is the range in which 6 drops below 
2.97~). which, as discussed earlier, is the largest value of traction which can be attained 
ahead of the crack in a nonhardening material. For ,f;, greater than 0.02. Ki rapidly 
approaches K,,. By contrast, when N = 0.2, values of f;, as small as 0.001 result in a 
nondimensional steady-slate toughness (4.6) of about 5 and this value falls off gradu- 
ally with increasing ,fo to a K,, level which is higher than the corresponding value for 

N = 0 by a factor of about 2. 
The effect of (T) /E on the fracture process variables, 6 and r,,, is shown in Fig. IO. 

In Fig. IO(a), it can be seen that rr,;E has a very strong effect on the normalized peak 
stress of the fracture process, ri/o,. A strong effect is to be expected since the peak 
stress is associated with plastic flow localization. and higher stress to modulus levels 
tend to promote such instabilities. The absolute value of ri increases as (T> ,:E increases, 
but the relative value. c?icr,, decreases. There is also some dependence of the non- 

0 001 0.02 f, 003 

FK;. 13. Steady-state toughness as a function of initial void ~olumc fraction. 
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dimensional work of fracture Won o,/E in Fig. IO(b), but this dependence is far less 
important than the reduction in g/o, in influencing steady-state toughness. 

The effect of o,iE on normalized steady-state toughness (4.6) is displayed in Fig. 
14, where N = 0. I and v = 0.3 for all curves. Recall that the effect of ov/E on Pi/K,, 

in Section 3 is quite small compared to the effect of 8/o, and N. The results in Fig. 
14 were plotted using the curve in Fig. 5 for N = 0.1, neglecting any influence of 0,-/E 
on the relation between K%/Ko and d/o,. By far the most important influence on 
steady-state toughness comes from the reduction of G/or due to an increase in o,iE, 

with a minor contribution due to the decrease in W. At a given value off;,, increasing 
oy/E decreases the normalized steady-state toughness in Fig. 14, dramatically so in 
the range where the toughness is a strongly decreasing function of ,f’,,. In the range of 
relatively small f;,, an increase in cP will generally result in a decrease in Ki itself. 
The present model therefore predicts that there is a range of material parameters such 
that the steady-state toughness, and presumably much of the resistance curve, will 
decrease as the initial flow stress is increased. 

The role of nucleation was mentioned earlier where it was noted that, as long as 
voids are nucleated helorz, the peak stress c? associated with ,fo, the predictions of the 
model are expected to be relatively unaffected. If the nucleation stress is above 8, the 
steady-state toughness is expected to be elevated in accord with the trends of Fig. 5. 
The fact that the present model has K,, = K,,, independent of 6, suggests that the 
initiation toughness is unaffected by the nucleation stress. However, as the nucleation 
stress increases the ratio j-/l increases and the transition from the multiple-void regime 
to the single-void regime will take place. Then K,, will increase with increasing 
nucleation stress. 

5. QUALITATIVE IMPLICATIONS IN Two OTHER APPLICATIONS 

5.1. Toughness of an inteyfuce between similur solids 

Consider mode I crack growth along an interface between blocks of identical 
elasticcplastic solids where the blocks have been bonded by one of several possible 
methods, such as inertial welding, a thin adhesive layer, or thermal diffusion bonding. 
Let To and 8 characterize this interface bond, and let E, oy and N characterize the 

N=O.l. v=O.3 

0’ 
0 001 0.02 f. 003 

FIG. 14. Dependence of steady-state toughness on or/E 
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properties of the material comprising the blocks. From the results of Section 3, one 
concludes that plastic dissipation in the blocks will only make a significant con- 
tribution to crack growth resistance if G/o, is greater than about 2.53.5, depending 
on N. For smaller values of &/a,. there will be essentially no resistance curve behavior, 
and the effective toughness of the interface measured in units of energy/area will be 
rl,. These conclusions are predicted on the assumption that the scale of the fracture 
process is small compared to the size of the fracture process zone I predicted by the 
model. a condition which can be checked using the results of Section 3. 

Here a brief qualitative discussion is given of the implications of the model as to 
the role of plasticity in influencing steady-state toughness of dual-phase solids in 
which one phase is harder than the other. Crack bridging mechanisms arc often 
present in dual-phase and reinforced solids. At issue is whether the steady-state 
toughness is due primarily to the work of fracture associated with the bridging 
mechanism and the small-scale fracture process or does dissipation in the surrounding 
plastic zone make a substantial contribution. The model suggests that plastic dis- 
sipation (other than that which is associated with the bridging/fracture process) will 
often be of minor consequence when the overall flow stress of the solid is as much as 
twice the flow stress of the softest phase. The argument is the following. 

For simplicity of discussion, neglect strain hardening and let D,, denote the tensile 
flow stress of the softer phase. Let o >. denote the overall tensile limit flow stress of the 
composite solid. The overall flow stress can be expressed as or = ko,,, where k is in 
the range I .52, typically, for a well-strengthened composite solid. In applying the 
crack growth model of Section 3 to the composite solid. it is the overall flow stress (T) 
which should be identified with the flow stress of the model, assuming that the plastic 
zone size, as measured by Ro, is large compared to the average spacing between the 
phase components. Thus, with reference to Fig. 5, it is seen that plastic dissipation 
(other than that associated with the bridging/fracture process) will only be important 
if 6/oY = 6/(,&r,,) is larger than 2.5, or perhaps 3 if hardening is taken into account. 
If the reinforcement is such that k is from I.5 to 2, the peak stress 6 of the bridging/ 
fracture process would have to exceed 3.75 5 times the flow stress of the soft phase 
g,, for plastic dissipation to make an important contribution to toughness. While it is 
possible under special conditions for the soft phase to sustain the high stresses implied 
by such large values of 6, in general such high stresses cannot be expected to be 
achieved. Failure mechanisms such as phase boundary debonding, void nucleation at 
precipitates, and even cavitation will usually intervene before an overall stress of 3.755 
5 times (r. can be attained. 
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