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Non-uniform Hardening Constitutive Model for Compressible Orthotropic
Materials with Application to Sandwich Plate Cores
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Abstract: A constitutive model for the elastic-plastic
behavior of plastically compressible orthotropic materi-
als is proposed based on an ellipsoidal yield surface with
evolving ellipticity to accommodate non-uniform hard-
ening or softening associated with stressing in different
directions. The model incorporates rate-dependence aris-
ing from material rate-dependence and micro-inertial ef-
fects. The basic inputs are the stress-strain responses
under the six fundamental stress histories in the or-
thotropic axes. Special limits of the model include classi-
cal isotropic hardening theory, the Hill model for incom-
pressible orthotropic solids, and the Deshpande-Fleck
model for highly porous isotropic foam metals. A pri-
mary motivation is application to metal core structure in
sandwich plates wherein the core is modeled by a con-
tinuum constitutive model. The constitutive model is im-
plemented within a finite element framework to represent
the behavior of square honeycomb metal cores of sand-
wich plates subject to quasi-static and dynamic loads.
Input identification is illustrated for numerical formula-
tions that employ one element through the core thickness.
Representations of the core with one element through the
thickness are shown to be able to capture most of the im-
portant influences of nonlinear core behavior on overall
response of sandwich plates under both quasi-static and
dynamic loadings.

keyword: Constitutive model, plasticity, rate-
dependence, homogenization, sandwich plate, square
honeycombs.

1 Introduction

A primary motivation of the work in this paper is the de-
velopment of a constitutive representation of core struc-
ture for metal sandwich plates that will allow efficient
numerical solution of large structural problems under
a wide range of static and dynamic loads. The start-
ing point is the formulation of a continuum model for
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a general class of plastically compressible, orthotropic
solids based on an ellipsoidal yield surface which incor-
porates non-uniform hardening. The constitutive model
has considerable flexibility. Limits of the model include
many of the important phenomenological constitutive re-
lations for elastic-plastic solids: classical isotropic plas-
ticity, Hill’s theory for incompressible orthotropic plas-
ticity, and the Deshpande-Fleck theory for highly com-
pressible isotropic metal foams. A salient feature of the
formulation is its ability to model distinct hardening or
softening behaviors under different stressing conditions,
with application to both plastically incompressible solids
and highly compressible materials.

For application to metal sandwich cores, the approach
requires inputs specifying the stress-strain behavior char-
acterizing single component stressing in orthotropic axes
for each of the six components of stress. These basic
inputs can be obtained from theoretical models, exper-
imental data or numerical simulations, or combinations
of all three. Once the inputs are characterized, the con-
stitutive model can be used to represent the core in con-
nection with standard finite element codes. In this paper,
the commercial code ABAQUS Explicit has been used in
connection with a user-supplied subroutine that has been
constructed based on the constitutive model. The pa-
per illustrates the process of identifying the input stress-
strain data for square honeycomb cores. It also demon-
strates that representing the core by elements extending
all the way through the core can be accurate and highly
efficient in the analysis of sandwich plates deformed un-
der quasi-static and dynamic loads to large deflections.
Simulations based on full three-dimensional meshing of
the core demonstrate the validity of the approach.

The present paper continues the effort underway for sev-
eral years by a number of groups to develop contin-
uum constitutive relations to characterize a range of core
structures and to validate them for structural applica-
tions [Deshpande, Fleck and Ashby (2001); Hanssen,
Langseth and Hopperstad (2002); Mohr and Doyoyo



80 Copyright c© 2005 Tech Science Press CMES, vol.10, no.1, pp.79-95, 2005

(2004); Oller, Car and Lubliner (2003); Qiu, Deshpande
and Fleck (2003); Rabczuk, Kim, Samaniego and Be-
lytschko (2004); Xue and Hutchinson (2003; 2004a;
2005); Zok, Rathbun, He, Ferri, Mercer, McMeeking
and Evans (2005)]. Parallel efforts have been made
to compare experimental observations on statically and
dynamically loaded sandwich plates with theoretical
and numerical simulations [Cote, Deshpande, Fleck and
Evans (2004); Dharmasena, Xue, Wadley and Hutchin-
son (2005); Rathbun, Radford, Xue, He, Yang, Desh-
pande, Fleck, Hutchinson, Zok and Evans (2005)]. This
paper extends the constitutive model proposed in ear-
lier papers by Xue and Hutchinson [2004a; 2005] by
including both non-uniform hardening and a more gen-
eral representation of transverse strains. In addition, the
present paper focuses on numerical approaches that em-
ploy meshes with only one element through the thickness
of the core—a decision that has important implications
in the process of identifying the constitutive inputs in dy-
namic applications. The present paper complements ear-
lier work of [Rabczuk, Kim, Samaniego and Belytschko
(2004)] who demonstrated that folded plate cores could
be accurately represented without meshing through the
core thickness using a direct homogenization approach
that bypasses the introduction of a continuum constitu-
tive model.

2 A continuum model for elastic-plastic behavior
of plastically compressible orthotropic materials
with non-uniform hardening or softening evolu-
tion

In this section, a constitutive model is prescribed for
the elastic-plastic response of orthotropic materials un-
der multi-axial stressing. The model allows hardening
or softening behavior that can differ for stressing in each
of the six fundamental stressing histories in orthotropic
axes. Strain rate sensitivity is also taken into account.

2.1 Ellipsoidal yield surface and associated plastic
flow rule

An ellipsoidal yield surface is proposed for plastically
compressible metallic materials with microstructures in-
cluding, among others, foams, lattice materials with truss
elements, and honeycombs with plate elements. The con-
stitutive model generalizes Hill’s model for plastically in-
compressible orthotropic materials by incorporating both
compressibility and evolving ellipticity of the yield sur-

face reflecting differential hardening or softening in dif-
ferent stressing directions. The model extends earlier
versions [Xue and Hutchinson (2004a; 2005)], as de-
scribed below.

Let the xi axes be aligned with the orthotropic axes of
the material. Introduce stress, strain and plastic strain
vectors in the usual way with

σ = (σ1,σ2,σ3,σ4,σ5,σ6)T

≡ (σ11,σ22,σ33,σ13,σ23,σ12)

ε = (ε1,ε2,ε3,ε4,ε5,ε6)
≡ (ε11,ε22,ε33,2ε13,2ε23,2ε12)
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The ellipsoidal yield surface for orthotropic materials can
be written in the form

f ≡ σe f f −σ0 = 0 (2)

where the effective stress σe f f is defined by
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The stress quantity σ0 is a fixed reference stress that can
be chosen arbitrarily; it is simply a scaling factor. The
coefficients, ν̂1, ν̂2 and ν̂3, are directly related to plas-
tic Poisson’s ratios, as will be detailed later. They can
be chosen to model incompressible materials, includ-
ing Hill’s anisotropic model, and they can be chosen to
model highly compressible materials. In the most gen-
eral case, these coefficients will vary as the deformation
proceeds.

The basic inputs to the model are the six rate-dependent
stress-strain curves, σ̂i(εP

i , ε̇P
i ), that characterize the plas-

tic response of the continuum material under conditions
when each of the above six (positive) stress compo-
nents acts singly, together with the three ν̂i. More pre-
cisely, when σi is the only non-zero stress component, let
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σ̂i(εP
i , ε̇P

i ) denote the hardening (or softening) function
specifying the dependence of σi on the associated plastic
strain component, εP

i , when the strain-rate, ε̇P
i , is positive

and constant. Thus, σ̂1(εP
1 , ε̇P

1 ) denotes stress-strain data
for monotonic tensile stressing in the 1-direction, while
σ̂4(εP

4 , ε̇P
4 ) is reserved for a pure shear stress in the (1,3)

axes, etc. Once the strain and strain-rate dependence of
the six functions, σ̂i(εP

i , ε̇P
i ), along with that of the three

coefficients, ν̂i, is specified in terms of the overall plastic
strain and its rate, the yield surface is fully prescribed.

An associated plastic flow rule is adopted such that the
plastic strain-rate is normal to the yield surface according
to

ε̇P
i = λ̇

∂ f
∂σi

(4)

where λ̇ is the plastic strain-rate multiplier. Standard
rules for plastic loading and elastic unloading apply. An
effective plastic strain rate ε̇P

e f f is defined such that it is
conjugate to the effective stress σe f f through the plastic
work rate:

Ẇ P = σiε̇P
i = σe f f ε̇P

e f f (5)

Because σe f f is a homogeneous function of degree one
of the stress,

(
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/
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)(
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/
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) ≡ 1, and the rela-

tion ε̇P
e f f = λ̇ can be obtained in a straightforward man-

ner by substituting (4) into (5). The flow rule (4) can be
re-expressed as

ε̇P
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e f f
∂ f
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(6)

To make (6) more explicit and to obtain the expression
for the effective plastic strain, rewrite the effective stress
σe f f in the matrix/vector form as

σe f f = (σPσ)1/2 (7)

where, from (3),
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Then from (6),

ε̇P

ε̇P
e f f

=
Pσ

σe f f
(9)

Upon substituting this expression into (7) and simplify-
ing, the effective plastic strain rate in terms of the strain
rate components is2

ε̇P
e f f =

(
ε̇PTP−1ε̇P

)1/2
(10)

2.2 Specification of ν̂1, ν̂2 and ν̂3 using uniaxial stress
histories

For the each of the three basic uniaxial stress histories,
define two instantaneous plastic “Poisson ratios” such

that for uniaxial stressing in xi direction, ν̂P
i j = −ε̇P
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/
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( j �= i), which, in general, depend on εP
i . As a conse-

quence of normality (9) and the assumed yield surface:
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providing the ν̂i, along with three constraints on the six
plastic Poisson ratios. Alternatively, if the ν̂i are speci-
fied, (11) gives the evolution of the plastic Poisson ratios

2 P is singular in the limit when the material is plastically incom-
pressible. The algorithm for solving the stresses in terms of the
strain-rates described in the Appendix does not make use of the in-
verse of P and therefore the code developed applies whether or not
the material is plastically incompressible.
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as predicted by the constitutive model. Three possible
choices for ν̂i are now noted to illustrate the generality of
the formulation.

2.2.1 Zero plastic Poisson ratios

A particularly simple and useful choice is ν̂i = 0 for
i = 1,3, implying by (11) that the six plastic Poisson
ratios vanish, as adopted earlier [Xue and Hutchinson
(2005)]. Zero transverse straining is often a good ap-
proximation for low-density foams and lattice-type mate-
rials when subject to uniaxial stress because the members
aligned perpendicular to the stress do not undergo signif-
icant strain. The off-diagonal terms in P vanish and the
yield condition is then dependent only on the six inputs,
σ̂i(εP

i , ε̇P
i ).

2.2.2 Isotropic foam model

The isotropic plasticity model for highly porous metal
foams [Deshpande and Fleck (2000)] adopts an effective
stress given by

σ2
e f f =

[
1+β2]−1{

3si jsi j/2+β2σ2
kk

}
(12)

Here,

si j = σi j − 1
3

σkkδi j

and

β =
[
(1/2−νP)/(1+νP)

]1/2

where νP is the plastic Poisson’s ratio under uniaxial
stressing. The yield surface is a special case of the
present yield surface (3) if

⎧⎨
⎩
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√
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2.2.3 Hill’s anisotropic plasticity model

Hill’s yield surface [Hill (1947; 1950)] for plastically in-
compressible, orthotropic materials is obtained from (3)
using normality to enforce ε̇P
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Thus, the constitutive relation proposed here can model
a plastically incompressible solid having six independent
inputs σ̂i(εP

i , ε̇P
i ) characterizing single stress histories.

2.3 Independent hardening and coupled hardening

In the general case, for plastic loading with σi acting
singly for either uniaxial or shear stressing in the axes
of orthotropy:

σe f f
/

σ0 =|σi|
/

σ̂i (no summation on i) (15)

and, by (2), the current yield condition is |σi| =
σ̂i(εP

i , ε̇P
i ). In particular, prior to any plastic deformation,

the initial yield condition is |σi| = σ̂i(0, ε̇P
i ) when σi acts

singly. Expressions for the effective plastic strain-rate
from (10) can be determined in terms of the plastic strain
components for each of the six basic stress histories. The
direct calculation is tedious, but the outcome is simple
and in accord with (5). For σi acting singly,

ε̇P
e f f =

∣∣ε̇P
i

∣∣ σ̂i
/

σ0 (no summation on i) (16)

The above framework is fully specified for multiaxial be-
havior once the six input histories, σ̂i, and the coeffi-
cients, ν̂1, ν̂2, ν̂3, are specified in terms of the plastic
strains εP

i and the strain rates ε̇p
i . Two approaches, inde-

pendent hardening and coupled hardening, to specify the
strain dependence of σ̂i will be described below.

Compromises in representing actual multiaxial stressing
behavior are inevitable at this stage because multiaxial
behavior is generally quite complex, as is well known
even for conventional plastic solids. Here, following
Xue and Hutchinson (2005), we propose two harden-
ing laws for multi-axial stressing: independent hardening
and coupled hardening. Both reproduce the stress-strain
behavior, σ̂i(εP

i , ε̇P
i ), for each of the six simple stress his-

tories when σi acts singly. In orthotropic axes, the con-
stitutive model predicts identical stress-strain behavior in
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tension and compression or in positive or negative shear
(i.e. with a change in sign of σi). Thus, the choice of each
of the basic histories, σ̂i(εP

i , ε̇P
i ), should be guided by the

specific application. For example, if core crushing in one
of the orthotropic directions is relevant, then σ̂i(εP

i , ε̇P
i )

for that direction should be based on compression data.

2.3.1 Independent hardening

The most straightforward algorithm for multi-axial
stressing takes each of the six hardening functions, σ̂i,
to be affected only by the magnitudes of associated plas-
tic strain component, εP

i , and associated constant strain
rate, ε̇P

i . Let

η̇P
i =

∣∣ε̇P
i

∣∣ (17)

and take each of the hardening functions as σ̂i(ηP
i , η̇P

i ).
For stressing with σi > 0 as the only component, this
reduces to the input function for each given associated
strain rate,ε̇i. This is independent hardening in the sense
that the intercept of the yield surface with each axis in
stress space is only affected by the component of plastic
strain conjugate to that stress component. Plastic strain-
ing in one direction does not affect the yield strength in
the other directions according to this prescription. The
strain dependence of the ν̂P

i j must also be specified. For
many applications involving crushing and shear deforma-
tions of highly porous core materials, the choice ν̂i = 0
(i = 1,3) will be expedient. Alternative prescriptions are
discussed in the Appendix.

This constitutive model has common features with the in-
dependent hardening constitutive models used in codes
such as LS-DYNA [LS-DYNA manual (1998)] where
a "box-shaped" polyhedral yield surface in orthotropic
axes is comprised of planes specified by the magnitudes
of each of the stress components. Both reproduce the
stress-strain behavior when the stress components act
singly. However, in the present model, the yield surface
retains an ellipsoidal shape with hardening or softening.
Thus, the present model produces a genuine interaction
among the stress components under multiaxial stressing,
in much the same manner as classical plasticity mod-
els, and, for most materials, is more likely to be repre-
sentative of multiaxial behavior. On the other hand, the
planar yield surface models have the advantage that they
can be formulated to specify distinct behavior in tension

and compression simultaneously for each of the uniax-
ial stress components. As mentioned earlier, in the form
introduced here, the ellipsoidal yield surface model only
permits data input for either tensile or compressive be-
havior of each uniaxial stress component, but not both.

2.3.2 Coupled hardening

The coupled hardening algorithm ties changes in each of
six hardening functions σ̂i and the ν̂1, ν̂2, ν̂3 to the effec-
tive plastic strain, εP

e f f , defined by (5) and (10), by taking
σ̂i(ηP

i , η̇P
i ) and ν̂i(ηP

i , η̇P
i ) in the yield function where

η̇P
i = (σ0/σ̂i)ε̇P

e f f (18)

Note that, according to (16), this recipe also reduces to
η̇P

i =
∣∣ε̇P

i

∣∣ when σi > 0 is the only non-zero stress com-
ponent. Thus, this prescription has each of the six hard-
ening functions depending on εP

e f f in such a way that the
model also replicates the input stress-strain data when
any of the six stress components acts singly.

For the special case when the six hardening functions
change in direct proportion to one another (uniform hard-
ening), coupled hardening reduces to the hardening as-
sumption made in conventional isotropic hardening. For
uniform hardening, only one input stress-strain curve is
required to specify the hardening behavior under multi-
axial stressing and the model reduces to the version pro-
posed by Xue and Hutchinson [2004a] and is closely re-
lated to the model proposed by Zok, Rathbun, He, Ferri,
Mercer, McMeeking and Evans [2004].

2.4 Orthotropic linear elasticity

In the present constitutive model, the plasticity of the ma-
terial can be supplemented by orthotropic linear elastic-
ity. In the axes of orthotropy, the elastic properties are
specified by the elastic constants: Young’s moduli E1,
E2, E3; Poisson ratios ν12, ν13, ν23, ν21, ν31, ν32 (only
three of which are independent as discussed below); and
shear moduli G4, G5, and G6 such that

σ̇ = L(ε̇− ε̇)
ε̇− ε̇ = Mσ̇ (19)

where L and M are the symmetric matrices of elastic
moduli and compliances given by
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M = L−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
/

E1 −ν21
/

E2 −ν31
/

E3

−ν12
/

E1 1
/

E2 −ν32
/

E3

−ν13
/

E1 −ν23
/

E2 1
/

E3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1
/

G4 0 0
0 1

/
G5 0

0 0 1
/

G6

⎤
⎥⎥⎥⎥⎥⎥⎦

(20)

Here, νi j are defined in the usual manner. Elastic symme-
try requires νi j

/
Ei = ν ji

/
E j such that only three of the

νi j are independent. Additionally, positive definiteness
of L and M requires

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E1, E2, E3, G4, G5, G6 > 0

|ν12|<
(
E1
/

E2
)1/2

|ν13|<
(
E1
/

E3
)1/2

|ν23|<
(
E2
/

E3
)1/2

1−ν12ν21−ν23ν32−ν31ν13−2ν21ν32ν13 > 0

(21)

In principle, equations (20) and (21) can be determined
and verified from the six stress-strain histories. In par-
ticular, uniaxial stressing along each of the axes of or-
thotropy provides the Young’s moduli and Poisson ratios,
while three pure shear tests provide the shear moduli.

2.5 Incremental relations among the stresses and
strains

The two versions of the constitutive model are fully spec-
ified. It only remains to obtain the incremental rela-
tions among the stresses and strains. Here, the incremen-
tal relations are derived and expressed in matrix/vector
form. Plastic yielding at constant strain-rate requires
ḟ = σ̇e f f = 0, or

σPσ̇+
∂σe f f

∂εP
e f f

ε̇P
e f f = 0 (22)

Using (9), (19) and (22), it is readily shown that

ε̇P
e f f =

(
σPLPσ

σe f f
+

∂σe f f

∂εP
e f f

)−1

σPLε̇ (23)

Equations (9), (19) and (23) provide the tangent moduli
relating the stress and strain increments:

σ̇ = Lε̇ =

⎡
⎣L−

(
σPLPσ+σe f f

∂σe f f

∂εP
e f f

)−1

LPσσPL

⎤
⎦ ε̇

(24)

Expressions for ∂σe f f /∂εP
e f f for each of the hardening

laws are given in the Appendix. If L is non-singular,
ε̇ = Mσ̇ where M = L

−1
.

The plastic strain-rate, ε̇P, has been assumed constant in
deriving the above constitutive equations. As is custom-
ary in generalizing constant strain-rate data to plasticity
applications were the strain-rate itself varies with respect
to time, the accelerations of the plastic strains are ignored
in the equations, if for no other reason that stress-strain
data under varying strain rates is generally not available.
Thus, the above equations are proposed as the consti-
tutive model under general conditions of stressing and
straining.

The present constitutive model has been implemented
into ABAQUS/Explicit [ABAQUS Manual (2004)]
through its VUMAT subroutine interface. The compu-
tational algorithm in the VUMAT code is analogous to
that developed for a more restricted sub-set of constitu-
tive models in Xue and Hutchinson [2004a].

3 Application to sandwich plates with square hon-
eycomb cores

The second half of the paper demonstrates application of
the constitutive model to investigate responses of a sand-
wich plate with a square honeycomb core (Fig. 1) to a
quasi-static punch load and dynamic impulsive pressure
loads using finite element methods. The first step in em-
ploying the constitutive law is identification of the input
stress-strain data: σ̂i and ν̂i, and the elastic constants.
The analyst has several options at his or her disposal for
this purpose, including using experimental data, using
predictions from theoretical models or using predictions
from numerical simulations. In this paper, a combination



Non-uniform Hardening Constitutive Model for Compressible Orthotropic Materials with Application 85

of the two latter approaches is employed. Computed sim-
ulations of the response of the square honeycomb core
for the most relevant basic stress histories are used along
with strength of materials estimates of the elastic con-
stants and yield behavior. For clamped sandwich plates
subject to transverse loads, the important basic stressing
histories of the core are: (1) crushing normal to the sand-
wich faces, (2) out-of-plane

Figure 1 : Schematic diagram of square honeycomb
sandwich plate configuration and corresponding compu-
tation model of sandwich panel.

shear, and (3) in-plane stretching. Each of these can con-
tribute significantly to the overall load-deflection behav-
ior of the plate, and thus they must be modeled with
some fidelity. The core webs in the examples illus-
trated undergo plastic yielding either prior to buckling
or nearly simultaneously with buckling. Under crushing,
the square honeycomb core softens dramatically once the
webs begin to buckle in the plastic range. At high crush
rates, lateral inertia of the webs delays buckling, and thus
dynamic effects play an important role in the constitu-
tive response of the core. Core webs also undergo plastic
buckling in out-of-plane shear, but without softening. In-
plane stretching of the core is limited by tensile necking
and/or fracture, but that is assumed to occur at strains
larger than those considered here.

As mentioned above, another objective of this paper is
to show that it is possible to use the constitutive model
within a finite element formulation using only one el-

ement through the thickness of the core, motivated by
the significant reduction in the number of elements re-
quired to represent a large sandwich plate structure. Any
approach based on employing one element through the
thickness necessarily fails to capture certain features of
core response, such as wave propagation through the core
or spatial details of crush development through the core.
If knowledge of such details is deemed essential then
the analyst probably has no recourse other than to carry
out an analysis using a full three-dimensional represen-
tation of the core. However, if the primary interest is
in the overall response of the plate structure, then it will
be shown that the one-element approach based on proper
calibration of present constitutive model can be accurate
and computationally efficient.

3.1 Specification of the plate

Two loadings, one quasi-static and one dynamic, will be
applied to the steel sandwich plate depicted in Fig. 1,
which is infinitely long, of width 2L and clamped along
the sides. Each of the loadings is uniform in the direction
parallel to the infinite dimension. The honeycomb sand-
wich plate has core height, H, core web thickness, t, face
sheet thickness, h, and web spacing B. The density of the
steel comprising the faces and webs is ρs = 8000kg

/
m3.

The volume fraction of the core occupied by steel can be
expressed in terms of t and B as

ρc = 2
t
B
−
( t

B

)2 ∼= 2
t
B

(25)

and the total mass/area of the sandwich plate, M, is given
by

M = ρs(2h+ρcH) (26)

The plate considered in all the numerical simulations has
L = 1m, h/L = 0.009, H/L = 0.1, B/L = 0.1, t/H =
0.01, corresponding to ρc = 0.02, and M = 160kg

/
m2

(M/(ρsL) = 0.02). The core mass is 10% of the total.

The core webs and face sheets of the sandwich plate are
assumed to be 304 stainless steel. A piecewise function
has been fit to the true stress-log strain tensile behavior
of the material giving

σ =
{

Eε ε ≤ σY
/

E

σY
(
Eε
/

σY
)N ε > σY

/
E

(27)
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with Young’s modulus E = 200GPa, Poisson’s ratio ν =
0.3, tensile yield strength σY = 205MPa, and strain hard-
ening exponent N = 0.17. Strain-rate sensitivity of the
steel has not been taken into account. Classical flow the-
ory of plasticity based on the Mises yield surface and
isotropic hardening is employed to represent the face
sheets in all the computations and the core webs in the
three-dimensional simulations. Fracture is not consid-
ered; the steel is assumed sufficiently ductile to sustain
the strains that arise.

4 Quasi-static punch loading

4.1 Identification of the constitutive inputs

Plastic deformation of the square honeycomb core is well
approximated by ν̂i = 0 (i = 1,3), and that is adopted
here. For quasi-static deformations the inputs are σ̂i(εP),
and, as mentioned above, the three that are important are
σ̂1, σ̂3 and σ̂4. These are calculated using a three dimen-
sional finite element representation of the unit core cell
shown in Fig. 2, which is subject to periodic displace-
ment boundary conditions consistent with the basic stress
histories, as discussed in detail by Xue and Hutchinson
[2004a]. Thus, to determine σ̂3 for crushing, the faces
are taken as rigid and displaced in the 3-direction towards
one another, with zero shear tractions and zero displace-
ments parallel to the faces enforced at the edges of the
webs in the unit cell. The average normal stresses in the
three directions are computed and converted to relations
between true stress and logarithmic strain. Once plastic
deformation is dominant, the average stress parallel to the
faces becomes small compared to σ̂3, consistent with tak-
ing the associated plastic Poisson ratios to be zero. Sim-
ilar computations are made for in-plane stretching (σ̂1)
and out-of-plane shear (σ̂4) as described more fully by
Xue and Hutchinson [2004a]. The results, shown in Fig.
2, have been normalized by their initial values, σ̂i(0), de-
termined based on simple estimates from the strength of
materials under the assumption that plastic yielding oc-
curs prior to elastic buckling,

⎧⎨
⎩

σ̂1(0) = σ̂2(0) = 1
2 ρcσY

σ̂3(0) = 2√
3
ρcσY

σ̂4(0) = σ̂5(0) = 1
2 ρcτY

(28)

where τY = σY /
√

3. The factor (2/
√

3) for web materi-
als having a Mises yield surface reflects the constraint of

the faces such that the webs undergo plane strain com-
pression under crushing.

The initial geometry of the three-dimensional unit cell is
imperfection-free. Buckling is triggered by very small
numerical “imperfections” such as round off error or
meshing asymmetry. Particularly in the case of the dy-
namic simulations, imperfections can reduce the strength
of the core [Xue and Hutchinson (2005)], thus the re-
sults generated for the input functions in this study ap-
ply to near-perfect cores. For a specific construction, the
method used to generate the input functions should ac-
count for representative imperfections.

The webs of the core with ρc = 0.02 buckle elastically
at a slightly lower overall stress than σ̂3(0) in (28), al-
though this is not evident in Fig. 2 because the strain
range governed by elastic buckling is a small fraction of
εY . As soon as plastic deformation begins, the crush-
ing strength σ̂3(εP

3 ) falls sharply. In out-of-plane shear,
σ̂4(εP

3 ), plastic yielding under rising stress occurs prior
to buckling. Once buckling occurs, the stress remains al-
most constant. The curve for in-plane stretching reflects
the tensile stress-strain behavior of the web oriented par-
allel to the direction of stressing; the curve is terminated
at a strain below the necking strain for the web. The over-
all elastic moduli associated with each of the loading his-
tories are also taken as strength of materials estimates:

⎧⎨
⎩

E1 = E2 = 1
2ρcE

E3 = ρcEs

G4 = G5 = 1
2ρcG

(29)

where G = E/(2(1+ν)).

To complete the inputs for quasi-static problems, one
needs to specify the in-plane shear response σ̂6(εP

6 ) and
elastic shear modulus G6. These are exceeding low and
essentially irrelevant to performance of the square hon-
eycomb core plate because the face sheets supply essen-
tially all the in-plane shear strength and stiffness. They
are taken as

σ̂6(εP
6 ) =

1
200

ρcτY , and G6 =
1

2000
ρcG (30)

To illustrate interaction among the stresses under multi-
axial stressing, initial yield (defined for present purposes
as the onset of significant nonlinearity) have been calcu-
lated using the three-dimensional cell for combinations
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(a)

(b) 

Figure 2 : Normalized true stress-plastic strain rela-
tionships for three basic histories of the square honey-
comb core: H/B = 1 and t/B = 0.01 corresponding to
ρc = 0.02 with material properties stated in the text. The
true stresses are normalized by the initial yield stresses
(28).

(σ1,σ3) and (σ3,σ4) and compared in Fig. 3 with results
for initial yield predicted from the continuum yield sur-
face (3). The cell results are close to what one would ob-
tain directly from the Mises yield surface in plane stress
without accounting for any non-uniformity of stress in
the webs. Yield for the combination (σ3,σ4) predicted
by the continuum yield surface accurately captures the
interaction, while that for (σ1,σ3) underestimates the in-
teraction. For initial yield, it is evident that a polygo-
nal yield surface specified by planes perpendicular to the

Figure 3 : The initial yield surface of the square honey-
comb core under two combined loadings: (I) combined
core crushing and out-of-plane shear and (II) combined
core crushing and in-plane tension. The solid line cor-
responds to the ellipsoidal surface invoked in the consti-
tutive model with ν̂1 = ν̂2 = ν̂3 = 0. The square honey-
comb core has the same geometrical parameters as that
in Fig. 2.

individual stress axes would significantly underestimate
the interaction among the stress components.

Like the plate, the rigid punch in Fig. 4a is infinite in the
direction perpendicular to the cross-section shown. It’s
half-width and edge radius are specified by apunch

/
L =

0.3 and Rpunch
/

apunch = 0.334. The problem employing
the constitutive model for the core satisfies plane strain
conditions, rendering the problem two-dimensional. The
inputs, σ̂1, σ̂3 and σ̂4, in Fig. 2 have been transferred
directly into the code, while the other inputs are entered
as analytical expressions as given above. Alternatively,
functions could have been fit to the responses in Fig. 2
and then entered as analytical descriptions.

To assess the accuracy of the calculations based on the
core constitutive model, a fully three-dimensional com-
putation of the punch loaded plate with detailed mesh-
ing of the core members has been carried out using
ABAQUS. It exploits the periodicity of the plate in its
long direction employing the cellular unit of the plate
shown in Fig. 1. As in the computation of the basic histo-
ries, the core webs have no initial imperfections. Details
of the finite element modeling with full meshing of the
core members have been described in Xue and Hutchin-
son [2004b]. In both sets of calculations, the faces are
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modeled by the classical plasticity with Mises yield cri-
terion and isotropic hardening, as are the core members
in the full three-dimensional simulations. The punch is
modeled by a rigid element, and it is assumed that con-
tact between the punch and the plate is frictionless. In the
computations based on the core constitutive model, one
element is taken through the core, 4 elements through
each face sheet, and 200 elements along the half-width
of the plate in the core and the faces.

The comparisons presented in Fig. 4b-d will now be de-
scribed in detail. To highlight the role of the constitutive
law inputs, calculations for four sets of inputs have been
carried out:

A) All six input functions, σ̂i, as specified above with
independent hardening.

B) All six input functions, σ̂i, as specified above with
coupled hardening.

C) With initial yield stresses, σ̂i(0), as specified above:
σ̂i(ηP

i ) = σ̂i(0)
(
σ̂3(ηP

3 )/σ̂3(0)
)

with coupled hardening.
This is uniform hardening scaled by the initial yield
stresses with all components hardening or softening as
specified by the crushing response, σ̂3(ηP

3 ).

D) With initial yield stresses, σ̂i(0), as specified above:
σ̂i(ηP

i ) = σ̂i(0)
(
σ̂4(ηP

3 )/σ̂4(0)
)

with coupled hardening.
This is uniform hardening scaled with the initial yield
stresses with all components hardening or softening as
specified by the shear response, σ̂4(ηP

3 ).

4.2 Comparison of simulations under punch load

The load-center deflection response is shown in Fig. 4b,
where the load per unit length, P, is normalized by the
limit load per unit length, Pc = 4σY hH/L, for a perfectly
plastic sandwich plate with a central load (based only on
contributions from the faces). The compressive crushing
strain of the core (change in distance between the faces
divided by H) under the punch, εc, is plotted in Fig. 4c,
and the deformed shape of the plate at δPunch

/
L = 0.25

is displayed in Fig. 4d.

The dimensions of the sandwich plate and its material
properties are such that the sequence of nonlinear behav-
ior as predicted by the three-dimensional simulation is as
follows. Core yielding in shear is the first occurrence of
nonlinear behavior at δPunch

/
L ∼= 0.01. Yielding of the

faces due to overall bending sets in at δPunch
/

L ∼= 0.05,
followed shortly thereafter by nonlinear stretching of
both faces. Finally, at δPunch

/
L ≈ 0.18, core crushing

occurs due to buckling and yielding of the core webs be-
neath the punch. The transitions in this sequence are
mirrored in the plots for the three-dimensional simula-
tion in Fig. 4. Two views of the deformed plate at
δPunch

/
L = 0.25 from this simulation are shown in Fig.

4d.

Predictions based on each of the four sets of inputs, A-D,
to the constitutive model are also shown in Fig. 4. The
two inputs using all six basic stress-strain curves (A and
B) rather accurately reproduce the entire load-deflection
curve, the crushing strain and the final deformed shape.
Moreover, there is little difference between predictions
based on independent hardening (A) and coupled hard-
ening (B). Uniform “hardening” based on inputting the
crushing stress-strain curve (C) severely underestimates
the early strength of the sandwich plate because of the
unrealistic representation of the shear behavior. This rep-
resentation even leads to less crushing in later stages (Fig.
4d). When uniform hardening based on the shear curve
input (D) is used, the overall behavior is well replicated
for deflections up to about δPunch

/
L = 0.18, when sub-

stantial crushing begins. The unrealistic hardening be-
havior in crushing represented by D, as opposed to soft-
ening, suppresses nearly all core crushing, as is evident
in Fig. 4d.

The example illustrates that accurate predictions of
punch loading of the sandwich plate using a continuum
model of the core require realistic representations of the
crushing and shear behavior of the core. The constitutive
model enables these inputs. Significant in-plane stretch-
ing of the core also occurs, but its contribution to the
overall load-deflection behavior is relatively small com-
pared to the contribution of the face sheets since the web
mass parallel to the stretch direction constitutes only 5%
of the total mass.

5 Distributed impulsive load

5.1 Identification of constitutive inputs

The sandwich plate analyzed in this section is precisely
same as that specified in Section 3.1. Three-dimensional
cell model computations have been carried out to gen-
erate the rate-dependent constitutive inputs in crushing,
σ̂3(εP

3 , ε̇P
3 ), and out-of-plane shear, σ̂4(εP

4 , ε̇P
4 ). As dis-

cussed by Xue and Hutchinson [2005], there are three
distinct effects contributing to the response of a square
honeycomb core under dynamic loading: i) inertial re-
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(a)

(b)

(c)

3D simulation (two views) 

(d)

A

B

C

D

Figure 4 : Comparison of the results of three dimensional finite element analysis of the clamped square honeycomb
core sandwich plate subject to quasi-static punch loading with the results computed with plane-strain continuum core
model. Four sets of constitutive inputs, A-D, specified in Section 4.1, have been considered. (a) Schematic diagram
of square honeycomb core sandwich plate subject to punch loading. (b) The relation between P/Pc and δPunch/L. (c)
The average compressive strain of the core at its middle section. (d) The deformed configuration at δPunch/L = 0.25
for each simulation.
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sistance manifest as plastic wave propagation, ii) iner-
tial stabilization of webs against buckling, and iii) mate-
rial strain-rate dependence. Of the three effects, material
rate-dependence is the most straightforward to incorpo-
rate into the constitutive inputs, and, to reduce the num-
ber of effects being considered, it has not been included
in this paper.

The identification process for dynamic problems differs
for approaches that use one element through the core
thickness from those employing many elements through
the thickness. In the latter, the core mass is distributed
throughout the thickness and some aspects of plastic
wave propagation through the thickness are simulated in
the finite element calculation. The process of identifying
the inputs for such approaches was illustrated by Xue and
Hutchinson [2005]. In the present approach with only
one element through the thickness, core mass is allocated
to the faces and effects associated with plastic wave prop-
agation are not directly computed. Instead, they must be
incorporated via the inputs. An effective way to do this is
described next which does not “double account” for in-
ertial effects associated with overall motion of the core’s
center of mass.

In crushing, at t = 0 a uniform velocity, -V0, is applied
abruptly to upper face of the cell with velocity, V0, ap-
plied to the lower face such that the overall crushing rate
is ε̇ = 2V0/H. Assuming symmetric deformation with re-
spect to the core mid-plane, the center of mass of the core
remains motionless. Otherwise, boundary conditions for
the cell are the same as those used in Section 4. The av-
erage compressive stress exerted by the core on the face
sheets is identified with σ̂3. Histories of σ̂3 as a function
of εP

3 are presented in Fig. 5a for various overall crush-
ing rates over the range of rates expected to be relevant
for impulsive loadings. At high rates, the elevation of the
core crushing strength is very large, considerably larger
than the elevation that would be due to material rate ef-
fects. The elevation results from both inertia resistance,
which increases the initial levels of σ̂3, and retardation
of web buckling, which postpones the onset of soften-
ing. For example, at ε̇ = 500s−1 buckling is delayed un-
til εP

3
∼= 0.1 whereupon the core strength begins to fall

abruptly with increasing crushing strain.

Analogous behavior is seen in Fig. 5b for the out-of-
plane shear strength σ̂4 as computed from the cell model.
In this case, equal and opposite uniform velocities, V0,
tangent to the faces are imposed on the three-dimensional

(a)

(b)

Figure 5 : The effect of overall strain rate on the normal-
ized true stress-plastic strain relation of the square honey-
comb core under (a) core crushing (b) out-of-plane shear
as computed using the three dimensional cell model. The
square honeycomb core has the same geometrical param-
eters as Fig. 2.

cell such that the overall strain rate is ε̇4 = 2V0/H. The
substantial delay in shear buckling of the webs at high
strain rates permits the stresses exerted on the faces to
rise well above the quasi-static buckling stress. It will
be seen, however, the rate-dependence in shear is not
nearly as important in sandwich plate behavior as that
in crushing because the strains and strain-rates experi-
enced by the core in shear are not nearly as large as those
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in crushing and because shear softening does not occur
under quasi-static conditions. Under in-plane stretching,
the main rate effect would be material rate-dependence,
which is not accounted for here, but the effect is relatively
small in any case because the stretching strain rates gen-
erally do not exceed 100s−1 and the contribution of the
core to the stretching strength of the sandwich is small.

Thus, except for σ̂3(εP
3 , ε̇P

3 ) and σ̂4(εP
4 , ε̇P

4 ), the quasi-
static inputs specified in the previous section will be
used, along with ν̂i = 0 (i = 1,3). In the computations for
the impulsively loaded plate which follow, σ̂3(εP

3 , ε̇P
3 )and

σ̂4(εP
4 , ε̇P

4 ) were input into ABAQUS directly as the nu-
merical data sets that generated the curves in Fig. 5 us-
ing interpolation over the strains and strain rates in the
code. Alternatively, one could fit analytical functions to
the data plotted in Fig. 5, and then input those functions
[Rabczuk, Kim, Samaniego and Belytschko (2004); Xue
and Hutchinson (2005)].

5.2 Comparison of simulations under distributed im-
pulsive load

For t ≥ 0, a pressure p = p0e−t/t0 is applied uniformly
over the upper face sheet of the sandwich plate. The de-
cay time of the pressure pulse is set at t0 = 10−4s, which
is roughly 1/5 of the period in which the core undergoes
dynamic crushing and about 1/50 of the time required
for the plate to come to rest. Thus, the loading is nearly
equivalent to an initial momentum impulse/area given by

I =
Z ∞

0
pdt = p0t0 (31)

As in the case with the punch loading, one element was
taken through the thickness of the core with meshing de-
tails similar to those described in the previous section.
The mass of the core was partitioned equally to the nodes
on the top and bottom face sheets. Thus, instead of be-
ing uniformly distributed throughout the core, the mass
of the core is lumped at the faces. As already empha-
sized, plastic wave propagation through the core is not
simulated, but some of its important influences have been
incorporated in the constitutive inputs as rate effects. In-
ertial effects associated with motion of the core’s center
of mass are simulated. If an instantaneously applied mo-
mentum impulse is applied to one face sheet, due regard
must be taken for the extra core mass attached to that face
sheet in assigning the initial velocity.

Computations were carried out at different levels of dy-
namic loading as measured by the normalized impulse

I
/(

M
√

σY
/

ρs

)
where I is defined by (31). Com-

parisons of several aspects of the overall response of
the sandwich plate have been made between a full dy-
namic three-dimensional finite element simulation [Xue
and Hutchinson (2004b)] and the two-dimensional plane
strain analysis based on the present continuum constitu-
tive model. These are presented in Figs. 6-8, and will be
discussed in detail below.

The previous section illustrated the importance of having
correct characterization of the core behavior in crushing
and shearing, at the same time indicating that there is lit-
tle difference between predictions based on independent
hardening and coupled hardening for this plate. In this
study independent hardening will be invoked, but it has
been verified for a few cases that coupled hardening gives
similar predictions. However, to bring out the aspects of
the core response that are most important to the over-
all response, we have conducted plane strain simulations
with three sets of inputs:

E) The six σ̂i described above, with σ̂3 and σ̂4 as rate-
dependent.

F) The six σ̂i described above, with σ̂3 as rate-dependent
and σ̂4 as quasi-static.

G) The six σ̂i described above, with σ̂3 and σ̂4 as quasi-
static.

By contrasting F and G with E, the effects of the two rate-
dependent inputs will be highlighted; the quasi-static
limits of σ̂3 and σ̂4 are those used in the punch study
(Fig. 5).

Fig. 6a presents the normalized maximum deflection of
the top and bottom face sheets, δmax

/
L, as a function of

the dimensionless impulse. Fig. 6b presents the crushing
strain in the center of the plate in the final deformed state,
and Fig. 6c compares the final deformed state predicted
by the three-dimensional calculation with that based on
F. It is clear from Fig. 6 that the numerical results us-
ing the continuum constitutive model with either E or F
capture the major features of the overall sandwich plate
response with reasonable fidelity and predict the overall
deflection accurately. In other words, in this application,
the rate-dependence in shear (compare E and F) is not
significant. This is not unexpected because both the out-
of-plane shear strain and its rate are not large. By con-
trast, the rate dependence of crushing (compare E and
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(a)

(b)

/( / ) 0.1875
Y s

I M σ ρ =

/( / ) 0.3125
Y s

I M σ ρ =

/( / ) 0.4375
Y s

I M σ ρ =

(c)

Figure 6 : Comparison of the results of three dimensional finite element simulations of the clamped square honey-
comb core sandwich plate with the results of plane-strain continuum core model for uniformly distributed pressure
loading p = p0e−t/t0 . Calculations have been made for three sets of constitutive inputs, E, F and G, to the continuum
model as specified in Section 5.2. (a) Normalized maximum deflection of the top and bottom faces of sandwich
plate. (b) The residual average compressive strain of the core at its middle. (c) The deformed configuration of the
square honeycomb core sandwich plates at three impulse intensities: three-dimensional simulations on the left and
simulations based on F on the right.

G) has a major effect on all aspects the response. At the
crushing rates representative of those for large impulsive
loads (∼ 103s−1 in these examples), the crushing strength
of the core is substantiallyelevated (c.f. Fig. 5a). This re-
sults in much less crushing of the core compared to what
is predicted based on quasi-static crushing behavior and
much smaller deflection of the top face sheet. Crushing
input based on quasi-static behavior cannot be used to
model core behavior of plates under high intensity loads.

The largest discrepancy between the three-dimensional
results and those based on the continuum model with in-
put E or F is the crushing strain at the highest impulses
(c.f. Figs. 6b and c and Fig. 7). At the highest im-
pulse shown, corresponding to a final crushing strain of
about 0.5, the continuum approach underestimates the
final crushing strain by about 15%. This can also be
seen in Fig. 7 where the crushing strain at the cen-
ter of the plate is plotted against non-dimensional time
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(t/(L
√

ρs/σY ) = 0.4 corresponds to t = 2.5×10−3s for
these plates). The one-element approach accurately re-
produces the time scale of the crushing process. The er-
ror in the final crushing strain is primarily due to the fact
that the dimensions of the individual plates making up
the core webs (B×H) are on the scale of the core thick-
ness itself, and the core deformation pattern also has this
scale. Such deformation patterns of a discrete structure
cannot rigorously be described by a continuum consti-
tutive model. Nevertheless, the examples presented re-
veal it is possible to capture most of the details of overall
sandwich plate deformation with reasonable accuracy. In
addition, use of a single element through the thickness
of the core sidesteps the spurious spatial details associ-
ated with localization in the presence of softening that
emerge in formulations using multiple elements through
the thickness.

Fig. 8 presents the time history of plastic dissipation in

each face sheet and in the core when I
/(

M
√

σY
/

ρs

)
=

0.25, comparing the three-dimensional simulation with
calculations based on F. In this figure, W is the
work/length done by the pressure acting on the top face,
which is computed directly, and each contribution to UP

is the plastic dissipation/length integrated over the re-
spective component of the sandwich. The agreement be-
tween the two types of simulations is excellent. The fi-
nal total plastic deformation is about 5% below the work
done on the plate, due primarily to residual elastic defor-
mation.

6 Concluding remarks

The behavior of metal square honeycomb sandwich cores
is highly nonlinear with responses that can display rapid
softening in crushing or gradual hardening behavior in
out-of-plane shear. Realistic representations of these
very different responses are required for accurate com-
putation of the overall response of the sandwich plate
to lateral loads. The constitutive model proposed here
for a plastically compressible, orthotropic material ac-
commodates such non-uniform hardening or softening
behavior. Rate-dependence of the core due to material
rate-dependence or inertial effects can also be incorpo-
rated, and these can greatly affect the overall response
of the plate. A process for identifying the inputs to
the constitutive model has been illustrated for a specific
core for an approach employing one element through

Figure 7 : The average crushing strain at the middle of
the beam for the three dimensional finite element simula-
tion and the simulation based on plane-strain continuum
core model with inputs F.

Figure 8 : The plastic energy dissipated in the sandwich
plate components for the three dimensional finite element
simulation and the simulation based on plane-strain con-
tinuum core model with input F (I/(M

√
σY /ρs) = 0.25).

the core thickness, and benchmark computations based
on full meshing of the core demonstrated the validity
of the approach. A user-defined constitutive module for
ABAQUS Explicit has been developed based on the con-
stitutive model.
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Appendix A: Appendix

In order to specify ∂σe f f

∂εP
e f f

in equations (22-24) for inde-

pendent hardening and coupled hardening, the follow-
ing three independent plastic Poisson ratios, ν̂P

12

(
εP

1

)
,

ν̂P
13

(
εP

1

)
and ν̂P

23

(
εP

2

)
, will be used in (11) to determine

the other three ratios and the three ν̂P
i . (The expressions

below could be based on any other set of three indepen-
dent plastic Poisson ratios.) Substituting (11) into (3),
one obtains
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(
σe f f

σ0

)2
=
(
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+
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)
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(
σ2σ3
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2

)
(32)

Then, for independent hardening, a lengthy derivation
gives according (9), (17) and (32),

∂σe f f

∂εP
e f f

= − σ2
0

σ2
e f f

qP |σ| (33)

where

q =
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(34)

Similarly, for coupled hardening, according to (9), (18)
and (32),
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