
���� ,���a1�1�� ,���a2�2�� ,��, r 1/2���1,

���� ,���b1�1�
r
� ,���b2�2�

r
� ,��, r���r 1/2, (4.3)

where the coefficients a1 , a2 , b1 , b2 are

a1�
2	�

	��	�
, a2�

	��	�

	��	�
,

b1��
2	�

	��	b
, b2�

	��	�

	��	�
. (4.4)

The field solutions �4.3�, �4.4� can be verified, with some math-
ematical skills, that they indeed fulfill Laplace equation, the
traction-free boundary condition �2.1� as well as the continuity
conditions of the warping displacement and traction at interface
��r 1/2, namely

w��� 	��	�

2	�
w��

	��	�

2	�
w̄��� i

	��	�

2	�
zz̄. (4.5)

We now consider a special type of two-phase elliptical hollow
section. Suppose the geometry of this compound elliptical section
is given such a way that, under the transformation �3.1�, it is
mapped onto the configuration of the auxiliary boundary value
problem. We claim that the warping functions of this compound
elliptical cross-section in the p-plane are given as �4.3� and �4.4�.
The reasons are simple. Since � is the real part of the analytic
function w and the mapping function �3.1�, and its inverse, is
analytic, thus it satisfies the governing equation �Laplace equa-
tions�. Also, since for a hollow confocal ellipse, the closed con-
tour ��r 1/2 has zero warping �or equivalently the normal deriva-
tive of the conjugate function 
 is zero�. Thus, Packham and
Shail’s superperposition method is applicable to this compound
confocally elliptical configurations. Obviously �4.3� and �4.4� are
exactly the warping fields of this compound elliptical section in
the transformed domain. This perspective is new and may have
further implications on chessboard-like elliptical geometry �17�.
Of course, the torsion solutions of this compound elliptical section
could have been analyzed directly as in the steps in Section 2
together with the satisfaction of interface conditions �4.5�. Al-
though much cumbersome than that of �4.3�–�4.4�, we have in-
deed done the analysis and have verified that the superposition is
true for this configuration.
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Are Lower-Order Gradient Theories of
Plasticity Really Lower Order?
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An explicit example of one-dimensional shearing is used to illus-
trate the necessity of extra boundary conditions for a class of
incremental theories of plasticity regarded as otherwise conven-
tional apart from a dependence of the tangential moduli on gra-
dients of plastic strain.�DOI: 10.1115/1.1504096�

Gradient effects may be introduced into plasticity theory by
using additional kinematical and work-conjugate stress variables.
Such theories enjoy the structure of Cosserat-type continua in the
general case. Extra stresses and boundary conditions are inherent
in the generalized continuum theories. While very flexible in in-
troducing new quantities, the generalized continuum theories have
drawbacks associated with the difficulty of physical interpretation
of the higher-order stresses and extra boundary conditions. To
avoid such higher-order formulations, a class of theories has been
proposed by Bassani �1�, which introduces gradients of plastic
strain into the instantaneous tangent moduli. Otherwise, conven-
tional equilibrium equations of lower-order theory are retained.
The underlying premise of these enhanced conventional theories
is that they accommodate only the same types of boundary con-
ditions associated with the conventional theory. In this note it will
be shown that this is not always the case. By considering a rela-
tively simple, well-posed problem for one-dimensional shearing
of a layer, it will be demonstrated that this class of theories can
accommodate extra boundary conditions under special circum-
stances, and, in fact, are not lower order in this sense. However,
the higher-order nature of the theories does not appear to be in
accord with basic physical requirements, as will be discussed.

To begin, consider a conventional material whose stress-strain
curve in shear is specified by �e�p��/G�p with

p�0����Y�, p�0��/�Y�1 �n����Y�. (1)

In the plastic range �/�Y�1�(p /0)N with N�1/n, such that
the tangent modulus defined by �̇�Gṫ can be expressed as

1

Gt
�

1

G
�

1

H
with

1

H
�

n0

�Y
� p

2

0
2 � (n�1)/2n

. (2)
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Consider shearing displacements parallel to the x2-axis with
u2(x1)�u(x) and (x)�u�(x). With �12(x1)��(x), conven-
tional incremental equilibrium requires �̇�(x)�0.

The incremental boundary value problem considered here has
displacement boundary conditions: u̇(0)�0 and u̇(L)� v̇ with v
increased monotonically. The solution for the conventional mate-
rial where the stress satisfies �1� is a uniform state of stress and
strain consistent with the incremental relations ̇� v̇/L and u̇
�̇x. The plastic strain is also uniform and all details of the
solution can be generated as a function of v .

Introduce the enhanced material by including the gradient of
plastic strain in the tangent modulus in �2� according to

1

Gt
�

1

G
�

1

H
with

1

H
�

n0

�Y
� �p /0�2

�1��2p�
2/p

2�m� (n�1)/2n

(3)

where � is the material length parameter. The factor m can be
used to adjust the strength of the gradient hardening. In the ab-
sence of the gradient this reduces to the original form �2�, and it
meets requirements outlined for the type of formulation proposed
by Bassani �1�. In the plastic range, �̇�Gṫ is precisely equiva-
lent to �̇�Ḣp . Assuming conventional equilibrium holds
( �̇�(x)�0), �̇ is uniform and, thus, ̇e is uniform in both the
elastic and plastic range. In the elastic range (���Y), �e
�v/L , ��G and p�0. In the plastic range (���Y), equilib-
rium requires (Ḣp)��0. Because e is uniform, the displace-
ment can be written as u(v ,x)�e(v)x�up(� ,x) with p�up� .
Moreover, because H is homogeneous in the plastic strain and its
gradient, the equation (Ḣp)��0 admits a separated solution up

��(v)�(x) with p���� and ̇p��̇�� (�̇�d�/dv). The
equation is third order and homogeneous in � and its derivatives:

����n�1 �m�2������1��n�1 �m��2��2���2��0. (4)

One solution to �4� is obviously ���c corresponding to a uni-
form plastic strain distribution. This solution coincides with the
solution for the conventional material when the conditions, u̇(0)
�0 and u̇(L)� v̇ , are enforced. But there is an entire family of
other perfectly acceptable solutions to the problem as posed that
satisfy the boundary conditions u̇(0)�0 and u̇(L)� v̇ . These so-
lutions do not have a uniform distribution of plastic strain. They
are possible because p� is not otherwise determined at the onset
of plastic flow. Due to the third-order character of �4�, one addi-
tional boundary condition can be imposed. The example shown in
Fig. 1 was computed numerically from �4� with ��0��0, �(L)

��0 and ��(0)���0 /L for n�3, m�2, �/L�1 and several
values of �. The solution for ��1 is that with uniform plastic
strain. For each of the solutions, it is a straightforward process to
piece together the entire solution to the boundary value problem
with u̇(0)�0 and u̇(L)� v̇ by making an appropriate choice for
�(v). The plastic strain distribution will depend on �, as will the
overall relation between shear stress and shearing displacement v .

Uniqueness of solution requires that one extra boundary condi-
tion be specified on ̇p in addition to u̇(0)�0 and u̇(L)� v̇ . The
example shown introduces the extra condition at the left end of
the interval. One could have equally well imposed the one extra
boundary condition at the right end, but not on both simulta-
neously. Higher order theories �Fleck and Hutchinson �2� and
Hutchinson �3�� do involve extra boundary conditions. In a one-
dimensional problem such as the present one, they require speci-
fication of extra conditions at both ends of the interval. An extra
condition at each end of the interval would be expected on physi-
cal grounds due to the constraint, or lack thereof, on plastic flow
that would be expected due to interaction of dislocations with
each boundary. Thus, it would appear that the added flexibility
associated with the extra boundary condition afforded by the en-
hanced formulation in the present example is inconsistent with
sound physical principles.

The values of parameters chosen for the numerical example in
Fig. 1 are not exceptional; solutions can be generated for any
choice of the parameters. Similarly, the one-dimensional shearing
problem is not an isolated example. Another simple, basic ex-
ample for which an extra boundary condition must be specified is
the deformation well away from the edges of a uniform film at-
tached to a planar substrate. Moreover, the issue arises in this
enhanced class of conventional theories whether these problems
are approached using a phenomenological theory or a single crys-
tal theory such as that discussed by Bassani �1�. The need for an
extra boundary condition in these examples arises because the
deformation at the onset of plasticity is uniform and, therefore, the
gradient of plastic strain is indeterminant. Consequently the tan-
gent modulus is also indeterminant unless an additional condition
is imposed such as the extra boundary condition. At the very least,
these basic examples raise questions about enhanced conventional
formulations, and they suggest that further conditions must be
stated to render unique solutions. Our own view is that higher-
order boundary conditions, which specify constraints on plastic
deformation at boundaries, interfaces, and free surfaces, should be
an integral part of a strain gradient theory of plasticity.

Fig. 1 Numerical solutions of Eq. „4… with nÄ3 and mÄ2. The curves corre-
spond to the values �Ä1Õ4;1Õ2;1;2;4 from the bottom to the top.
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The dynamic response of a thin, flexible disk spinning in an en-
closed air-filled chamber, beyond the onset of aeroelastic flutter, is
investigated experimentally. The results describe the occurrence
of new nonlinear dynamic phenomena in the post-flutter regime. A
primary instability leads to the Hopf bifurcation of the flat equi-
librium to a finite amplitude backward traveling wave. A second-
ary instability causes this traveling wave to jump to a large-
amplitude frequency locked, traveling wave vibration. For a small
range of rotation speeds, both types of traveling wave motions
co-exist. The results underscore the interplay between structural
and fluidic nonlinearities in controlling the dynamic response of
the fluttering disk in the post-flutter regime.
�DOI: 10.1115/1.1504097�

Introduction
The aeroelastic stability of rotating flexible disks is a significant

concern for the engineering design of a diverse class of mechani-
cal systems such as magnetic and optical data storage devices,
thin sawblades, and turbomachinery. A majority of the literature
on the problem is devoted to linear coupled fluid-structure inter-
action models aiming to predict accurately the speed and mode at
the onset of aeroelastic flutter, �1–9�.

To the best of our knowledge, �1,2,4,10� are the only works in
the literature that present experimental data on the post-flutter
vibration response of a spinning disk. In �1�, the disk speed was
changed in increments of 100 rpm, which is too large to resolve
the transitions in dynamic response we are discussing here. It may

be noted that the disk and the experimental apparatus used here
were also used in �1�. In �2� and �10� a focus was placed on
investigating the onset of solitary waves on a very thin,
membrane-like disk spinning over a thin air film. The results in
�2� and �10� indicated a transition from harmonic to apparently
fixed frequency solitary waves. This is similar to the frequency
lock-in phenomenon described in the present work. However, in
�2,10� the speed dependence of unstable wave amplitude, and the
coexistence of multiple solutions in the post-flutter regime were
not presented. The present experiments are performed using a stiff
steel disk enclosed in a large sealed chamber, a significantly dif-
ferent experimental regime from �2� and �10�.

This note aims to communicate rapidly experimental results,
which describe the occurrence of new nonlinear dynamic phenom-
ena occurring at rotation speeds above the onset of the flutter
instability. These new results should assist the continuing devel-
opment of nonlinear fluid-nonlinear structure interaction modeling
for this problem.

Experimental Setup
The experimental apparatus �Fig. 1� utilized here is that used in

�1�. The design minimizes sources of experimental error, includ-
ing bearing noise, rotor imbalance, and unwanted stressing of the
disk caused by temperature gradients. The primary elements in-
clude a thin disk held between thick collars, a high precision
spindle, and vibration measurement instrumentation all placed in-
side a large, sealed chamber. The disk has a nominal outer diam-
eter 356 mm, and the collar diameter is 106.7 mm. The disk ma-
terial is 8660 steel, ground to a uniform thickness 0.775 mm and
with maximum runout less than 0.10 mm. Residual stresses from
manufacture are relieved after the grinding, creating a disk that is
substantially stress-free. For further details of the experimental
chamber and its functionality, the reader is referred to �1�.

The experimental configuration in Fig. 2 shows two inductance-
type displacement transducers measuring the transverse motion of
the disk at a radial distance of 148 mm. The probes are angularly
separated by 18 deg, have a linear range of 2.5 mm and a resolu-
tion of 0.20 	m. The vibration response signals from the two
displacement probes are conveyed to a Tektronix 2630MS Modal
Analyzer coupled to an IBM PS2/Model 70. A counter connected
to an optical probe measures the disk rotation speed. An electro-
magnetic actuator is driven by amplified signals from the com-
puter and applies a transverse force on the disk. Short duration
pulses are applied to the actuator to investigate the stability of the
fluttering motions under perturbation. The surrounding chamber is
closed during the experiments.

Experimental Procedure
At pre-flutter speeds, disk vibration is excited randomly by the

turbulent boundary layer that develops on the disk surface at high
speeds. At each speed the Fourier spectrum of the vibration re-
sponse is computed and averaged over ten time intervals. The
magnitude of each peak is converted through the sensor calibra-
tion data to the amplitude of the corresponding traveling wave
measured at the sensor location. Each peak in the vibration spec-
trum is associated with a �m, n� forward or backward traveling
wave with m nodal circles and n nodal diameters. Identification of
the nodal diameter number is facilitated through computation of
the phase of the cross-spectrum of the data from the two displace-
ment probes, �11�.

As the disk speed is increased, the first critical speed occurs at
40.5 rev/s rotation speed. At this speed, the backward traveling
wave �BTW� frequency of the �0,3� mode vanishes. With further
increases in disk speed the �0,2�, and �0,4� modes reach their
critical speeds in succession. As the disk speed is increased into
the supercritical range, the frequency of the �0,3� BTW increases
from zero �This is sometimes called a reflected wave.� The ampli-
tude of the peak corresponding to the �0,3� BTW starts to increase
rapidly beyond 50 rev/s rotation speed indicating the onset of
aeroelastic traveling wave flutter.
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