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The mechanics of the formation and propagation of ridges on compressed stiff film/
compliant substrate systems is studied theoretically and experimentally. Ridges form on
bilayer systems where the elastomeric substrate is subject to a significant pre-stretch
prior to attachment of the film. When the bilayer is then subject to increasing overall
compressive strain, sinusoidal wrinkles first form and subsequently become unstable
giving way to localized ridges with relatively large amplitudes. Two-dimensional plane
strain simulations for neo-Hookean film/substrate systems reveal the transition from
wrinkles to ridges under increasing compression and the reverse transition from ridges to
wrinkles when the overall compression is subsequently reduced. For a significant range of
pre-stretch, the two transition strains differ, and a significant hysteresis response is ob-
served in a complete cycle of loading and unloading. The Maxwell equal-energy condition
has been identified associated with co-existence of wrinkles and ridges and with the
three-dimensional steady-state propagation condition for the ridges. Experiments con-
ducted with a specially designed film/substrate loading system have been performed that
confirm the essential features of ridge formation and the hysteretic behavior in loading/
unloading cycles that span the two transitions.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

When a stiff thin film supported by a compliant thick substrate is compressed to a critical strain, the flat surface loses
stability and forms periodic wrinkles (Bowden et al., 1998; Nowinski, 1969). In recent years the notion that wrinkles are a
failure mode which should be suppressed has been replaced by efforts to make creative use of wrinkles. Published efforts
have included the fabrication of stretchable electronics (Khang et al., 2006), measurement of mechanical properties (Stafford
et al., 2004), assembly of particles (Lu et al., 2007; Schweikart and Fery, 2009), changing optical properties (Kim et al., 2013;
Lee et al., 2010), and tuning surface adhesion and wettability (Chan et al., 2008; Chung et al., 2007; Lin et al., 2008; Lin and
Yang, 2009). The reversibility of the elastic deformation associated with wrinkling in these applications allows the systems
to be repeatedly cycled between flat and wrinkle states. Various wrinkle morphologies have also been studied, such as
sinusoidal, herringbone, checkerboard and hexagonal modes (Audoly and Boudaoud, 2008; Bowden et al., 1998; Cai et al.,
2011), induced by varying the loading condition, such as from uniaxial to biaxial compression (Breid and Crosby, 2011), and
utchinson).
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controlling the deterministic order of wrinkles (Lin and Yang, 2007; Yin et al., 2012).
After the formation of wrinkles, if the compressive strain is further increased, new advanced modes can appear such as

wrinkles that double their periodicity and ultimately form localized folds (Brau et al., 2013, 2011; Holmes and Crosby, 2010;
Kim et al., 2011; Pocivavsek et al., 2008; Sun et al., 2012). Only recently has it become apparent, that post-wrinkling bi-
furcations depend in a significant way on pre-stretch of the substrate (Auguste et al., 2014; Sun et al., 2012). If the substrate
is subject to a tensile pre-stretch, wrinkles are stabilized and period-doubling does not usually occur until overall com-
pressive strains of about 20% are imposed if the film/substrate modulus ratio is large (Auguste et al., 2014; Cao and
Hutchinson, 2012; Chen and Crosby, 2014). The stabilized wrinkles grow to a relatively high aspect ratio (Chen and Crosby,
2014). If the substrate is subject to a mild pre-compression, wrinkles are destabilized and period-doubling occurs earlier at a
lower overall compressive strain (Auguste et al., 2014). If the substrate is subject to a large pre-compression of around
0.3 strain, the wrinkle period appears to multiply chaotically (Auguste et al., 2014).

It has also been discovered that if the substrate is subject to a sufficiently large pre-tension prior to film attachment, a
different mode of post-wrinkling can occur termed the localized ridge mode (Cao et al., 2014; Cao and Hutchinson, 2012;
Takei et al., 2014; Wang and Zhao, 2013; Zang et al., 2012). In the two-dimensional context, one out of perhaps five or ten
wrinkles grows to a large amplitude forming a ridge with the remaining wrinkles reduced to an almost flat state. Although
folds and ridges are both localized, their morphologies are very different. A fold bends the film into a tight loop that pushes
into the substrate, while a ridge is an open bend which grows outwards from the substrate pulling the substrate with it.
These differing post-wrinkling behaviors can be explained qualitatively by the highly nonlinear elasticity of the elastomeric
substrate. A significant pre-tension of the substrate makes it easier to pull material outward from the surface than to push
material into the surface, while a pre-compression has the opposite effect (Cao and Hutchinson, 2012; Zang et al., 2012). The
ridge instability mode was first noted in a numerical simulation (Cao and Hutchinson, 2012), and then shortly thereafter
observed in experiments (Cao et al., 2014; Chen and Crosby, 2014; Takei et al., 2014; Wang and Zhao, 2013; Zang et al., 2012).
The large aspect ratio of the ridge instability facilitates its applications in reversible wettability tuning and applications
involving cell alignment (Cao et al., 2014).

It has been shown within a two-dimensional context that the wrinkle to ridge transition is unstable – that wrinkles will
snap dynamically to ridges (Takei et al., 2014). However, the detailed mechanics of the formation and propagation of ridges
has not been studied. In particular, the implications of the distinct wrinkle-to-ridge and ridge-to-wrinkle transitions and the
associated hysteretic behavior under cycles of compression remain unclear. In this paper, we use the finite element method
to study the formation, propagation, hysteresis and geometry of ridges. A detailed exploration of the two-dimensional
behavior of ridges is given using plane strain simulations as depicted in Fig. 1a. These provide conditions for the transitions
from wrinkles to ridges and vice versa, together with hysteric effects associated with cycles of compression which span the
transitions. Based on arguments associated with the Maxwell condition for co-existing phases, these same two-dimensional
simulations can be used to derive conditions governing the co-existence of wrinkles and ridges and for the three-dimen-
sional steady-state propagation of the ridges, as depicted in Fig. 1b. The present study is purely mechanical and conducted
within the framework of nonlinear continuum elasticity. The wrinkles and ridges can be interpreted as distinct phases and,
as such, the system represents a mechanical realization of phase transitions within the larger setting of material phase
transitions (Porter and Easterling, 1981; Balluffi et al., 2005). Parallels exist between the present system and martensitic
phase transitions studied extensively in the materials and mechanics literature (e.g., Zhang et al., 2009). To simulate the
wrinkle to ridge transition and its reverse, we have exploited two numerical techniques which will be described in the body
of the paper: the static force–displacement method and pseudo-dynamic loading–unloading method.

Full details of the simulations for one particular case are presented in Section 2 introducing the definitions of the two
transformation strains, the Maxwell strain and the hysteresis behavior under cyclic overall compression. The sensitivity of
the computational model to some of the modeling assumptions is presented in Section 3 along with simulations which
reveal the role of substrate pre-stretch and the redistribution of the energy in the wrinkle to ridge transition. Experimental
results demonstrating ridge formation and cyclic loading hysteresis for a specific stiff film/substrate bilayer are obtained
using a specially designed pre-stretching/compression system. These are presented in Section 4. Concluding remarks are
given in Section 5.
2. Analysis of ridge formation, propagation and critical transitions

The formation and propagation of ridges in a film/substrate bilayer with both materials modeled as neo-Hookean is
investigated in this section. As noted in the Introduction, a substantial pre-stretch of the substrate is required for ridges to
form. In the simulations in this paper, both the pre-stretch and the subsequent overall compression of the bilayer are taken
to be plane strain deformations. Two-dimensional wrinkle and ridge patterns with no out-of-plane variation are analyzed in
detail using plane strain simulations, as described in the following subsections. These same simulations can be used to
derive conditions for the three-dimensional co-existence of wrinkles and ridges and the steady-state propagation of ridges.
In particular, the plane strain simulations enable the determination of the Maxwell condition governing the steady-state
propagation of a ridge front at a critical overall compressive strain, cf., Fig. 1b. Thus, this paper will simultaneously address
wrinkling/ridge transitions in the context of plane strain and three-dimensional ridge propagation and wrinkle/ridge co-
existence.



Fig. 1. (a) The computations in this paper analyze wrinkles and ridges in a bilayer consisting of a thin stiff film on a compliant deep substrate in two-
dimensional plane strain. (b) A schematic of co-existent wrinkles and a ridge at the Maxwell strain. Quasi-static steady-state propagation of the ridge at its
front is also possible at the Maxwell strain.
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In the undeformed state, the substrate has a length L0, and the film has a length L (Fig. 2a). The substrate is pre-stretched
to length L, with pre-stretch L L/ 00λ = , and then bonded to the stress-free film (Fig. 2b). In the bonded state, the thicknesses
of the film and substrate are hf and hs respectively. Then the bilayer is compressed together to the current length l, with the
overall compressive strain defined as L l L/ε = ( − ) (Fig. 2c). Both the film and substrate are considered to be incompressible
neo-Hookean materials, with ground state moduli fμ and sμ respectively (Fig. 2a).

Under plane strain conditions, when the compressive strain ε is small, the surface is flat and the film and substrate are
each subject to a homogeneous deformation. When ε reaches a critical value wε (which is a function of pre-stretch 0λ and
other parameters), the onset of wrinkling occurs (Fig. 2d). If 0λ is sufficiently large, with the further monotonic increase of ε,
the wrinkles transition to ridges at a critical compressive strain w rε → (Fig. 2e). It will be shown that the wrinkle to ridge
transition is an unstable transition, with wrinkles snapping into ridges. Special numerical techniques are usually needed to
simulate such transitions, and here two methods are employed for this purpose, introduced in turn in the next two sections.
A specific thin film/deep substrate system with / 1000f sμ μ = and pre-stretch 2oλ = is thoroughly analyzed to define and
provide the critical strains associated with the system behavior.

2.1. The static force–displacement method

The finite element software ABAQUS is used to simulate the formation and growth of a ridge under plane strain con-
ditions. A linear perturbation analysis is first conducted to identify the critical strain for wrinkle initiation wε and the
associated critical wavelength lw for a finite film/substrate model described in detail below which is wide and deep com-
pared to lw . To simulate a static process of compression and to break the translational symmetry beyond the onset of
wrinkling an initial geometric imperfection is introduced. It has the form of an initial stress-free surface undulation in the
shape of the critical wrinkle mode with a very small amplitude equal to 0.01 times the film thickness. A more detailed
description of the prescribed imperfection is given later in Section 3.1. As the overall compressive strain increases above wε ,
the amplitude of each wrinkle peak becomes larger, but the number of wrinkles does not change nor does the uniformity of
the wrinkle pattern. To search for ridge solutions, the “static force method” imposes an additional vertical displacement to



Fig. 2. A neo-Hookean film/substrate bilayer in different states. (a) In the undeformed state, the film has a length L and ground state modulus fμ , while the
substrate has a length L0 and ground state modulus sμ . (b) In the bonded state, the substrate is pre-stretched to length L , with pre-stretch L L/0 0λ = , and
bonded with the stress-free film. (c) In the deformed state, both the film and substrate are compressed together by an overall compressive strain

L l L/ε = ( − ) . (d) A simulation result of wrinkles at a strain just below the ridge to wrinkle transition strain r wε → . (e) A simulation result of a localized ridge
at a strain just above the wrinkle to ridge transition strain w rε → . Only the upper quarter of the substrate is shown in (d) and (e).
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the peak of one of the wrinkles to push the system towards an equilibrium ridge solution. Specifically, as illustrated by the
example in Fig. 3a, at a sequence of fixed values of the strain wε ε> , an additional vertical displacement Δ is imposed on the
peak of the central wrinkle. The associated reaction force per unit out-of-plane depth F together with the total elastic energy
of model per unit out-of-plane depth U are computed as a function of Δ.

Before going into the details of the static force method, we describe the finite element model used to generate the results
in Fig. 3. The computational boundary conditions are chosen to model periodic deformation modes with period L parallel to
the interface in the undeformed state. Further, symmetry of the deformation mode with respect to x 0= is assumed for the
half-model analyzed with a finite element mesh in Fig. 3a. The simulations have been carried out with L l9 w= , such that the
width of the finite element model is L/2. The depth is set by h h h/ 200f s f( + ) = . The depth of the substrate is more than
enough compared to the wrinkle wavelength and the ridge width, B, to insure the surface wrinkles and ridges do not
interact with the bottom of the substrate. The model depicted in Fig. 3a assumes zero horizontal displacement and zero
shear traction on the left vertical edge. On the right vertical edge the shear tractions are zero and a prescribed uniform
horizontal displacement is imposed to create the overall compression ε. The bottom of the substrate has zero vertical
displacement and no shear traction. The top surface is traction-free apart from the probing displacement, Δ, which is im-
posed on the wrinkle peak at the left edge of the computational model. The pre-stretch of the substrate is implemented in a
user-defined material subroutine UMAT. For the example in Fig. 3, the ratio of the ground state shear moduli of the neo-
Hookean film and substrate is / 1000f sμ μ = . The critical strain for wrinkle initiation for this case is 0.0093wε = . By virtue of
the boundary conditions of the model, any solution can be regarded having a periodicity of L and, in particular, when a ridge
is found at the center of the finite element model the solution represents a periodic array of ridges with spacing L. The effect
of the choice of period L is investigated in Section 3.

Return now to the details for the static force method for the case in Fig. 3 in which the substrate pre-stretch is 20λ = . For
different values of fixed overall compressive strains satisfying, wε ε> , the reaction force/depth F normalized by Lsμ is plotted
as a function of the additional normalized imposed vertical displacement h/ fΔ (Fig. 3b). For the smaller values of ε, the F Δ−



Fig. 3. The computation results from the static force–displacement method. (a) A schematic of the method showing the right half of the deformation
period used in the finite element model. A film/substrate bilayer is subject to a strain wε ε> , and wrinkles form. Under the fixed strain ε, an additional
vertical displacement Δ is prescribed at the peak of a wrinkle, and the reaction force F and the total elastic energy of the sample U are computed. (b) The
reaction force F as a function of the vertical displacement Δ with pre-stretch 20λ = under various fixed compressive strains ε. (c) The elastic energy minus
the elastic energy of the wrinkled stateU Uw− as a function of the vertical displacement Δwith the same pre-stretch and overall compressive strains as (b).
The simulation results are for modulus ratio / 1000f sμ μ = , thickness ratio h h h/ 200f s f( + ) = and period L l9 w= .
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curve is monotonic, and F only vanishes at 0Δ = . However, for somewhat larger ε, the F Δ− curve becomes non-monotonic,
and for a range of ε, r w w rε ε ε< <→ → , the curves have two points with F 0= at non-zero values of Δ. (For w rε ε> → there is
only one non-zero value of Δ with F 0= , which is not shown in Fig. 3.) If a solution with zero F is found when Δ is non-zero,
then that solution corresponds to an equilibrium state at the particular overall compression ε. The solution may be stable or
unstable. In the sequel it will be shown that when r w w rε ε ε< <→ → , the first intersection of the F Δ− curve with F 0= and

0Δ > corresponds to an unstable solution and the second such intersection is a stable ridge solution. The instability of the
former can immediately be anticipated from the fact that probe extracts energy from the bilayer for small deviations from
this state.

In summary, for r w w rε ε ε< <→ → , there are three points on the F Δ− curve with F 0= : (1) the point with 0Δ = is the
wrinkle solution, (2) the intermediate point corresponds to a ridge-like solution that is unstable, and (3) the rightmost point
corresponds to a stable ridge solution. As seen in Fig. 3b and as will be discussed later in more detail, the ridge amplitude is
much larger than wrinkle amplitude at the same ε. Further, the ridge is a localization in the sense that the undulations on
either side of the ridge have much smaller amplitudes than the wrinkles which preceded them.

Fig. 3c plots the dependence of the elastic energy/depth of the system U minus the elastic energy/depth of the wrinkle



Fig. 4. Vertical displacement V of the ridge peak, minus the vertical displacement of the homogeneous deformation V0 , for all the equilibrium states as a
function of ε. The dashed curve segments are states that are unstable to arbitrarily small disturbances or perturbations. The simulation results are for pre-
stretch 20λ = , modulus ratio / 1000f sμ μ = , thickness ratio h h h/ 200f s f( + ) = and period L l9 w= .
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state Uw , normalized by Lhs fμ , as a function of the vertical displacement Δ normalized by hf for the same pre-stretch and
compressive strains as Fig. 3b. When ε is small, the F Δ− curve is monotonic in Fig. 3b, and the wrinkle state with zero Δ is
the only energy minimum in Fig. 3c. With an increase of ε, another (local) energy minimum at a non-zero Δ appears. The
three intersections of the F Δ− curve with the Δ-axis in Fig. 3b correspond to the two energy minima (possibly local) and
one energy maximum in Fig. 3c. The second energy minimum is associated with the ridge solution. A special situation
occurs, which will be discussed later in some detail, when the two energy minima have the same value at an overall
compression 0.0245Maxε = , defined as the Maxwell strain. When Maxε ε> , the energy of the ridge state is smaller than that of
the wrinkle state, and vice versa.

In Fig. 4, the vertical displacement V of the ridge peak (top left corner of the computational model), minus the vertical
displacement V0 of the same system in the homogeneous deformation state, is plotted for all the equilibrium states as a
function of ε for the same system described in Fig. 3. Fig. 4 is especially useful for introducing the wrinkle and ridge “phases”
and the transitions between them. When wε ε< , V V 00− = and the surface is strictly flat, assuming no initial imperfection.
When w r wε ε ε< < → , with r wε → as the plane strain ridge to wrinkle transition strain, wrinkles form and are the only equi-
librium state. When r w w rε ε ε< <→ → , with w rε → as the plane strain wrinkle to ridge transition strain, there are three equi-
librium states: the wrinkle state, the stable ridge state with the large amplitude (the upper solid curve), and the unstable
ridge state with an intermediate amplitude (the dashed line). In plane strain, in the range r w w rε ε ε< <→ → , either the wrinkle
state or the large amplitude ridge state can exist depending on the prior compression history, as discussed later. When

w rε ε> → , both the wrinkle state and the large amplitude ridge state are equilibrium states but the wrinkle state is unstable
to arbitrarily small disturbances. The wrinkle bifurcation strain and two plane strain transition strains obtained for the set of
conditions in Figs. 3 and 4 are 0.0093wε = , 0.023r wε =→ and 0.040w rε =→ .

In Fig. 5a, the elastic energy U of the stable equilibrium states minus the elastic energy of the flat state U0 is plotted as a
function of ε for the same system discussed above. When wε ε< ,U U0= . When wε ε> , the wrinkle state has an elastic energy
lower than the flat state. When r wε ε> → , the large amplitude ridge state exists with energy that is also lower than the flat
state. However, it is evident from Fig. 5a that the energy difference between the wrinkle and ridge states is small compared
to their differences from the flat state. To better distinguish the energy difference between the wrinkle state and the ridge
state, the energy difference of the ridge and wrinkle states,U Ur w− , is plotted as a function of ε in Fig. 5b. The ridge state has
a higher energy than the wrinkle state, i.e., U U 0r w− > , when the overall strain is lower than the Maxwell strain, Maxε ε< ,
while the ridge state has a lower energy, i.e.,U U 0r w− < , when Maxε ε> . For this example, the Maxwell strain, 0.0245Maxε = ,
is much closer to the ridge to wrinkle transition, 0.023r wε =→ , than to the wrinkle to ridge transition, 0.040w rε =→ .

With the insights from Figs. 3 to 5, we are now in a position to discuss the transitions in relation to imposed histories of
overall compression ε and the expected hysteresis under cyclic histories. Consider first deformations constrained to be plane
strain and a history in which ε increases monotonically from zero. The flat state gives way to the onset of wrinkles at wε ε= .
The wrinkles are stable and grow in amplitude until w rε ε= → at which point the wrinkles become unstable and snap
(dynamically) to the large amplitude ridge. The slight increase in the growth rate of the wrinkle amplitude seen in Fig. 4 just
before w rε → is reached is believed to be associated with small numerical imperfections assumed in the analysis. For w rε ε> →
only the ridge is stable, at least in the 2D context. Behavior of the ridge for strains significantly larger than w rε → has not been
explored. The emphasis here has been primarily on the transitions. “Dynamic” simulations in the next section will reinforce



Fig. 5. (a) Elastic energy U of the stable equilibrium states minus the elastic energy of the flat state U0 as a function of ε. Presented in this manner, the
difference between the wrinkle and ridge states is not emphasized. Therefore, in (b) the energy difference between the ridge state and the wrinkle state
U Ur w− is presented. At the Maxwell strain Maxε , the ridge state and the wrinkle state have the same energy.
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these assertions. Now, starting with w rε ε> → , reduce the overall compression ε monotonically to zero. The ridge remains
stable until r wε ε= → when the ridge becomes unstable and snaps (dynamically) to wrinkles. In Fig. 4 it can be seen that the
ridge solution at r wε ε= → is a limit point with no ridge solutions existing for r wε ε< → . As ε is further reduced to zero, the
wrinkles reduce in amplitude until they vanish in the range wε ε< .

As long as three dimensional imperfections or disturbances do not disrupt the plane strain deformations, cycles of ε
starting below r wε → and ending above w rε ε< → will follow the loop (cf., Fig. 4) defined by wrinkles transitioning to ridges
with increasing ε at w rε → and, subsequently, ridges transitioning back to wrinkles with decreasing ε at r wε → . Hysteresis is
associated with the difference between w rε → and r wε → , and the fact that one transition occurs under increasing ε and the
other occurs under decreasing ε.

It is important to be cognizant of the fact that the transitions and hysteresis behavior discussed in connection with Fig. 4
are limited to plane strain deformations. Within the context of three dimensions an imperfection or disturbance can disrupt
plane strain behavior. If Maxε ε> and if a significant local disturbance nucleates a ridge, then the possibility exists that
incipient ridge may propagate replacing wrinkles over a large area. At the Maxwell condition, with Maxε ε= , the wrinkle
state and the ridge state have the same energy and, in principle, can coexist as illustrated schematically in Fig. 1b. Under
such conditions, if ε is then increased above Maxε , the ridge advances engulfing wrinkles, while if ε reduced below Maxε the
wrinkles advance replacing the ridge.



Fig. 6. The vertical displacements Vof the ridge peak and its neighboring wrinkle peak as a function of strain ε as computed by the pseudo-dynamic
method. Arrows directed to the right represent loading (ε increasing) while those directed to the left represent unloading (ε decreasing). During loading,
one wrinkle snaps to a ridge with large amplitude at w rε → , while the vertical displacement of the neighboring wrinkle peak diminishes significantly. During
unloading, the ridge snaps back to the wrinkle state at r wε → and the vertical displacements of the neighboring wrinkles converge to the same value.
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2.2. Pseudo-dynamic loading–unloading method

In this section the second method, pseudo-dynamic loading–unloading, is used to study the transitions within the plane
strain context. The example analyzed is the same as in the previous section on the static force–displacement method with
the same finite element mesh. As in the case of the static method, a linear perturbation analysis is first carried out to identify
the critical wrinkle mode. A very small imperfection is again introduced to promote both wrinkles and ridges, as described
later. In the pseudo-dynamic method, inertial effects are neglected and each incremental step is static. However, velocity-
dependent damping is introduced such that when loss of stability occurs, which would normally be accompanied by dy-
namic snapping, the damping provides numerical stabilization and allows the snap-through process to take place transi-
tioning to another stable equilibrium state. Artificial damping is a computational ploy that allows the computation to pass
through the unstable transition from wrinkles to ridges. The viscous force in the equilibrium equations associated with the
damping is defined as a damping factor times the nodal velocity times an artificial mass matrix with unit density; the
damping factor in the calculations was set as 0.0002.

The system with substrate pre-stretch 20λ = is first compressed monotonically from 0ε = to an overall strain 0.045ε =
that is larger than the wrinkle to ridge transformation strain, w rε → , and then unloaded monotonically back to 0ε = . The
vertical displacements V of the ridge peak and its neighboring wrinkle peak are recorded in Fig. 6. The progression along the
curves in the loading and unloading segments of the history is indicated by the direction of the arrows. During loading, the
surface remains flat in the range, 0 wε ε< < , wrinkles in the range w w rε ε ε< < → , and transitions to a ridge at w rε ε= → . The
vertical displacements of the ridge peak and its neighboring wrinkle peak coincide when w rε ε< → . At the wrinkle to ridge
transition strain, w rε → , the wrinkles become unstable, and “snap” to form a localized ridge. Simultaneously, as part of the
process, the peak of the neighboring wrinkle diminishes abruptly. In the localization process, the additional length of the
film required to form the ridge is scavenged from the neighboring wrinkles, thereby reducing their amplitudes. The
snapping process is represented by vertical dashed lines. In this example, the amplitude of the ridge peak right after the
transition is more than four times the preceding wrinkle amplitude and the neighboring wrinkle amplitude is reduced by
more than a factor of four. With the further increase of ε, the amplitude of the ridge peak continues to increase, while that of
the neighboring wrinkle decreases.

The sequence of behaviors under monotonic unloading from 0.045ε = to 0ε = is also evident in Fig. 6. In the range,
w rε ε> → , the solution is reversible and identical to that during loading. In the range, r w w rε ε ε< <→ → , the ridge solution

prevails. Thus, as noted in connection with the first solution method, there is significant hysteresis in the range,
r w w rε ε ε< <→ → , with wrinkles prevailing during loading and ridges occurring during unloading. At r wε → , the ridge state
snaps back to the wrinkle state, and in the range, r wε ε< → , the wrinkle solution is again reversible, coinciding with the
loading solution.

The solution obtained by the pseudo-dynamic method show good agreement with the static method. The transition
strains obtained by the pseudo-dynamic method are 0.0212r wε =→ and 0.0361w rε =→ . Fig. 2d shows the simulation result of
the wrinkle state just below 0.0212r wε =→ , and Fig. 2e shows the ridge state just above 0.0361w rε =→ . The transition strains



Fig. 7. (a) The elastic energy difference between the loading and unloading states U UL UL− in Fig. 6 as a function of strain ε as computed by the pseudo-
dynamic method. In the range r w w rε ε ε< <→ → , this is also the difference between the energy in the wrinkle state and the ridge state,U Uw r− . The Maxwell
condition is defined by the point when U UL UL= . (b) The amplification of the range of (a) containing the Maxwell strain. (c) The ridge state at the Maxwell
strain Maxε displayed for the full period. The results are for pre-stretch 20λ = , modulus ratio / 1000f sμ μ = , thickness ratio h h h/ 200f s f( + ) = and period
L l9 w= .
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from the pseudo-dynamic method are reasonably close to the values obtained by the static method ( 0.023r wε =→ ,
0.040w rε =→ ). The reason for the small discrepancy between the two methods is most likely the artificial numerical

damping introduced in the pseudo-dynamic method.
Further insights are obtained from examining the difference in the elastic energy in the system between the loading and

unloading states,U UL UL− , associated with the hysteresis cycle. This difference is plotted as a function of overall compressive
strain ε in Fig. 7a. When r wε ε< → or w rε ε> → , the energies coincide U U 0L UL− = because only one stable solution exists.
However, when r w w rε ε ε< <→ → , a significant difference in energies exist reflecting the difference in energy between the
wrinkle and ridge states in plane strain.

The computed differences obtained by this method are close to the ones obtained by the static method. The Maxwell
condition is given by the point in the range r w w rε ε ε< <→ → where U UL UL= , or, equivalently, U Uw r= . Fig. 7b magnifies the
region close to the Maxwell condition. The Maxwell strain obtained by the pseudo-dynamic method is 0.0222Maxε = , which
is close to the value obtained by the static method, 0.0245Maxε = . When Maxε ε< , the wrinkle state has the lower energy,
while when Maxε ε> , the ridge state's energy is lower. As noted earlier, the Maxwell strain is only slightly above the ridge to
wrinkle transition strain and, as evident from Fig. 7a, the ridge state has substantially lower energy than the wrinkle state
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over most of the range Max w rε ε ε< < → . Fig. 7c shows the simulation result of the ridge state at the Maxwell condition Maxε .
The pseudo-dynamic loading–unloading method reproduces all the stable equilibrium solutions obtained by the static

force–displacement method. Although the introduction of the numerical dissipation may slightly affect the solutions near
the transition points, the pseudo-dynamic method is considerably more efficient than the static method. To obtain the
critical transition strains, r wε → and w rε → , and the Maxwell strain, Maxε , only one loading/unloading simulation is required
using the pseudo-dynamic method, while multiple simulations are needed if the static method is employed, with con-
siderably more intervention on the part of the analyst. Therefore, most of the results presented in the remainder of this
paper have been obtained using the pseudo-dynamic method.
3. The role of system parameters on transitions and Maxwell strain

In this section results will be presented to reveal how some of the system parameters, particularly the substrate pre-
stretch 0λ , influence the critical transition strains and the Maxwell strain. In addition, further details of the ridges will be
reported including the manner in which they redistribute the strain energy in the film layer and the substrate to lower the
overall energy of the system. The first section reports an investigation into the sensitivity of the results to some of the
modeling assumptions, including the assumed periodicity of the ridges and the slight initial imperfections.

3.1. Sensitivity to overall periodicity length and initial imperfections

In all the plane strain simulations reported above, periodic boundary conditions have been imposed on the computa-
tional model whose width is 9 times of the wavelength of the critical wrinkle mode, L l9 w= . A very slight imperfection
promotes the formation of a single ridge centered within this width. Thus, the ridge solutions discussed in the previous
section correspond to a periodic ridge mode with period L l9 w= . The effect of changing the overall period on the Maxwell
strain is seen in Fig. 8a. The other system parameters and the initial imperfections have not been changed. The Maxwell
strain Maxε decreases with the increase of the ridge spacing for both the static and pseudo-dynamic methods with a dis-
crepancy between the two predictions which is nearly constant. We expect Maxε to approach a plateau when L l/ w becomes
sufficiently large. However, the plateau associated with the smallest Maxwell strain at which a ridge can exist in a very large
system has clearly not been reached in the range plotted in Fig. 8a, L l6 / 18w≤ ≤ . Thus, there is some sensitivity to the
assumed width of the computational model. The remaining computations will be made with L l9 w= , which represents a
reasonable balance between computational efficiency and accuracy, but the sensitivity to overall periodicity must be borne
in mind.

The effect of the size of initial imperfections on the critical transition strains and the Maxwell strain is illustrated in
Fig. 8b, as obtained by the pseudo-dynamic method. In the simulations, the overall width of the model L is divided into half
with a symmetry condition at the left end. The initial imperfection is a stress-free initial undulation of the system consisting
of two components. The first component is in the shape of the first mode, the sinusoidal wrinkle, with amplitude δ , phased
such that the initial displacement of the surface at the left end is δ . The second component is in the shape of the second
mode with amplitude /2δ , and it is phased such that its contribution to the initial surface displacement at the left end is /2δ .
The combined contributions have an initial surface displacement 3 /2δ at the left end of the model, i.e., at the center of the
full period, and this is the point where the initial surface undulation is the largest. Thus, the two-component initial im-
perfection promotes both wrinkles and a ridge centered at the left end of the model.

Fig. 8b shows the dependence of the three strains, r wε → , Maxε , and w rε → , on the normalized imperfection amplitude over
the range of very small imperfections, h5 10 / 5 10f

4 3δ× ≤ ≤ ×− − . While r wε → and Maxε display only modest sensitivity to the
imperfection amplitude, the wrinkle to ridge transition strain, w rε → , displays the fairly strong sensitivity to small im-
perfections expected for a system at an unstable bifurcation point (Budiansky, 1974; van der Heijden, 2009). The wrinkle to
ridge bifurcation is asymmetric in the ridge amplitude and consequently the asymptotic relation between the transition and
the imperfection is expected to have the form c h/w r w r f

0 1/2ε ε δ= − ( )→ → where w r
0ε → is the bifurcation strain of the perfect

system. By fitting this relation to the numerical results for the two smallest imperfections, we obtained the asymptotic
relation included in Fig. 8b with c 0.195= and 0.0404w r

0ε =→ . As is often the case, the range of validity of the asymptotic
result is limited to quite small imperfections.

All the results obtained by the pseudo-dynamic method elsewhere in this paper have been based on the two-component
imperfection with h/ 5 10f

4δ = × − . The simulations carried out using the static method do not require the introduction of an
imperfection component in the shape of the second mode because the imposition of the prescribed vertical displacement Δ
at the left end of the model promotes the ridge at that location.

3.2. The influence of the substrate pre-stretch on the critical strains

Fig. 9a presents the effect of substrate pre-stretch 0λ on the four critical strains, and Fig. 9b displays the width and height
of ridges just before their transitions to wrinkles and right after their transitions fromwrinkles, calculated using the pseudo-
dynamic method. Only a limited range of pre-stretch has been explored and, in particular, no attempt has been made to
determine lower limit of substrate pre-stretch at which ridges form, although earlier plane strain simulations place this



Fig. 8. (a) Effect of the solution periodicity L l/ w on the Maxwell strain Maxε as predicted by the two methods. (b) Effect of the normalized imperfection size
h/ fδ on the transition strains and the Maxwell strain as computed by the pseudo-dynamic method. The wrinkle to ridge transition is highly imperfection-

sensitive because the perfect system has an asymmetric bifurcation. The asymptotic relation for sufficiently small imperfections is shown, determined as
discussed in the text. The simulation results are for pre-stretch 20λ = , modulus ratio / 1000f sμ μ = , thickness ratio h h h/ 200f s f( + ) = and period L l9 w= .
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lower limit at roughly 1.40λ ≅ for neo-Hookean bilayers (Cao and Hutchinson, 2012). As shown in Fig. 9a, the critical strain
for the initiation of wrinkles wε increases slightly with increasing 0λ , while the two transition strains and the Maxwell strain
diminish and appear to converge to a common value at 2.20λ ≅ . However, simulations carried out with slightly larger pre-
stretch, 2.50λ = , reveal that there is still a small hysteresis range. We suspect that for pre-stretches above some value, ridges
will form, but the hysteretic character of the transitions upon loading and unloading will be lost, however, our simulations
have not fully established this conjecture. An example discussed in Section 3.4 for another constitutive model reveals that
ridges can indeed form without hysteresis with a wrinkle to ridge transition that is stable. As shown in Fig. 9b, the width B
and height A (cf. definitions in Fig. 2e) of the ridge just after the wrinkle to ridge transition decrease rather strongly with
increasing 0λ , while these same quantities just before the ridge to wrinkle transition show less dependence on pre-stretch.
In this example with / 1000f sμ μ = , the aspect ratio of the ridge falls roughly in the range A B0.2 / 0.5< < .

3.3. The geometry and strain energy distributions in ridges and wrinkles

In this section, selected results of the simulations are presented which provide further insight into the energetic driving
force underlying transitions from wrinkle to ridge and the reverse transition.



Fig. 9. (a) The dependence of the strain at the onset of wrinkling wε , the two transition strains and the Maxwell strain on substrate pre-stretch 0λ . (b) The
dependence of the width and height of ridges (cf., Fig. 2e) on substrate pre-stretch 0λ following and prior to the transition strains. The simulation results are
for the modulus ratio / 1000f sμ μ = , the thickness ratio h h h/ 200f s f( + ) = , and period L l9 w= .
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The variations of the ridge height A and width B as defined in Fig. 2e are shown in Fig. 10 over the range of ε from r wε → to
well above w rε → . The height increases with increasing ε while the width decreases. The aspect ratio of the ridge is ap-
proximately 1/2 at 0.045ε = , 1/3 at 0.036w rε =→ and 1/5 at 0.021r wε =→ . Note that the height of the ridge is much larger
than the wrinkle height at the corresponding overall compression, e.g., in this example the ridge height is roughly 4 times
that of the wrinkle, as seen from Fig. 6.

In Fig. 11, the elastic energy differences between the wrinkle state and the ridge state, U Uw r− , in the film and in the
substrate, respectively, are plotted in the strain range r w w rε ε ε< <→ → , for the case with / 1000f sμ μ = , h h h/ 200f s f( + ) = and

20λ = . This energy difference, U Uw r− , can also be regarded as the energy difference in the film and substrate between the
loading and unloading branches of the hysteresis loop discussed earlier. The sum of the contributions from the film and the
substrate is the total energy difference between the wrinkle and ridge states of the entire system discussed earlier in Fig. 7.
In the strain range, r w w rε ε ε< <→ → , when both wrinkles and ridges can exist, the elastic energy of the film is always higher
in the wrinkle state than the ridge state, while the elastic energy of the substrate is only higher in the wrinkle state than in
the ridge state when the overall compression strain is the upper portion of the range; it is lower in the wrinkle state in the
lower portion of the range. As discussed earlier, below the Maxwell strain, 0.0223Maxε ≅ , the total energy is lower in the
wrinkle state. Above the Maxwell strain, the total energy is lower in the ridge state, but there is a range ( 0.0287Maxε ε< < )
in which energy in the substrate is still greater in the ridge state than in the wrinkle state. The existence of a ridge in this
range relies on the tradeoff between the energy in the film and that in the substrate. At strains above 0.0287ε = , the
energies of both the film and substrate are reduced in the ridge state relative to the wrinkle state. The fact that upon loading



Fig. 10. The variation of the normalized width B and height A of the ridge (cf., Fig. 2e) as a function of strain ε for / 1000f sμ μ = , h h h/ 200f s f( + ) = , 2oλ =
and period L l9 w= .

Fig. 11. The elastic energy differences between the wrinkle state and ridge state U Uw r− in the film (top curve) and substrate (bottom curve) in the strain
range r w w rε ε ε< <→ → , with / 1000f sμ μ = , h h h/ 200f s f( + ) = , 20λ = and period L l9 w= .
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wrinkles occur until ε attains 0.036w rε =→ , even though the ridge state has lower energy, is due the energy barrier between
the two states which provides the stability of the wrinkle state well beyond the Maxwell strain.

Now we take a close look at the energy distributions in the substrate and film. We investigate the distribution of the
elastic energy density ψ in the wrinkle and ridge states just above and just below the wrinkle to ridge transition,

0.036w rε =→ , with / 1000f sμ μ = , h h h/ 200f s f( + ) = and 20λ = (Fig. 12). When the system is in the ridge state (Fig. 12b), away
from the ridge peak at distances somewhat greater than the peak width B, the system sustains a piecewise uniform de-
formation corresponding the uniform deformation of the film and that of the substrate under the pre-stretch and the
external strain. Since the substrate is highly pre-stretched in the bonded state, its far field is subject to a large tensile strain.
However, due to the formation of the ridge, the out-of-plane bulge superimposes compressive strain in the horizontal
direction in the region below the peak of the ridge, which cancels much of the pre-tension in the substrate. Therefore, the
elastic energy density in a dumbbell-shaped region below the peak of the ridge is much smaller than the value in the far
field. Just below the film in the substrate on either side of the ridge is a region of intense shear with the highest energy
density. The shear is created by the motion of the film on either side of the ridge feeding toward the ridge peak to provide
the extra length of film required for ridge formation. All the elements of the mesh have rectangular shape in the state when
the film is bonded. The intense shear in the substrate is evident from the shape of the elements that the top of the substrate



Fig. 12. Distribution of the elastic energy density in the film and the substrate at the wrinkle to ridge transition, 0.036w rε =→ , in the wrinkled (a) and in the
ridge state (b). In this case, / 1000f sμ μ = , h h h/ 200f s f( + ) = and 20λ = . Only the upper quarter of the substrate is shown.
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in these regions. As a comparison, Fig. 12a shows the distribution of the elastic energy density ψ in the substrate for the
wrinkle state under the same strain 0.036w rε =→ . The energy density is lower in the peaks of the wrinkles, while higher in
the troughs of the wrinkles. The energy density maximum in the wrinkle state is lower than the ridge state, but the total
energy minimum in the wrinkle state is much higher than that in the ridge state. Due to the high non-linearity of the neo-
Hookean model under large pre-stretch, the localized ridge mode reduces the total energy from the wrinkle state.

Fig. 12 also shows the elastic energy distributions in the film for the ridge and wrinkle states respectively at the same
strain w rε → . Similar to the situation for the substrate, the maximal value of the energy density ψ in the ridge state is higher
than the wrinkle state. By forming a localized ridge, although the peak of the ridge has a much higher ψ than the peak of the
wrinkles, most of the film undergoes flattening in the ridge state and has lower ψ . The total elastic energy in the film is
reduced when the ridge forms.

3.4. The influence of strain-stiffening effect on the formation of ridges

Polymers usually show a strain-stiffening effect when they are deformed close to their stretch limits. Since the neo-
Hookean material model is based on the assumption that the end-to-end distance of the polymer chains satisfies a Gaussian
distribution, it does not adequately represent the constitutive behavior of polymers under strains close to their stretch



Fig. 13. The influence of the strain-stiffening effect on the formation or ridges. (a) The dependence of the strain at the onset of wrinkling wε , the two
transition strains, and the Maxwell strain for ridges on the limit stretch of the substrate mλ , with the substrate modeled as an Arruda–Boyce material.
(b) The vertical displacement relative to the displacement under uniform deformation V V0− of the ridge peak as a function of strain ε during loading and
unloading for 3mλ = and 1.5. The loading and unloading shows no hysteresis for 1.5mλ = . (c) The relative vertical displacements V V0− of the ridge peak
and its neighboring wrinkle peak as a function of strain ε for 1.5mλ = , illustrating the onset of ridge localization and the absence of hysteresis. For all the
simulations, the other parameters are set as / 1000f sμ μ = , h h h/ 200f s f( + ) = , 20λ = and period L l9 w= .
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limits, and it does not accurately capture the strain-stiffening effect. For ridges to form, the substrate of the bilayer is under a
relatively large pre-stretch and the formation of a ridge will further increase the strain in portions of the substrate. One can
therefore expect the strain-stiffening to play a role in the formation of ridges if the pre-stretch of the substrate is close to the
stretch limit of the polymer. In this section, we study the influence of the strain-stiffening effect on the formation of ridges.

In order to capture the strain-stiffening effect, we use the Arruda–Boyce material to model the substrate (Arruda and
Boyce, 1993). The Arruda–Boyce model has an additional material parameter, the limit stretch mλ , which adjusts the range
that strain-stiffening occurs and recovers the neo-Hookean model when the stretch is well below mλ . When the stretch is
comparable to the limit stretch, mλ λ∼ , the stress in the Arruda–Boyce model increases sharply relative to the neo-Hookean
model. At a given stretch, strain-stiffening increases with the decrease of mλ . The formula of the Arruda–Boyce model as
embedded in ABAQUS is used, but a user-defined material subroutine UMAT has been written to include the pre-stretch.

The pseudo-dynamic method is employed to study the formation and disappearance of ridges for different mλ of the
substrate, with / 1000f sμ μ = , h h h/ 200f s f( + ) = and 20λ = . When 3mλ = in Fig. 13a, the wrinkle strain, the ridge to wrinkle
transition, r wε → , and the Maxwell strain, Maxε , are not very different from the predictions for the neo-Hookean material, but
the wrinkle to ridge transition strain, w rε → , is 0.0253 which is considerably smaller than that for the neo-Hookean model
(0.0361). With the decrease of mλ to 2, w rε → decreases further and the separation between two transition strains becomes
fairly small. For 1.5mλ = , which is less than the pre-stretch 20λ = , the separation vanishes and there is no longer hysteresis
between the formation and disappearance of ridges. Ridges still form but the wrinkle to ridge transition becomes stable.

Fig. 13b shows the vertical displacement difference of the ridge peak during loading and unloading for 3mλ = and 1.5,
with arrows showing the loading and unloading paths. When 3mλ = , a clear hysteresis between loading and unloading is
evident, while when 1.5mλ = , the curves of loading and unloading superimpose. The height of the ridge, V V0− , for 3mλ = is
larger than 1.5mλ = under the same strain. The width of the ridges for 3mλ = is also larger than those for 1.5mλ = , and
therefore the aspect ratio of ridges do not change significantly. In the absence of hysteresis between the formation and
disappearance of ridges for 1.5mλ = , there is not a sharp indicator for the onset of ridges in Fig. 13b. A sharp indication of
ridge formation is seen in Fig. 13c where the vertical displacement difference V V0− of the ridge peak and that of its
neighboring wrinkle peak is plotted. This plot brings out the onset of localization associated with ridge formation.

In summary, the simulations in this section illustrate that details of ridge formation depend on the constitutive model
invoked to characterize the substrate. While ridges as an advance mode are predicted by both constitutive models con-
sidered, the separation between the two transition strains, r wε → and w rε → , and the associated hysteresis behavior depend on
the details of the strain stiffening of the substrate.
4. Experiments

As discussed earlier, the wrinkle to ridge transition is unstable, and hysteresis exists in a closed loading/unloading cycle
which spans r wε → and w rε → . In this section, the transitions are studied experimentally with emphasis on the wrinkle to ridge
transition and the hysteresis behavior.

A thin film/substrate system is realized by attaching a stiff polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning) layer
on a stretched soft PDMS substrate. The stiffness of the PDMS was varied by tuning its base/crosslinker ratio (5:1 for the stiff
layer and 40:1 for the soft substrate). The film and substrate PDMS were spin-coated on glass substrates and cured for 2 h at
75 °C and for 1 h at 70 °C respectively. The shear modulus of the prepared film and substrate PDMS were 460KPa and 6KPa,
respectively. The thickness of the stiff layer and the soft substrate were 7.3 μm and 500 μm, respectively. The substrate
PDMS was cut into 20 mm width strips and removed from the glass substrate, then two opposing edges of the strip were
clamped on a mechanical stage with the distance between the two edges 25 mm. The substrate was pre-stretched to 2oλ = ,
and then the stress-free stiff layer was attached to the surface. For the attachment, we followed the method presented in
(Chen and Crosby, 2014). The stiff layer was cut into squares of approximately 10 mm size, removed from the glass substrate,
and floated on the water surface. Due to surface tension, folding of the stiff layer can be avoided with the layer remaining
flat. The surface of the soft PDMS substrate is adhesive, and the substrate and the stiff layer were bonded simply by bringing
them into contact. An overall compressive strain 15%ε = was gradually applied to the film/substrate system by partially
releasing the pre-stretch of the substrate. Then, unloading back to 0ε = was realized by re-stretching the substrate to the
original pre-stretched state.

The surface morphology of the thin film/substrate was measured with an optical surface measurement system con-
taining a microscope and a laser profiler (Keyence, VK-8710). Fig. 14 shows the top view of the surface under different
compressive strains. The profiles of the surfaces measured by the laser profiler are also shown, and the vertical displacement
difference between a peak of a wrinkle or ridge and the far field flat state, V V0− , can be obtained from the measurement.
Portions of the profile of the ridge were not captured because the laser cannot reflect from the inclined transparent surface
of the ridge. The portions of the profiles of the ridge which cannot be properly measured were interpolated with dashed line
in Fig. 14. Nevertheless, the position of the peak of the ridge and wrinkles, and therefore the vertical displacement difference
V V0− , were properly captured.

Under loading, wrinkles were clearly observed on the surface for compressive strains as large as ε¼12.5% (Fig. 14a). With
further increase of the compressive strain to 15%ε = , the deformation of the surface has localized at one of the wrinkle
peaks forming a ridge (Fig. 14b). Then, unloading the compressive strain, the height of the ridge decreases (Fig. 14c).



Fig. 14. Surface morphology of wrinkles and ridges under different overall compressive strains ε corresponding to loading in (a) and (b) and unloading in
(c) and (d). The measured profiles of the surface indicated as dark lines are also shown in the images. (a) Wrinkles are clearly observed on loading to the
compressive strain ε¼12.5%. (b) With further loading to ε¼15% a localized ridge has formed. (c) Upon unloading back to ε¼12.5%, a well-defined ridge
exists but with decreased amplitude. Note that the two morphologies, wrinkles and ridges, exist at the same compressive strain ε¼12.5%, one produced in
loading and the other upon unloading, providing clear evidence of nonlinear hysteretic behavior. (d) Upon further unloading to ε¼10%, the ridge has nearly
transformed back to the wrinkled state.
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Interestingly, the surface profiles at the same strain ε¼12.5% showing wrinkles in loading (Fig. 14a) and a ridge in unloading
(Fig. 14c) provide a clear indication of the hysteresis between loading and unloading. With the further decrease of ε, the
height of the ridge continues to decrease (Fig. 14d), and at ε¼5% the surface becomes almost flat again (not shown).

The vertical displacement difference V V0− as a function of strain ε is plotted in Fig. 15, with loading measurements re-
presented by circles and unloading measurements represented by crosses. A strong hysteresis between the loading and
Fig. 15. The measured vertical displacement difference V V0− of the peak vertical displacement as a function of the compressive strain ε in loading and
unloading showing clear evidence of the hysteretic behavior.



Fig. 16. SEM image of the ridge under strain 20%ε = . This image is not a cross-sectional view of the bi-layer system, but a view of one of the unsupported
sides of the bilayer where the ridge intersects the side.
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unloading curves is observed, in qualitative agreement with the simulation results. For comparison purposes, plane strain si-
mulations based on the neo-Hookean material model were carried out for parameter choices set to match the experimental
system. The pre-stretch was set as 2oλ = , the thickness ratio as h h h/ 50f s f( + ) = , and the modulus ratio as / 30f sμ μ = in order
to match the experimental wrinkling strain 0.079wε = . The simulation predicts the transition strains: 0.0864r wε =→ and

0.0873w rε =→ . Thus, while a hysteresis range emerges in both the simulations and the experiments, the strain range predicted by
the simulation is much smaller than that observed experimentally in Fig. 15. Of the possible reasons for the quantitative dis-
crepancy between the simulations and the experiments, we believe that two most important are: the experimental set-up
produces states in the uniform state that are closer to uniaxial stress than to plane strain, and it is likely that stretch stiffening in
the substrate PDMS is not correctly represented by the neo-Hookean model, as detailed in Section 3.4.

The profile of the ridge was also observed under a scanning electron microscope (SEM). Fig. 16 presents a ridge under
strain 20%ε = viewed from the free edge of the film/substrate system. This perspective also reveals the localized nature of
the ridge. Although not obvious in this view, it has been verified that the stiff layer remains attached to the elastomeric
substrate. Debonding and interface sliding do not occur in the processes described above.
5. Conclusions

A study is presented of the mechanics of the formation of localized ridge instabilities which can occur in bilayer systems
consisting of a thin stiff film on a compliant elastomeric substrate which has been pre-stretched prior to film attachment. The
ridge is an advanced instability mode that occurs when the bilayer is compressed beyond the point at which sinusoidal
wrinkles occur. Ridge formation is a localization process in the sense that one of the wrinkle peaks develops into the large
amplitude ridge whose extra length of film is scavenged from neighboring wrinkles whose amplitudes become much smaller.

The simulations presented in this paper were all carried out in the context of two-dimensional plane strain. The nonlinearity
of the phenomena requires specialized numerical methods and two particular methods have been employed here: the static
force–displacement method and the pseudo-dynamic loading–unloading method. Two critical compressive strains have been
identified and computed: the transition strain from wrinkles to ridges w rε → and the reverse transition strain from ridges to
wrinkles r wε → . There is a significant range of pre-stretch for which these two transition strains are distinct giving rise to strong
hysteresis behavior in a cycle of loading and unloading. This range depends on the details of the substrate constitutive model
and, in particular, on the stretch stiffening in the range of pre-strains. Loading from the flat state by increasing compression
produces stable wrinkles followed by ridges at w rε → . In the range of pre-stretch in which cyclic hysteresis exists, the wrinkle to
ridge transition is unstable (sub-critical) with wrinkles snapping dynamical to ridges. Then, during unloading with decreasing
compression, the ridges remain stable to compressive strains below w rε → until the ridge-to-wrinkle transition is reached at r wε →
( r w w rε ε<→ → ). Ridges do not exist at strains below r wε → . This behavior is illustrated by the example in Fig. 6. The experiments
reported in Section 4, in which the bilayer experiences conditions closer to uniaxial straining than plane strain, qualitatively
reproduce the two distinct transition strains and associated hysteretic behavior under a cycle of loading and unloading.

The two-dimensional plane strain simulations have also been used to predict the Maxwell compressive strain Maxε at which
the energy in the wrinkle state is equal to that in the ridge state. In principle, the two states could co-exist at the Maxwell strain
and, moreover, this would be the strain at which three-dimensional quasi-static propagation of ridges could occur. For the
parameter range of the bilayers studied here, the Maxwell strain is only slightly larger than the lower of the two transition
strains, r wε → . Nevertheless, the experiments show that during the loading cycle the wrinkles are stable well beyond r wε → . In other
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words, even though ridges are energetically favorable at compressive strains above Maxε , once wrinkles have formed and
completely covered the surface of the bilayer they persist to considerably larger compressions approaching w rε → . This is con-
sistent with the plane strain simulations. The stability of the wrinkle mode in the experiments to compressive strains well above
Maxε implies that there must be a substantial energy barrier between the wrinkle and ridge states in the range r w w rε ε ε< <→ → .
Conversely, once the ridges have formed they persist under unloading to the lower transition strain r wε → . The existence of an
energy barrier between the two states is clearly revealed in Fig. 3c for the specific case of the probing displacement Δ applied to
the ridge peak. Other than this and the indirect evidence from the experiments, this paper has not directly addressed the
magnitude of the energy barrier that exists between the wrinkle and ridge states. An interesting further set of experiments and/
or three-dimensional analysis would explore the level of perturbations or disturbances required to cause a wrinkled surface to
turn into ridges at compressive strains in the range Max w rε ε ε< < → when wrinkles are stable but ridges have lower energy. In
conducting the experiments, an attempt was made to trigger a ridge in a field of wrinkles in this range of strain. The unsuccessful
effort entailed an attempt to grasp a wrinkle peak with tweezers and pull it upwards away from the substrate so as to promote a
ridge, but it was not possible to grab a wrinkle. If future experiments on this system are conducted, thought should be given to
the possibility of designing a probe into the experimental apparatus which could trigger ridges.
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