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From wrinkles to creases in elastomers: the
instability and imperfection-sensitivity

of wrinkling
BY YANPING CAO1 AND JOHN W. HUTCHINSON2,*

1AML, Department of Engineering Mechanics, Tsinghua University,
100084 Beijing, People’s Republic of China

2School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138, USA

The stability of the wrinkling mode experienced by a compressed half-space of
neo-Hookean material is investigated using analytical and numerical methods to study
the post-bifurcation behaviour of periodic solutions. It is shown that wrinkling is
highly unstable owing to the nonlinear interaction among the multiple modes associated
with the critical compressive state. Concomitantly, wrinkling is sensitive to exceedingly
small initial imperfections that significantly reduce the compressive strain at which the
instability occurs. The study provides insight into the connection between wrinkling
and an alternative surface mode, the finite amplitude crease or sulcus. The shape
of the critical combination of wrinkling modes has the form of an incipient crease,
and a tiny initial imperfection can trigger a wrinkling instability that collapses into
a crease.
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1. Introduction

Surface instabilities are frequently observed when highly elastic soft materials
are compressed (Tanaka et al. 1987; Gent & Cho 1999; Trujillo et al. 2008; Cai
et al. submitted) and their importance has grown along with the steady increase
in applications of soft materials (Crosby 2010). Biot (1963, 1965) appears to be
the first to have demonstrated the existence of wrinkling instability modes at the
surface of an incompressible neo-Hookean elastic half-space. These modes occur
as a bifurcation from a state of uniform compression with the unusual feature that
their wavelength is undetermined—the scale of wrinkle undulations is arbitrary
as long as it is short compared with any other geometric dimension of the solid.
Throughout this paper, the coordinate x1 is aligned with the direction of in-plane
compression, x2 is aligned perpendicular to the free surface of the undeformed
half-space and x3 is the out-of-plane coordinate (figure 1). The stretches in the
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Figure 1. Coordinates (x1, x2, x3) identify locations of material points in the undeformed body.
The pre-bifurcation deformation is characterized by uniform stretches (l1, l2, l3) with l1l2l3 = 1.
The bifurcation and post-bifurcation problems involve increments of displacement in the (x1, x2)
plane with the out-of-plane stretch l3 held fixed.

uniform pre-bifurcation state are denoted by l1, l2 and l3. With l3 imposed and
fixed, Biot found that bifurcation into in-plane wrinkling modes occurs when the
in-plane compression attains.

l1

l2
= 0.2956 or l1 = lW ≡ 0.5437√

l3
. (1.1)

The crease, or sulcus, surface mode, first analysed by Hohlfeld (2008) and
Hohlfeld & Mahadevan (2011), is doubly unusual in that, in addition to having
arbitrary wavelength, or depth, it does not emerge as a bifurcation but rather
exists as a local state involving finite strain changes from the uniform compressive
state. By carrying out a finite-element analysis of this state in a neo-Hookean half-
space, Hong et al. (2009) have shown that for any fixed l3 a crease is energetically
favourable for compression in the fundamental state exceeding

l1

l2
= 0.42 or l1 = lC ≡ 0.65√

l3
. (1.2)

A crease will reduce the energy of the solid when the compressive strain exceeds
equation (1.2), but the deformation pathway leading to crease formation was
not determined by these authors. The mystery underlying these two modes is
heightened by the fact that a crease can exist at smaller compressive (nominal)
strain than that required for the onset of wrinkling, i.e.

3C = 1 − lC = 1 − 0.65√
l3

versus 3W = 1 − lW = 1 − 0.5437√
l3

.

Hohlfeld & Mahadevan (2011) explored the closing and opening pathways of a
finite amplitude crease under a cycle of applied compression by attaching a very
thin film with bending stiffness to the surface whose purpose is to regularize the
numerical model by fixing the wavelength. As these authors emphasize, the free
surface of any soft elastic solid is susceptible to wrinkling and creasing under
compression because the mode wavelengths can be arbitrarily small and locally
a surface will be effectively flat.

The present paper builds on the work cited above with a twofold objective: to
determine the stability of wrinkling by carrying out a nonlinear post-bifurcation
analysis, and to account for the role of initial imperfections in the form of slight
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surface undulations on the stability of the wrinkles. A clear pathway to crease
formation emerges. The paper is organized into sections as follows. Section 2
develops the energy functional for the neo-Hookean half-space on which the
analysis is based, and it briefly reviews Biot’s (1963, 1965) bifurcation results
which form the starting point of the nonlinear analysis. In §3, Koiter’s post-
bifurcation (Koiter 1945; van der Heijden 2009) approach is presented as relevant
to wrinkling—the finite deformation of a nonlinear elastic solid with multiple
modes associated with the critical bifurcation stress. The detailed analysis of
stability and imperfection-sensitivity is executed in §4. The numerical analysis
of the role of imperfections on the stability of wrinkling is presented in §5.
Two types of imperfections are considered: a sinusoidal surface undulation in
the shape of one of the classical wrinkling modes similar to that considered in the
analytical study, and an isolated slight surface depression. The numerical analysis
reveals connections between wrinkling and creasing which are summarized in the
conclusions in §6.

2. Energy functional and the bifurcation solution

Let xi , i = 1, 3 be Cartesian coordinates defined above labelling material points
in the undeformed body (figure 1). These coordinates will be used throughout
the analysis. All tensor components will be referred to these coordinates.
Let ui(x) be the displacements of the material points in the deformed state
with the Lagrangian strain tensor, hij , defined by 2hij = (ui,j + uj ,i) + uk,iuk,j .
Denote the stretches in the fundamental uniform state by li subject to a
constraint of incompressibility, l1l2l3 = 1. The material points on the free
surface are given by x2 = 0 with a semi-infinite slab of neo-Hookean material
below. An arbitrary uniform stretch l3 is allowed but, once imposed, it is
held fixed. The non-uniform wrinkling deformations associated with bifurcation
are restricted to satisfy plane strain conditions in the (x1, x2) plane. The
applied load parameter is the stretch l ≡ l1 associated with the uniform
solution, i.e. the average stretch in the x1 direction, l, is imposed with l2 =
l3/l1. Solutions which are periodic with wavelength, l = 2p/k, with respect
to the reference x1 coordinate are sought, having wavelength ll in the
deformed state.

Let f(h) be the strain energy per unit volume of the strained material with
m as the ground state shear modulus. Let

F =
∫
V

(4(h) − 4(h(0)))dV =
∫ l

0
dx1

∫ 0

−∞
dx2(4(h) − f(h(0))), (2.1)

be the energy change/wavelength (per unit depth of undeformed material) relative
to the imposed uniform state having strain h(0) associated with imposed l

(and l3). Let u(0)
i = (li − 1)xi (no sum on i) be the displacements associated with

the uniform solution and denote the total displacements by

ui = u(0)
i (l) + Ui(x1, x2), (2.2)
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where the additional displacements Ui , i = 1, 2 are restricted to have the
periodicity noted above with zero average stretch in the x1 direction. For a
neo-Hookean material:

4(h) − f(h(0)) = m

(
l1U1,1 + l2U2,2 + 1

2
(U 2

1,1 + U 2
2,2 + U 2

1,2 + U 2
2,1)

)
.

The incompressibility condition is C (l, U ) = 0, where

C (l, U ) = l2U1,1 + l1U2,2 + U1,1U2,2 − U1,2U2,1.

The modified energy functional, including a Lagrangian multiplier function,
q(x1, x2), to enforce incompressibility, is

F̂ = m

∫
V

((
l1U1,1 + l2U2,2 + 1

2
(U 2

1,1 + U 2
2,2 + U 2

1,2 + U 2
2,1)

)
− qC (l, U )

)
dV .

(2.3)
To eliminate the terms linear in Ui , let q = r + Q(x1, x2) with r ≡ l2/l1, where
Q(x1, x2) has the same periodicity as Ui ; the linear terms in U2 cancel. By
periodicity, the term linear in U1,1 integrates to zero. The modified functional
becomes:

F̂(l, U , Q) = m

∫
V

(I (l, U , Q)) dV (2.4)

and

I (l, U , Q) = 1
2
(U 2

1,1 + U 2
2,2 + U 2

1,2 + U 2
2,1) − Q(l2U1,1 + l1U2,2)

− (r + Q)(U1,1U2,2 − U1,2U2,1). (2.5)

At prescribed l, conditions of equilibrium and incompressibility are given by the
requirement that the first variations of F̂ with respect to Ui and Q vanish subject
to periodicity and such that the overall stretch l is not altered by Ui .

The lowest order terms in the functional are quadratic in the unknowns
(U , Q). The eigenvalue problem for the critical stretch, lW, is the variational
problem, dF̂ = 0, based on the quadratic terms in equation (2.4) with (U , Q) and
their variations restricted to have the periodicity noted earlier and to decay as
x2 → −∞. This is the Biot wrinkling problem which is briefly outlined below.
The Euler equations for the problem are

U1,11 + U1,22 − rl1Q,1 = 0,
U2,22 + U2,11 − l1Q,2 = 0

and rU1,1 + U2,2 = 0

}
(2.6)

with boundary conditions on x2 = 0: U1,2 + rU2,1 = 0 and 2rU1,1 + l1Q = 0. This
problem admits separated periodic solutions of the form

(U1, U2, l1Q) = (f (kx2) sin kx1, g(kx2) cos kx1, kh(kx2) cos kx1). (2.7)
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The two characteristic solutions to equation (2.6), (f (kx2), g(kx2), h(kx2)) =
(F , G, H )eksx2 , which decay to zero as x2 → −∞ have s = r and s = 1, with
F = −G,H = Gr−1(r2 − 1) for s = r and F = −Gr−1, H = 0 for s = 1. Satisfaction
of the boundary conditions on x2 = 0 gives the eigenvalue condition

r3 − 3r2 − r − 1 = 0 ⇒ r = l2

l1
= 3.3830 (2.8)

and

f (z) = (1 − r2)−1(−(1 + r2)erz + 2rez),
g(z) = (1 − r2)−1((1 + r2)erz − 2r2ez)

and h(z) = −r−1(1 + r2)erz

⎫⎬
⎭ (2.9)

where the normalization g(0) = 1 has been enforced. The solution holds for any
wave number k and prescribed l3 with lW given by equation (1.1).

Multiple eigenmodes with the same periodicity exist associated with the critical
stretch. To define them, identify the nth mode in the set using the notation
Ui = u(n)

i and Q = q(n). With k = 2p/l ,

(u(n)
1 , u(n)

2 , l1q(n)) = l(f (nkx2) sin(nkx1), g(nkx2) cos(nkx1), nk h(nkx2) cos(nkx1)),
(2.10)

for n = 1, 2, 3, . . .. Here, the period, l , which is the only length scale in the problem,
is employed as a dimensional normalizing factor. Attention has been restricted
to modes that are symmetric about x1 = 0. The normalization in equation (2.10)
is such that on x2 = 0 the modal displacement normal to the free surface is
u(n)

2 = l cos(nkx1).
In the analysis which follows, the total displacement will be expanded in the

form

(ui , q) = (u0
i (l), q0(l)) +

N∑
n=1

xn(u(n)
i , q(n)) + (Dui , Dqi), (2.11)

with q0(l) = r and xn as the dimensionless amplitude of the nth mode. Higher
order terms in the expansion are denoted by (Dui , Dqi).

3. Koiter’s initial post-bifurcation analysis for wrinkling

(a) The perfect system

Here, a general result for the energy change in the vicinity of the bifurcation point
will be derived using a compact notation. A general relation is sought between
the prescribed overall stretch, l, and the amplitudes of the bifurcation modes in
the equilibrium post-bifurcation state which are denoted collectively by x. In the
general notation, this relation has the form

l = lW(1 + ax + bx2 + · · · ). (3.1)

Proc. R. Soc. A (2012)

 on November 25, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Wrinkles to creases 99

For wrinkling, it turns out that a �= 0 and it will not be necessary to obtain b
because it will be seen that a �= 0 already implies that the bifurcation solution is
highly unstable. With reference to expansion (2.11), the bifurcation modes are
represented collectively as

xU (1) =
N∑

n=1

xn(u(n)
i , q(n)).

In the same compact notation, let x2U (2) denote all the terms that are quadratic
in the amplitudes of the bifurcation modes. In this compact notation, the initial
post-bifurcation expansion takes the form

U = U0(l) + xU (1) + x2U (2) + · · · ≡ U0(l) + Ũ . (3.2)

The modified energy functional equation (2.4) is denoted by F̂(l, Ũ ). Equilibrium
in the bifurcated state and the constraint on volume change require satisfaction
of the variational equation

dF̂ = vF̂(l, Ũ )

vŨ
dU ≡

∫
V

{
vI (l, U , Q)

vUi,j
dUi,j + vI (l, U , Q)

vQ
dQ

}
dV = 0,

for all admissible dU ≡ (dUi , dQ) satisfying periodicity with no average stretch.
Expand this condition about (lW, 0), noting that [vF̂(l, Ũ )/vŨ ]Ũ=0 = 0 and
[v2F̂(l, Ũ )/vlvŨ ]Ũ=0 = 0, obtaining

vF̂(l, Ũ )

vŨ
dU =

[
v2F̂(lW, 0)

v2Ũ
+ v3F̂(lW, 0)

vlv2Ũ
lWax + · · ·

]
[xU (1) + x2U (2) + · · · ]dU

+ 1
2

v3F̂(lW, 0)

v3Ũ
[xU (1) + x2U (2) + · · · ]2dU + · · · = 0

with notation such as [
v2F̂(lW, Ũ )

v2Ũ

]
Ũ=0

= v2F̂(lW, 0)

v2Ũ
.

In increasing powers of x, this becomes

vF̂(l, Ũ )

vŨ
dU = x

[
v2F̂(lW, 0)

v2Ũ
U (1)dU

]
+ x2

[
v2F̂(lW, 0)

v2Ũ
U (2)dU

+ alW
v3F̂(lW, 0)

vlv2Ũ
U (1)dU + 1

2
v3F̂(lW, 0)

v3Ũ
U (1)2dU

]

+ Ox3 = 0. (3.3)
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The eigenvalue problem governing bifurcation solved earlier is obtained by setting
the terms of order x to zero for all admissible dU , i.e.

v2F̂(lW, 0)

v2Ũ
U (1)dU = 0.

Each of the higher terms in the expansion, U (m), is admissible and, thus,

v2F̂(lW, 0)

v2Ũ
U (1)U (m) = v2F̂(lW, 0)

v2Ũ
U (m)U (1) = 0, m = 1, 2, . . . . (3.4)

The variational problem for U (2) is obtained from the terms of order x2:

v2F̂(lW, 0)

v2Ũ
U (2)dU = −alW

v3F̂(lW, 0)

vlv2Ũ
U (1)dU − 1

2
v3F̂(lW, 0)

v3Ũ
U (1)2dU .

(Orthogonality conditions on U (2) relative to U (1) must also be imposed if one
solves for U (2), but this will not be necessary.) With dU = U (1) in the above
equation and use of equation (3.1), one obtains the compact equation for the
bifurcation coefficient, a:

alW
v3F̂(lW, 0)

vlv2Ũ
U (1)2 = −1

2
v3F̂(lW, 0)

v3Ũ
U (1)3. (3.5)

For most problems, this condition gives a = 0, but for the wrinkle problem with
multiple modes we will find a �= 0 and it is not necessary to proceed further.
Detailed information on mode coupling will also emerge.

The above results can be used to express the energy change, F̂(l, Ũ ), from the
fundamental state. Because F̂(l, 0) = 0 and vF̂(l, 0)/vŨ = 0, it also follows that

vF̂(l, 0)
vl

= 0 and
v2F̂(l, 0)

vlvŨ
= 0, etc.

Using expansions for l and U , making use of the above, one finds

F̂(l, U ) = 1
2

[
v2F̂(lW, 0)

v2Ũ
+ v3F̂(lW, 0)

vlv2Ũ
(l − lW) + · · ·

]
[xU (1) + x2U (2) + · · · ]2

+ 1
6

[
v3F̂(lW, 0)

v3Ũ
+ v4F̂(lW, 0)

vlv3Ũ
(l − lW) + · · ·

]

× [xU (1) + x2U (2) + · · · ]3 + · · · = 0.

Accounting for the terms that vanish by virtue of the eigenvalue problem, gives

F̂(l, U ) = 1
2
(l − lW)x2 v3F̂(lW, 0)

vlv2Ũ
U (1)2 + 1

6
x3 v3F̂(lW, 0)

v3Ũ
U (1)3

+ O(x4, (l − lW)x3). (3.6)
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Equation (3.6) allows one to identify the expression for 1/6 (v3F̂(lW, 0)/v3Ũ )Ũ 3

as the cubic terms in U from equations (2.4) and (2.5), i.e.

1
6

v3F̂(lW, 0)

v3Ũ
U 3 = m

l1

∫
V

I3(l, U , Q) dV , (3.7)

with
I3(l, U , Q) = −(l1Q)(U1,1U2,2 − U1,2U2,1).

Based on the quadratic terms in equation (2.4) and noting vl2/vl = −r and
vr/vl = −2r/l1, it is also straightforward to obtain

1
2

v3F̂(lW, 0)

vlv2Ũ
U 2 = m

l1

∫
V

{(l1Q)(rU1,1 − U2,2) + 2r(U1,1U2,2 − U1,2U2,1)} dV . (3.8)

In equations (3.7) and (3.8), l1 and r are evaluated at lW.

(b) The imperfect system: lowest order contribution of a geometric imperfection

A slight imperfection in the form of a periodic undulation of the surface of the
undeformed half-space is assumed:

x2 = d(x1) =
N∑

n=1

x̄nl cos(nkx1), (3.9)

with x̄n as the amplitude of the imperfection in the nth mode.
The objective is to obtain asymptotic results for the effect of very small

imperfections on behaviour in the vicinity of the bifurcation point and, in
particular, on the occurrence of the wrinkling instability. Only the lowest order
influence of the imperfections is sought following an approach similar to that of
Koiter (Koiter 1945; van der Heijden 2009).

For the initial undulation, F in equation (2.1) can be written as

F =
∫ l

0
dx1

∫ 0

−∞
dx2(4(h) − 4(h(0))) +

∫ l

0
dx1

∫ d(x1)

0
dx2(4(h) − 4(h(0))). (3.10)

For very small d(x1),
∫ d(x1)

0
dx2(4(h) − 4(h(0))) ∼= d(x1)(4(h) − 4(h(0)))x2=0,

such that the lowest order contribution to F̂ owing to the imperfection is

DF =
∫ l

0
dx1

∫ d(x1)

0
dx2(4(h) − 4(h(0))) ∼=

∫ l

0
d(x1)(4(h) − 4(h(0)))x2=0 dx1. (3.11)

Then, note that

(4(h) − 4(h(0)))x2=0 =
(

v4(h(0))
vhij

Dhij + · · ·
)

x2=0

= (t0
ijDhij + · · · )x2=0, (3.12)
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where, to lowest order in Ui , 2Dhij = (Ui,j + Uj ,i) + u0
k,iUk,j + u0

k,jUk,i , and t0
ij(l)

is the Piola–Kirchhoff stress in the fundamental state. With t0
11 = −m(r2 − 1),

the lowest order contribution of the imperfection to F̂ is

DF = −ml1l(r − 1)2
∫ l

0

(
d(x1)

N∑
n=1

xnu(n)
1,1 (x1, 0)

)
dx1. (3.13)

4. The instability of wrinkling

(a) Evaluation of the post-buckling coefficients

In the notation of equations (2.10) and (3.2), we consider the first N modes:

xU (1) =
N∑

n=1

xn(u(n)
1 , u(n)

2 , l1q(n)). (4.1)

A direct evaluation of the integral in equation (3.8) gives

1
2

x2 v3F̂(lW, 0)

vlv2Ũ
U (1)2 = ml2A

lW

N∑
n=1

nx2
n , A = 9.3438, (4.2)

while equation (3.7) gives

1
6

x3 v3F̂(lW, 0)

v3Ũ
U (1)3 = ml2A

lW
(b112x2

1x2 + b123x1x2x3 + b224x2
2x4 + b134x1x3x4

+ b235x2x3x5 + b145x1x4x5 + b156x1x5x6 + b246x2x4x6

+ b336x2
3x6),

(4.3)

with

b112 = b224

4
= b336

9
= 2.4792,

b123 = b246

4
= 9.6303,

b134 = 13.882,

b235 = 29.445,

b145 = 17.886,

b156 = 21.735.

Coefficients for N = 6 are listed but some results below have been computed with
N as large as 10. The nonlinear coupling of modes 1 and 2 is illustrated by the
cubic term, b112x2

1x2, in equation (4.3). It arises owing to the fact that products
of quadratic terms from mode 1, proportional to cos(kx1)2 = (1 + cos(2kx1))/2,
and linear terms from mode 2, proportional to cos(2kx1), are not orthogonal. On
the other hand, the phasing of cubic terms proportional to x3

1, x3
2 and x1x2

2 is such
that they integrate to zero.
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The contribution (3.13) from the initial imperfection is

DF = −17.8405ml1l2
N∑

n=1

nx̄nxn ≡ −ml2A
lW

2cl2
W

N∑
n=1

nx̄nxn , (4.4)

with c = 0.95467.

(b) The post-bifurcation equations

The modified energy functional in equation (3.6) plus the contribution owing
to the imperfection is (illustrated for N = 6)

F̂(l, U , x̄)
ml2A/lW

= (l − lW)
N∑

i=1

nx2
n − 2cl2

W

N∑
i=1

nx̄nxn + b112x2
1x2 + b123x1x2x3 + b224x2

2x4

+ b134x1x3x4 + b235x2x3x5 + b145x1x4x5 + b156x1x5x6 + b246x2x4x6

+ b336x2
3x6 + O(x4, x̄x2, x̄2x).

(4.5)

This result holds for any prescribed value of l3, with lW given by equation (1.1).
Equilibrium requires vF̂/vxi = 0 for i = 1, . . . , N . For N = 6, the equations are:

2(l − lW)x1 + 2b112x1x2 + b123x2x3 + b134x3x4 + b145x4x5 + b156x5x6 = 2cl2
Wx̄1,

4(l − lW)x2 + b112x2
1 + b123x1x3 + 2b224x2x4 + b235x3x5 + b246x4x6 = 4cl2

Wx̄2,
6(l − lW)x3 + b123x1x2 + b134x1x4 + b235x2x5 + 2b336x3x6 = 6cl2

Wx̄3,
8(l − lW)x4 + b224x2

2 + b134x1x3 + b145x1x5 + b246x2x6 = 8cl2
Wx̄4,

10(l − lW)x5 + b235x2x3 + b145x1x4 + b156x1x6 = 10cl2
Wx̄5

and 12(l − lW)x6 + b156x1x5 + b246x2x4 + b336x2
3 = 12cl2

Wx̄6.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)
These relations are asymptotically valid in the vicinity of the bifurcation point

for sufficiently small imperfections.

(c) Post-bifurcation solutions: the perfect system

(i) The two-mode approximation

Setting all the mode amplitudes to zero in equation (4.6) except for the first
two modes and their imperfections, one has

(l − lW)x1 + b112x1x2 = cl2
Wx̄1

and (l − lW)x2 + b112x2
1

4 = cl2
Wx̄2.

}
(4.7)

For the perfect system (x̄1 = x̄2 = 0), the solutions of interest are

x1 = ±2(l − lW)
b112

and x2 = −(l − lW)
b112

, with l − lW ≥ 0. (4.8)
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Figure 2. Two-mode approximation for the post-bifurcation behaviour of wrinkling for the
perfect half-space (x̄1 = x̄2 = 0) and for a half-space with slight initial surface undulation (d(x1) =
x̄1l cos(2px1/l), x̄2 = 0 with l2

Cx̄1 = ±0.0005). For the imperfect system, the maximum compressive
strain that can be imposed prior to the wrinkle becoming unstable is 3∗ = 1 − l∗.

Subsequently, it will be evident why the solutions of interest are those associated
with overall compressive strains less than the bifurcation value (i.e. l − lW ≥ 0 or,
equivalently, 3 − 3W ≤ 0 with 3 = 1 − l as the compressive strain). The solutions
are shown in figure 2. The existence of the non-zero cubic term, b112x2

1x2, implies
that wrinkling bifurcation is unstable at l = lW because the energy change on the
equilibrium path relative to the bifurcation state,

F̂(lW, U )
ml2A/lW

= b112x2
1x2 = −0.651(l − lW)3,

is negative. The shape of surface wrinkle for the combined two-mode
approximation,

u2(x1, 0) = (l − lW)l
b112

(
2 cos

(
2px1

l

)
− cos

(
4px1

l

))
,

is plotted in figure 3. The wrinkle displays a deep-pronged penetration of the free
surface into the material with relatively flat broad crests on either side.

(ii) N-mode approximations

By including the third mode in equation (4.6), one sees that the two-mode
solution is indeed only an approximation—the term b123x1x2 in the third equation
requires non-zero x3. A finite number of modes can only generate an approximate
solution to the order considered because the modes in the infinite set are all
coupled through the quadratic terms in the equilibrium equations.

For a given N , the solution to the system (4.6) has the form xn = an(l − lW) for
n = 1, . . . , N and, thus, the normalized surface undulation, u2(x1, 0)/[(l − lW)l]
in figure 3 is independent of (l − lW) to the order considered in this paper. While
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Figure 3. The surface shape of the wrinkle mode of the perfect half-space as determined by the
post-bifurcation analysis for a sequence of approximations with N = 2, 10.

any shape is possible according to the bifurcation solution, the post-bifurcation
analysis identifies a definite shape, assuming periodicity. The normalized shape
of the wrinkle at the surface in figure 3 has been determined by a sequence
of calculations, each with N modes, for N ranging from 2 to 10. A standard
numerical iterative algorithm for solving systems of coupled nonlinear algebraic
equations was used to generate the an . The solution for the system of N − 1
equations was employed as the initial assumption in the iteration for the solution
for the system with N equations, thereby leading to the regular progression of
shape approximations shown.1 The sequence is trending towards an incipient
crease-like shape as more and more terms in the approximation are considered,
although the shape for N = 10 does not yet appear to have converged.

(d) Post-bifurcation solutions: the imperfect system

(i) The two-mode approximation

Explicit results for the reduction of the compressive strain at which wrinkling
becomes unstable are now given for an imperfection in the first mode (x̄1 �= 0,
x̄2 = 0). The second part of equation (4.7) gives x2 = −b112x2

1/[4(l − lW)].
Substituting this into the first part of equation (4.7), one finds (l − lW)x1 −
b2
112x3

1/[4(l − lW)] = cl2
Wx̄1, which provides the relation between l and x1. Denote

the minimum of l (i.e. the maximum compressive strain in the presence of

1The nonlinear algebraic equations for the perfect system (4.6) admit other solutions. For example,
period doubling can be illustrated by taking modes 2 and 4 as dominant and allowing for bifurcation
in mode 1 or by including a small imperfection in mode 1.
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Figure 4. Imperfection-sensitivity of wrinkling for sinusoidal imperfections. The maximum
compressive strain that can be imposed given the normalized imperfection amplitude, x̄1, is
associated with the stretch l∗. Applicable for all l3 with lW given by equation (1.1).

the imperfection) by l∗; it is associated with dl/dx1 = 0 (figure 2). Solving for
l∗ − lW, one finds

l∗ − lW = lW

√
3
√

3b112c|x̄1|
4

= 1.7534lW

√
|x̄1|. (4.9)

The stretch l∗ for the imperfect system corresponds to the maximum compressive
overall strain on the equilibrium path. The solution at l∗ is unstable in the sense
that it would snap dynamically and undergo a finite deformation into another
configuration—almost certainly to a fully developed crease as will be seen later.

The effect of very small imperfections in lowering the compressive strain
at which wrinkling becomes unstable is dramatic owing to the fact that it
is proportional to

√
x̄1, as seen in figures 2 and 4. The type of nonlinear

coupling among simultaneous modes in wrinkling is rare but it is similar to
that in two structural problems that also have multiple buckling modes and are
notoriously imperfection-sensitive—the elastic buckling of cylindrical shells under
axial compression (Koiter 1945; van der Heijden 2009), and spherical shells under
external pressure (Hutchinson 1967).

(ii) N-mode approximations

Consider again the half-space with an initial imperfection in the first mode,
x̄1 �= 0, with x̄n = 0 for n > 1. As in the perfect case, a sequence of calculations has
been made with an increasing number of modes in the approximation. For any N ,
the solution to equation (4.6) at the point of the maximum overall compressive

Proc. R. Soc. A (2012)

 on November 25, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Wrinkles to creases 107

Table 1. Imperfection-sensitivity coefficient based on two criteria.

modes in approximation N = 2 N = 3 N = 4 N = 5 N = 6

c∗: (i) max overall strain 1.754 2.077 2.226 2.305 2.358
c∗: (ii) 3A = 3W 2.133 2.227 2.336 2.379 2.408

strain has the form l∗ − lW = c∗lW

√
x̄1 and xn = cn

√
x̄1. The coefficient c∗ is

given in table 1, and the results for the reduction in the compressive stretch,
l∗ − lW, at which wrinkling becomes unstable is plotted as a function of the
imperfection amplitude in figure 4 for N ranging from 2 to 6. The results appear
to be converging to a curve slightly above that for N = 6. Equation (4.9) based
on the two-mode approximation underestimates the reduction in the compressive
strain at the wrinkling instability by about 35 per cent.

With xn = an(l − lW) for n = 1, . . . , N as the N -mode solution for the perfect
system in equation (4.6), consider an imperfection in the shape of the solution
for the perfect system, i.e. x̄n = an x̄ for n = 1, . . . , N , with x̄ as the single
imperfection amplitude. With xn = anx for n = 1, . . . , N , it is straightforward to
show that each of N equilibrium equations (4.6) reduces to the same equation:
(l − lW)x − x2 = cl2

Wx̄. The maximum compressive strain that can be imposed
prior to instability is given by

l∗ − lW = 2lW

√
cx̄ = 1.9541lW

√
x̄. (4.10)

The imperfection-sensitivity implied by this result is similar to that predicted for
an imperfection in the shape of the first mode.

An alternative instability condition for the imperfect half-space will be
discussed in connection with the numerical solutions presented in §5.

5. Plane strain finite-element simulations of a half-space with initial
imperfections

Two types of initial surface imperfections have been considered in the numerical
simulations: a sinusoidal imperfection, d(x1) = x̄1l cos(2px1/l), and a periodic
array of non-interacting initial exponential depressions of the surface specified by

d(x1) = −4x̄l e−(x1/l)2 . (5.1)

A finite-element mesh conforming to the initial surface undulation was created
on a rectangular region in the (x1, x2) plane of width L and depth D = 10L for the
sinusoidal imperfection. The surface is traction-free, whereas the shear traction
and u2 are taken to be zero on the bottom surface. The depth is sufficient to ensure
that the boundary conditions on the bottom have no influence on the wrinkling
behaviour. For the sinusoidal imperfection, the periodic boundary condition is
imposed on the vertical sides of the region and L is taken to be l . For the
exponential imperfection (5.1), periodic boundary conditions on the sides are

Proc. R. Soc. A (2012)

 on November 25, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


108 Y. Cao and J. W. Hutchinson

also assumed for computational convenience. The imperfection is located within
the centre of the region and L is chosen to be 20l with D = 10l so as to ensure
that there is essentially no interaction between neighbouring imperfections or
the bottom—the results for this case can be regarded as that of an isolated
imperfection of the form (5.1).

Plane strain (l3 = 1) finite-element simulations are performed via the
commercial software, ABAQUS (2008). Considering that the instability and the
wrinkling–creasing transition occur at the central region of the upper surface, a
very fine mesh is used in this region with a ratio of l to the element size taken
to be approximately 2000. In the finite-element simulations, the incompressible
neo-Hookean material model is employed (ABAQUS 2008). The hybrid element
(CPE6MH) suitable for simulations of incompressible materials is adopted. To
introduce the initial surface imperfections, finite-element simulations are first
run by specifying the boundary conditions (u2 = x̄1l cos(2px1/l), u1 = 0) on the
upper surface for the sinusoidal imperfection and (u2 = −4x̄l e−(x1/l)2 , u1 = 0) for
the exponential imperfection. The function *IMPERFECTION in ABAQUS
(2008) converts the displacements from this step to an initial stress-free geometric
imperfection. This procedure is equivalent to directly meshing a block of stress-
free material with the initial surface undulation. Simulations are performed to
track the occurrence of the local instability and the formation of a crease, as
reported below. Self-contact interaction is defined for the upper surface of the
block. When a local wrinkling instability occurs, the global matrix of the system
may be singular and the Riks method, the commonly used numerical method
for dealing with limit points, will fail. In the present simulations, the pseudo-
dynamic method has been adopted. A brief description of the key idea behind
this nonlinear solution method is outlined as follows.

The nonlinear equations solved in a finite-element analysis can be written as

X(u) − U = 0, (5.2)

where X is a nonlinear function of u, symbolizing the displacements of the
nodes and X(u) and U denote internal forces and applied loads at the nodes,
respectively. The pseudo-dynamic method regularizes the unstable problem by
adding volume-proportional damping to the model such that equation (5.2)
becomes

X(u) − U + Fv = 0, (5.3)

where
Fv = cMv. (5.4)

Here, M is an artificial mass matrix calculated with unity density, c is a damping
factor, v = Du/Dt is the vector of nodal velocities and Dt is the increment of
time. When the model is stable (quasi-static), viscous forces and viscous energy
dissipation are very small such that the artificial damping does not perturb the
solution significantly. When the structure goes dynamically unstable, however,
nodal velocities increase and, consequently, part of the strain energy released
is dissipated by the damping. In simulations of the wrinkling problem, pseudo-
dynamic regularization, which is now a standard feature in ABAQUS (2008),
allows solutions to be generated under prescribed overall compressive strain when
the wrinkle becomes unstable and develops into a crease. The role played by
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Figure 5. Imperfection-sensitivity for the sinusoidal imperfection as predicted by the numerical
simulations compared with the asymptotic analytical results. Finite-element results in plane
strain for the overall compressive strain at which the wrinkle becomes unstable, 3∗, and for the
corresponding local compressive strain at the deepest point of the wrinkle, 3A. Two important
observations can be noted. Firstly, very small initial imperfections dramatically reduce the overall
strain at instability so much so that an imperfection with amplitude less than one-hundredth
of its wavelength reduces the strain at instability to below the creasing strain (equation (1.2)).
Secondly, instability is associated with the local compressive strain at A attaining the wrinkling
strain, 3W = 0.456. (Online version in colour.)

the damping factor c here is similar to that of the regularization factor in the
Tikhonov regularization method (Tikhonov & Arsenin 1977), which is widely
used to deal with ill-posed inverse problems.

(a) Wrinkling instability for sinusoidal imperfections

Figure 5 presents the overall compressive strain at the point of wrinkling
instability, 3∗ = 1 − l∗, as a function of the imperfection amplitude, x̄1. Included
in this figure is the local compressive strain parallel to the surface at the deepest
point of the wrinkle, 3A = 1 − lA. As will be discussed in more detail below,
the imperfect half-space becomes unstable with the local strain at the deepest
point attains the Biot wrinkling strain, i.e. 3A = 3W. The simulations presented
in figure 5 again reveal the extraordinarily strong imperfection-sensitivity of
the overall compressive strain at instability, 3∗. Moreover, the numerical results
confirm the accuracy of asymptotic result, l∗ − lW = c∗lW

√
x̄1, which has been

included in figure 5, for reductions in overall strains larger than 0.1. In particular,
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Figure 6. The overall compressive strain, 3, and the local compressive strain, 3A, at the deepest
point on the surface as a function of the normalized surface height difference for the sinusoidal
imperfection with x̄1 = 0.005. Both 3A = 3W and attainment of a maximum of the overall
compressive strain occur at the point of instability, to a high approximation. (Online version in
colour.)

imperfections larger than about x̄1 = 0.008 reduce the overall strain at instability
to below the level needed to sustain a crease in the perfect system, i.e. 3∗ < 3C.
This is a tiny initial undulation with an amplitude less than 1 per cent of its
wavelength. The crease that forms at this low value of 3∗ is localized within the
region of strain concentration at the bottom of the larger scale wrinkle.

Further details of the evolution of the instability are illustrated in figures 6
and 7 for the case x̄1 = 0.005. The difference in height between the highest and
deepest points on the surface, Du2, increases monotonically as the instability
develops. Figure 6 displays the local compressive strain at the deepest point, 3A,
and the overall strain, 3, as functions of Du2/l up to the onset of instability. At the
onset, 3A = 3W, as already noted, and the overall compressive strain attains its
maximum, 3∗. Upon attaining the onset condition at A, a small-scale wrinkle
forms within a narrow region on either side of A (figure 7). This small-scale
wrinkle evolves into a fully developed crease under conditions in which the overall
strain remains essentially unchanged at 3∗. The wavelength of the small-scale
wrinkle is comparable with the size of the finite elements, but once the crease
develops, the crease depth is large when compared with element size, as seen in
figure 7b. The crease relaxes the compressive strain in its vicinity as seen from the
plot of the compressive strain at the surface as a function of horizontal distance
from the crease in the deformed body in figure 8. For horizontal distances from the
centre-line of the crease less than about 2.3lC, the surface strain has been reduced
below the creasing strain, 3C = 0.35, and at greater distances the strain does not
exceed the wrinkling strain 3W = 0.456. The numerical simulations indicate that
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Figure 7. Details of the development of the wrinkle and the formation of the crease for a sinusoidal
imperfection with x̄1 = 0.005. The onset of instability (a) occurs when small-scale wrinkling occurs
at the minimum point on the surface at the overall strain, 3∗. With overall strain held constant, the
crease develops in (b). The wrinkle becomes dynamically unstable when the overall strain attains
3∗ and would collapse dynamically into the crease. The pseudo-dynamic algorithm used in the
numerical simulations enable the transition to occur in a controlled manner. In the insets (a) and
(b), X denotes the horizontal distance measured in the deformed state. (Online version in colour.)

the characteristic point on the surface at which the strain attains 3C is nearly
coincident with the inflection point corresponding to the transition of the surface
from being convex to concave. No attempt has been made to simulate behaviour
at overall compressive strains beyond 3∗ which would drive the crease even deeper
than that shown in figures 7 and 8 and possibly nucleate new wrinkles and creases.
Such calculations have recently been performed and compared with experimental
observations by Cai et al. (submitted).

In connection with figure 6, it was noted that the onset of wrinkling instability
is associated with (almost) simultaneous satisfaction of two conditions: (i)
attainment of a maximum in the overall compressive strain, and (ii) 3A = 3W.
The analytical modelling of wrinkling instability in §4d is based on condition
(i). Motivated by the numerical findings related to the role of condition (ii),
the analytical approach in §4d has been used to compute the overall stretch l∗
at which the local wrinkling condition, 3A = 3W, is met at the deepest point of
the wrinkle on the surface at x1 = l/2. The details of this calculation will not
be given because they involve only a minor extension of the analysis in §3. The
result has precisely the same functional form, l∗ − lW = c∗lW

√
x̄1, as in the case

of condition (i), where, as before, the coefficient c∗ depends on the number of
modes, N , in the approximation. The coefficient is presented in table 1 along
with that computed earlier based on condition (i). According to the analytical
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the sinusoidal imperfection. (Online version in colour.)
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approximation, the local wrinkling condition (ii) is attained slightly before the
maximum overall strain is reached. However, the difference between the overall
critical stretch l∗ from two conditions is nearly negligible when six modes are used
in the calculation (table 1). Thus, both the analytical and numerical predictions
indicate that the two conditions, (i) and (ii), are attained nearly simultaneously
at the onset of wrinkling instability and crease formation.

(b) Wrinkle instability for exponential imperfections

Simulations with the exponential imperfection (5.1) have also been carried out
with results presented in figure 9. Wrinkling instability and the formation of a
crease again occurs when the local strain at the deepest point of the surface
wrinkle attains 3W. A slight local depression on the surface of the half-space
reduces the overall strain at the wrinkling instability to levels similar to that
seen for the sinusoidal imperfection, based on comparable values of the normalized
imperfection amplitudes that have been defined.

6. Conclusions

The post-bifurcation analysis of Biot’s wrinkling problem reveals that wrinkling is
extremely unstable and highly imperfection-sensitive. Wrinkling is also seen to be
one pathway to the finite amplitude creasing mode. Wrinkling is so unstable and
imperfection-sensitive that well-developed wrinkles are not likely to be observed—
a slight wrinkle will become dynamically unstable and trigger the formation of
a crease. In this sense, the crease can be regarded as the collapse state of a
wrinkle. The wrinkle/crease connection has an analogue in the elastic buckling
of cylindrical shells under axial compression and spherical shells under external
pressure which, like wrinkling, are characterized by multiple bifurcation modes
associated with the critical stress. Buckling of these shell structures is also so
unstable and imperfection-sensitive (Hutchinson 1967; van der Heijden 2009) that
their short wavelength bifurcation modes are almost never observed because they
become unstable at very small amplitudes and snap dynamically into a collapse
state. Buckling modes observed in the collapsed state of the shell typically have
much larger wavelengths than those of the bifurcation modes. A few experiments
have employed high-speed cameras to capture the bifurcation modes right after
they are triggered (Brush & Almroth 1975) or have used a mandrel to arrest the
buckles immediately after they have formed (Carlson et al. 1967).

In addition, these shell structure/loading combinations are so imperfection-
sensitive that, of the large number of shells tested over many years, none has
reached a buckling load greater than about one-half of the buckling load of the
perfect shell when the radius to thickness ratio exceeds 1000. In this respect, as
well, there may be a close analogue to wrinkling/creasing, i.e. the imperfection-
sensitivity of wrinkling may be so strong that the maximum compressive strain
of any actual realization of an elastomer layer will always lie well below Biot’s
wrinkling strain (1.1) owing to inevitable surface imperfections.

There is one important respect in which wrinkling of a uniform half-space
differs from cylindrical and spherical shell buckling—the wrinkling wavelength is
undetermined and can be arbitrarily small. In principle, a perfectly flat surface
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should reach the Biot wrinkling strain but in practice, as noted above, it seems
reasonable to assume that imperfections will always be present at some scale to
trigger creases at strains just above the creasing strain. As Hohlfeld & Mahadevan
(2011) have noted, wrinkles and creases are always lurking to destabilize a smooth
surface of a compressed elastomer because their scale can be arbitrarily small.
Examples have been presented in this paper for both sinusoidal and isolated
imperfections, wherein small-scale wrinkles form in the vicinity of the point
on the surface of maximum compression—wrinkles within wrinkles—and then
spontaneously collapse into a local crease. An open question concerns the lower
limit on the size of these instabilities. A continuum representation such as the
neo-Hookean material, with the elastomer represented by a constitutive model
having no material length dependence, provides no lower limit on the scale of
the instabilities. Surface effects such as a stiff thin layer of oxidized material
would provide a limit. Strain gradient strengthening associated with deformation
gradients that become comparable with scale of the polymeric microstructure
would also place a lower limit on the size of the instabilities, but such effects
have not yet been quantified for elastomers.

Finally, we note that the unstable wrinkling behaviour of the uniform neo-
Hookean half-space is in sharp contrast to the highly stable wrinkling behaviour
of a system comprising a thin stiff film bonded to compliant half-space substrate.
The film–substrate system buckles into wrinkling modes at very small compressive
strains (Allen 1969). These systems can be compressed well beyond the critical
bifurcation strain with the buckled state remaining stable (Cai et al. 2011). It is
not at all unusual for experimental systems to display stable wrinkling behaviour
at an overall compressive strain 10 times the bifurcation strain. Imperfections play
a secondary role in the behaviour of these systems. It remains for future work to
explore the full parameter space of film–substrate systems to uncover the range of
parameters in which a transition occurs from the highly stable buckling behaviour
associated with very stiff films to the highly unstable behaviour associated with
wrinkling of the uniform half-space.

The authors acknowledge the input from a reviewer who suggested the form of the incompressibility
condition used in this paper. An earlier version of the paper employed an equivalent but
less compact expression. Y.P.C. acknowledges the financial support from Tsinghua University
(2009THZ02122).
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