
Author's personal copy

Periodic patterns and energy states of buckled films on
compliant substrates

S. Cai a, D. Breid b, A.J. Crosby b, Z. Suo a, J.W. Hutchinson a,n

a School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
b Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA

a r t i c l e i n f o

Article history:

Received 5 December 2010

Received in revised form

23 January 2011

Accepted 2 February 2011
Available online 15 February 2011

Keywords:

Thin films

Compliant substrates

Buckling

Wrinkling

Mode transitions

a b s t r a c t

Thin stiff films on compliant elastic substrates subject to equi-biaxial compressive

stress states are observed to buckle into various periodic mode patterns including

checkerboard, hexagonal and herringbone. An experimental setting in which these

modes are observed and evolve is described. The modes are characterized and ranked

by the extent to which they reduce the elastic energy of the film–substrate system

relative to that of the unbuckled state over a wide range of overstress. A new mode is

identified and analyzed having nodal lines coincident with an equilateral triangular

pattern. Two methods are employed to ascertain the energy in the buckled state: an

analytical upper-bound method and a full numerical analysis. The upper-bound is

shown to be reasonably accurate to large levels of overstress. For flat films, except at

small states of overstress where the checkerboard is preferred, the herringbone mode

has the lowest energy, followed by the checkerboard, with the hexagonal, triangular,

and one-dimensional modes lowering the energy the least. At low overstress, the

hexagonal mode is observed in the experiments not the square mode. It is proposed

that a slight initial curvature of the film may play role in selecting the hexagonal

pattern accompanied by a detailed analysis. An intriguing finding is that the hexagonal

and triangular modes have the same energy in the buckled state and, moreover, a

continuous transition between these modes exists involving a linear combination of the

two modes with no change in energy. Experimental observations of various periodic

modes are discussed with reference to the energy landscape. Discrepancies between

observations and theory are identified and open issues are highlighted.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Due to processing, thermal expansion mismatch, or differential expansion due to moisture changes, thin metal or
ceramic films on elastomer or polymer substrates often experience equi-biaxial in-plane compression and buckle into
intriguing periodic mode patterns (e.g., Bowden et al., 1998; Huck et al., 2000; Breid and Crosby, 2009). Examples of one-
dimensional, square checkerboard, hexagonal, triangular, and herringbone modes are shown in Fig. 1, and experimental
observations of several modes from the work of Breid and Crosby (2009, in preparation) are shown in Fig. 2. Motivated by
experimental observations presented in the next section, this paper builds on the theoretical studies of Chen and
Hutchinson (2004) and Audoly and Boudaoud (2008a–c) that have elucidated nonlinear aspects of the buckling behavior of
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some of the periodic modes. In the range of moderate to large overstress, Chen and Hutchinson (2004) showed that, among
one-dimensional (straight-sided), square checkerboard and herringbone modes, the herringbone mode has the lowest
energy in the buckled state while the one-dimensional mode has the greatest. Audoly and Boudaoud (2008a) examined
further details of the post-buckling behavior of these modes, including the range in which the one-dimensional mode is
stable and its transition to the herringbone mode under stress states which are not equi-biaxial. They also considered the
hexagonal mode and they showed that the square mode has the lowest energy in the range of small overstress. In
companion papers, Audoly and Boudaoud (2008b, c) used asymptotic methods to explore aspects of behavior expected in
the range of very large overstress with emphasis on the herringbone mode.

In this paper, we employ an analytical upper-bound calculation and numerical finite element analysis to explore
further aspects of the nonlinear post-buckling behavior of the film/substrate system with the aim of shedding light
on the relation between observed periodic patterns and the level of overstress noted in the next section. Behavior over a
wide range of stress from the onset of buckling to advanced post-buckling at large overstress is investigated for films
under equi-biaxial stress in the unbuckled state. The problem in which the pre-buckling stress state is equi-biaxial
compression is unusual in that there are a multiplicity of periodic modes associated with the critical buckling stress,
including one-dimensional (1D), checkerboard and hexagonal modes and a newly identified triangular mode. The initial
and advanced post-buckling behavior of all these modes and the relations among them are studied here. In addition,
results are obtained for a herringbone mode which has the lowest energy of all the modes considered at sufficiently large
overstress. Because the herringbone mode is not one of the modes associated with the onset of buckling, it is not favored at
small overstress.

The model investigated analytically is a nonlinear von Karman plate bonded to a linear elastic foundation; it is
introduced in Section 3. A three-dimensional model of the film and the substrate is employed in the numerical finite
element simulations. For the analytical model, the issue of the most appropriate traction conditions linking the plate to the
foundation, which was addressed by Audoly and Boudaoud (2008a), is considered here in more detail. The various modes
are introduced in Section 4. Upper-bounds to the energy states are obtained in Section 5, supplemented by results from a
finite element analysis of the three-dimensional model given in Section 7. The role of an initial spherical curvature of the
film is addressed in Section 6 in an effort to explain some of the apparent conflicts between theory and experimental
observation identified in the next section.

Fig. 1. Schematics of mode shapes: (a) 1D mode, (b) square checkerboard mode, (c) hexagonal mode, (d) triangular mode, and (e) herringbone mode.
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2. Experimental observations of mode patterns motivating theoretical issues

The relation between the buckling modes and overstress has been studied experimentally for crosslinked poly-
dimethylsiloxane (PDMS) substrates (ESffi1 MPa, nSffi0.5, and thickness �3 mm) whose surfaces have been modified
using an ultraviolet-ozone (UVO) oxidation process to produce surface layers, or films, with increased stiffness relative to
the underlying non-modified elastomer substrate (Breid and Crosby, 2009, in preparation). Although the film modulus
and thickness are not known precisely, approximate values have been estimated by wrinkle wavelength measurements
(Chan and Crosby, 2006) and compared with published reflectivity measurements on similar materials (Efimenko et al.,
2002; Mills et al 2008). The film thickness lies in the range from 100 to 200 nm (Efimenko et al., 2002; Mills et al., 2008),
while its modulus is of order 10 GPa (Chan and Crosby, 2006).

To induce wrinkling, the PDMS samples are placed in a sealed chamber containing a reservoir of ethanol, which does
not contact the samples. The ethanol vapor is absorbed into the oxidized film to a greater extent than the underlying non-
modified elastomer, thus differential swelling between the two layers leads to the development of an equi-biaxial
compressive stress in the film. An increase in the UVO exposure time results in a thicker oxide layer with a greater swelling
extent, effectively increasing the applied overstress. The applied swelling stress can be controlled alternatively by
changing the vapor pressure of ethanol (Breid and Crosby, in preparation). For both cases, the magnitude of the applied
overstress is determined by measuring the curvature of cantilever beams of the same composition exposed to the same
vapor swelling conditions. Conventional bi-layer beam bending mechanical models provide the values of the average
overstress in the film by relating the measured curvature of the beams to the curvature measured at the critical buckling
point. The magnitude of the applied strains can be estimated by measuring the applied strain at the critical buckling point
for uniaxially compressed samples. Using these measurements, we estimate the total strains to range from 0% to10%, with
a critical strain around 2–3%.

Fig. 3 collects observations from several experiments displaying the progression of observed patterns for increasing
levels of overstress. Throughout the paper, s0 denotes the equi-biaxial stress in the film in the unbuckled state, sC is the
critical value of this stress at the onset of buckling, and the extent to which s0/sC exceeds unity is referred to as
the overstress. A pattern emerges in Fig. 3 at s0/sCffi1 with an almost random array of low-amplitude undulations. We
identify the lowest ethanol vapor fraction at which these undulations are observed for a given UVO treatment time as the
critical buckling point, from which the following overstress values are calculated. At slightly larger overstress, s0/sC=1.3,

Fig. 2. Experimental observations of four buckling modes of films on PDMS substrates: (a) 1D mode, observed when one principal in-plane stress

dominates; (b) square checkerboard mode; (c) hexagonal mode (inset: fast Fourier transform of a selected ‘‘grain’’ of depressions, showing the hexagonal

ordering); and (d) herringbone mode. Images a, c, and d are optical micrographs of wrinkles generated via the swelling process outlined in Section 2.

Image b shows the surface profile of a flat polystyrene film on a PDMS substrate, wrinkled due to thermal mismatch stresses. The checkerboard pattern in

image b is not readily observed. In this case it occurred within a relatively small region surrounded by other wrinkle patterns.
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a distinct hexagonal pattern is evident with central regions of all the hexagons deflected into the substrate. For s0/sCZ1.7
the herringbone pattern is dominant with occasional defects. An exceptionally well organized herringbone pattern is
observed for the highest overstress shown, s0/sC=4.1, corresponding to the longest UVO treatment of 60 min.

The preference of our experimental system to assume the hexagonal mode at low overstress is overwhelming, despite
the fact that the square mode has been shown here and previously to have lower energy in this range when the film/
substrate system is flat. Furthermore, we have only observed hexagonal patterns for which the regions inside the hexagons
buckle into the substrate (e.g., Figs. 2–4), while the theory developed later in the paper for flat films/substrate systems
predicts that buckling of the hexagonal regions into or out of the substrate should be equally likely. One possible artifact of
our experimental system is the presence of low amplitude, laterally extensive curvature of the surface of the system that
exists initially or develops upon swelling in the ‘‘flat’’ UVO-PDMS samples. This clue has been pursued theoretically in the
paper. It will be seen that initial spherical curvature of the film is likely to explain the two experimental observations cited
above that are otherwise inexplicable when the films are taken to be flat.

As the applied overstress increases beyond the formation of the hexagonal mode, a transition point to more
energetically favorable herringbone patterns is observed. However, experimentally there is a tendency to maintain the
hexagonal lattice of the original pattern, perhaps due to kinetic considerations of forming an entirely new pattern with
different periodic wavelengths. The mechanism by which the hexagonal mode transitions to a more energy-minimizing
pattern is seen in Fig. 4. Starting from a pure hexagonal pattern, slight increases in the overstress cause isolated hexagons
to coalesce with neighbors producing an extended local groove. The coalescing of a pair of hexagons tends to also trigger
the coalescing of a neighboring pair. These triggered pairs are usually situated along a lattice line that is not parallel to that
of the original pair, in order to accommodate the local stress in an equi-biaxial manner. In some cases, these coalesced
grooves link to form even longer grooves, but in general they tend to remain the product of just 2–3 hexagons. The overall
result is a pattern that locally resembles a ‘‘segmented labyrinth’’, or a herringbone pattern with no global orientation,
analogous to the labyrinth pattern reported for homogeneously initiated wrinkling at high overstress (Huang et al., 2005;
Lin and Yang, 2007). In contrast, well-ordered herringbone patterns develop for systems that bypass the lower energy
buckling modes or ‘‘jump’’ to high overstress values.

The experimental observations noted here have motivated us to look for a theoretical explanation of why the square
mode is never observed for our experimental system even though under equi-biaxial stressing it has lower energy than the
hexagonal mode, assuming flat films. Moreover, a new triangular mode will be identified that has precisely the same
energy in the buckled state as the hexagonal mode, and this mode has not been observed either. We also wish to explain
why the hexagonal mode has always been observed to buckle with the hexagonal regions directed into the substrate, while
the theory suggests there should be no such preference. These discrepancies between theory and experiment have
motivated other avenues of exploration in the theory, including the roles of initial film curvature and nonlinearity of the
substrate. Embedded within the paper are several auxiliary findings: (i) The only modes whose nodal lines coincide with a
pattern formed by regular polygons are the equilateral triangle mode and square mode—the so-called ‘‘hexagonal mode’’
is formed from a mixture of hexagons and triangles in the manner of a Kagome pattern. (ii) Among all rectangular
checkerboard modes, the square mode has the lowest energy. (iii) The hexagonal mode and triangular mode have identical
energy in the buckled state, to the order obtained here, and a continuous transition exists from one to the other at constant
energy. (iv) Within the range of overstress considered in this paper, nonlinearity of the substrate has essentially no
influence on the buckling patterns. (v) A slight curvature of the film is likely to be playing a critical role in the mode
selection observed experimentally and in determining the sign of the hexagonal deflection.

Fig. 3. Progression of modes observed experimentally for the UVO-treated PDMS system with increasing overstress as described in the text. The UVO

treatment times from left to right are 10, 15, 20, 30, 45, and 60 min.

Fig. 4. A sequence of pictures depicting the transition of the hexagonal mode to a ‘‘segmented labyrinth’’ (disorganized herringbone) pattern with

increasing overstress.

S. Cai et al. / J. Mech. Phys. Solids 59 (2011) 1094–1114 1097



Author's personal copy

3. The analytical model

The film is described by the von Karman plate equations, and the infinitely deep substrate under the film is
characterized by linear elasticity. Both the film and the substrate are taken to be isotropic and homogeneous. The process
that produces the stiff film in our experimental system almost certainly results in a modulus variation through its
thickness, maintaining in-plane isotropy. An inhomogeneous film of this type can be replaced by a homogeneous film
whose modulus and thickness are chosen to reproduce the bending and stretching stiffness of the inhomogeneous film.
This section begins by listing the governing equations and by recording what are now well known results for the critical
stress and associated eigenmodes associated with the onset of buckling for conditions in which the film is stressed in equi-
biaxial compression. Such conditions would arise, for example, if the substrates coefficient of thermal expansion were
greater than that of the film and a reduction in temperature took place or if the film were to attempt to swell relative to the
substrate under ingress of moisture or solvent, as in the case of the experiments discussed in Section 2. There is some
latitude in the formulation of the model in the choice of conditions used to attach the film to the substrate and this issue is
investigated.

3.1. The governing equations

Let t be the thickness of the film with Ef and nf as its modulus and Poisson’s ratio. The substrate is taken to be infinitely
deep with modulus and Poisson’s ratio, ES and nS. In Cartesian coordinates, (x1,x2), the von Karman plate equations
representing the film are

Dfr
4wþðN11w,11þN22w,22þ2N12w,12Þ ¼�pS ð3:1Þ

1

Ef t
r

4F ¼w,12
2�w,11w,22 ð3:2Þ

Here, Df ¼ Ef t3=½12ð1�n2
f Þ� is the film bending stiffness, w(x1,x2) is the vertical displacement of the film middle surface,

and r4( ) is the bi-harmonic operator. The resultant in-plane stresses in the film are given in terms of the airy stress
function, F, by N11=F,22, N22=F,11, and N12=�F,12.

The downward vertical traction exerted by the substrate on the deflected film is pS. As is customary in this model,
horizontal tractions exerted on the film by the substrate are neglected. For vertical deflections, w¼ ŵcosðk1x1Þcosðk2x2Þ,
pS ¼ p̂cosðk1x1Þcosðk2x2Þ with p̂¼ ðŵ=2ÞE

�

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1þk2
2

q
. Within the framework described by (3.1) and (3.2), two choices of ES

�

have been made in nearly all earlier studies: E
�

S ¼ ES (with ES ¼ ES=ð1�n2
S Þ) if tangential tractions on the substrate interface

are taken to be zero (Allen, 1969) and many others following his work), while E
�

S ¼ ½4ð1�nSÞ
2=ð3�4nSÞ� ES if tangential

displacements at the substrate interface are taken to be zero (Huang, 2005; Audoly and Boudaoud, 2008a). The actual
conditions (i.e., continuity of both tangential tractions and displacements across the film/substrate interface) require
tangential tractions to be taken into account in the film which leads to a more complex formulation than that described by
(3.1) and (3.2). This issue was addressed by Audoly and Boudaoud (2008a) and will be discussed and further clarified at the
end of this section. As noted by Chen and Hutchinson (2004), the spread between these two estimates vanishes if the
substrate is incompressible (i.e., [4(1�nS)2/(3�4nS)]=1, if nS=1/2) and is still very small if nS=1/3 (i.e., [4(1�nS)2/
(3�4nS)]=16/15). For the analytic upper-bound results presented later in Section 4, the choice for E

�

S is left open. A three
dimensional formulation is adopted for the numerical calculations and full continuity will be imposed across the film/
substrate interface.

Denote the equi-biaxial compressive stress in the unbuckled film by s0 such that F ¼�s0tðx2
1þx2

2Þ=2. With L1 and L2 as
the periodicity lengths in the x1 and x2 directions, supplementary compatibility conditions that ensure that the average
displacements tangent to the film are the same as those in the unbuckled state are

1

Ef t

Z L1

0
ðN11�nf N22Þdx1 ¼�

ð1�nf Þ

Ef
s0L1þ

Z L1

0

w2
,1

2
dx1

1

Ef t

Z L2

0
ðN22�nf N11Þdx2 ¼�

ð1�nf Þ

Ef
s0L2þ

Z L2

0

w2
,2

2
dx2 ð3:3Þ

3.2. The critical stress and associated buckling modes

The critical film stress, sC, characterizing the onset of buckling is (Allen, 1969)

sC ¼
Ef

4
3

E
�

S

Ef

 !2=3

ð3:4Þ
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where Ef ¼ Ef =ð1�n2
f Þ and E

�

S was introduced above. All modes satisfying

w¼
sinðk1x1Þ

cosðk1x1Þ

 !
�

sinðk2x2Þ

cosðk2x2Þ

 !
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2
þk2

2
q

� k¼ t�1 3E
�

S=Ef

� �1=3
ð3:5Þ

are eigenmodes associated with sC (Chen and Hutchinson, 2004).

3.3. The critical buckling stress and the choice of E
�

S

We digress to present other estimates of sC, including results of an exact calculation, with the purpose of guiding the
choice of E

�

S for the formulation laid out in Section (3.1). For plane strain buckling in the (x1,x2) plane, three results are
presented:

Case I: Full continuity of tractions and displacements applied at the mid-plane of the von Karman plate.
Case II: Full continuity of tractions and displacements applied at the bottom surface of the von Karman plate.
Case III: The exact plane strain solution in which the film is treated as a pre-stressed elastic layer of finite thickness with
full continuity of tractions and displacements applied at the interface between the film layer and the substrate.

Selected details underlying the calculations in these cases are presented in Appendix A.
The two possible choices of E

�

S noted Section (3.1), one based on zero tangential tractions acting on the substrate and
the other based on zero tangential displacements imposed on the substrate, might be expected to predict critical stresses
that bracket the actual critical stress. This would indeed be true if Case I were a correct description. This is seen in Fig. 5 for
nS=1/3 where sC from Case I falls just below the estimate based on E

�

S ¼ ½4ð1�nSÞ
2=ð3�4nSÞ� ES. However, Case II provides a

more realistic description, and the critical stress based on Case II lies above the estimate based on E
�

S ¼ ½4ð1�nSÞ
2=

ð3�4nSÞ�ES. The result of the exact calculation, Case III, is the uppermost curve in Fig. 5.
Case III, detailed in Appendix A, makes use of the exact formulation of Biot (1965) and Hill and Hutchinson (1975) for

the plane strain bifurcation analysis for an incompressible pre-stressed layer of finite thickness which is coupled to the
compliant linear substrate through continuity of tractions and displacements. The exact results are limited to nf=1/2 for
the film, but this restriction should not be significant for the comparisons in Fig. 5 because nf does not play a role in any of
the other estimates other than through Ef ¼ Ef =ð1�n2

f Þ. Fig. 6 shows the dependence of the exact predictions for various
substrate Poisson ratios. As nS-1/2, all the estimates based on the plate model approach sC ¼ ðEf =4Þð3ES=Ef Þ

2=3, and the
exact result is only slightly greater. Many recent experiments employ elastomeric substrates which are nearly
incompressible. For such systems the issue of the choice of E

�

S vanishes. Otherwise, within the framework of the
model Section 3.1 wherein only the normal traction exerted on the film by the substrate is taken into account, it is clearly
best to choose E

�

S ¼ ½4ð1�nSÞ
2=ð3�4nSÞ�ES, as concluded by Audoly and Boudaoud (2008a). As seen in Fig. 5, this

approximation will only underestimate the critical stress by several percent for compliant substrates with nS=1/3 and
ES=Ef r0:001. These conclusions apply to all of the critical modes satisfying (3.5) because each of them can be expressed as
a superposition of 1D plane strain modes.

Fig. 5. Critical stress for plane strain deformation of the film/substrate system with nS=1/3. The reference is ðsC ÞA ¼ ðEf =4Þð3ES=Ef Þ
2=3;

ðsC ÞB ¼ ðEf =4Þð3ES
�
=Ef Þ

2=3 with ES
�
¼ 4ð1�nSÞ

2ES=ð3�4nSÞ. Cases I–III are described in the text; (sC)III is exact.
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4. The buckling modes

This paper will focus on four modes associated with the critical stress:

1D mode : w¼ xt cosðkx1Þ ð4:1Þ

Square checkerboard mode : w¼ xt cos
1ffiffiffi
2
p kx1

� �
cos

1ffiffiffi
2
p kx2

� �
ð4:2Þ

Hexagonal mode : w¼ xt cosðkx1Þþ2cos
1

2
kx1

� �
cos

ffiffiffi
3
p

2
kx2Þ

 ! 
ð4:3Þ

Equilateral triangular mode : w¼ xt �sinðkx1Þþ2sin
1

2
kx1

� �
cos

ffiffiffi
3
p

2
kx2

 ! !
ð4:4Þ

Aspects of the last three modes are shown in Fig. 7. Each of these modes can be expressed as a superposition of critical
1D modes. In coordinates ðx01,x02Þ rotated 451 from (x1,x2), the checkerboard mode (4.2) can be re-expressed as

Fig. 6. The exact critical stress, (sC)III for plane strain deformation of the film/substrate system for various Poisson ratios of the substrate with

ðsC ÞA ¼ ðEf =4Þð3ES=Ef Þ
2=3. The film layer is incompressible.

Fig. 7. Three of the four critical buckling modes as defined in (4.2)–(4.4). The top view of the computational cell for the hexagonal and triangular modes

is outlined by heavy dashed lines.
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w1 ¼ xtðcosðkx01Þþcosðkx02ÞÞ=2.1 With x0 ¼ ðx1þ
ffiffiffi
3
p

x2Þ=2 and x00 ¼ ðx1�
ffiffiffi
3
p

x2Þ=2, the hexagonal mode (4.3) is w¼ xtðcosðkx1Þ

þcosðkx0Þþcosðkx00ÞÞ. As noted in Fig. 7, the so-called ‘‘hexagonal mode’’ is a periodic mix of hexagons and triangles in the
form of a Kagome pattern.

An alternative expression for (4.4) that more clearly reveals the triangular pattern is

w¼ 4xt sin 1
2kx1

� �
sin 1

2kx0
� �

sin 1
2kx00
� �

ð4:5Þ

with x0 ¼ ðx1þ
ffiffiffi
3
p

x2Þ=2 and x00 ¼ ðx1�
ffiffiffi
3
p

x2Þ=2. The three sets of nodal lines in (4.5) form the triangular grid in Fig. 7.
Eqs. (4.5) and (4.4) are identical, as readily shown by trigonometric identities. Furthermore, they can be expressed as the
sum of three critical 1D modes as w¼ xtð�sinðkx1Þþsinðkx0Þþsinðkx00ÞÞ.

When a flat film forms a pattern of wrinkles, a network of lines exists separating regions where the film deflects up or down.
These lines are known as the nodal lines. In passing, it can be noted that the only periodic patterns of same-sized, regular
polygons that can form the nodal lines for periodic buckle modes are squares and equilateral triangles. This assertion follows from
the fact that these two shapes and the hexagon are the only same-sized regular polygons that can tessellate a plane. Note
from Fig. 7 that the square and the triangular modes have alternating signs in neighboring cells, consistent with the pattern edges
being nodal lines. This is not possible for a pattern made up entirely of hexagons because three hexagons come together at each
corner. The deflection in the ‘‘hexagonal’’ pattern (4.3) shown in Fig. 7 has the same sign at the center of all the hexagons and the
opposite sign in all the triangles. The nodal lines are closed loops within each of the hexagons. The importance of the asymmetry
in the deflection of the hexagonal mode (4.3) was noted in connection with the experiments.

A herringbone, or zigzag, mode will also be considered here. This pattern is not associated with the critical stress. To
motivate the mode shape employed, consider vertical deflections of the film in a herringbone pattern having a wavy
ridgeline with uniform height, xt, and wavelength, 2p/b2k, in the x2 direction:

w¼ xt cos b1kx1�acosðb2kx2Þ
� �

¼ ðxt=2Þ½cosðb1kx1Þcosðacosðb2kx2ÞÞþsinðb1kx1Þsinðacosðb2kx2ÞÞ� ð4:6Þ

For 9a9oo1, this deflection is well approximated by

Herringbone mode : w¼ tðx1 cosðb1kx1Þþx2 sinðb1kx1Þcosðb2kx2ÞÞ ð4:7Þ

with x1=x/2 and x2=ax/2. In the upper-bound analysis in the next section, the vertical film deflection is taken as (4.7) with
x1, x2, b1, and b2 treated a free variables; k is specified by (3.5). With x2=0 and b1=1, Eq. (4.7) coincides with the 1D mode,
and with x1=0 and b1 ¼ b2 ¼ 1=

ffiffiffi
2
p

, it coincides with the checkerboard mode. In general, however, (4.7) is not a
combination of critical modes.

5. Upper-bound analysis of energy in buckled state

The exact finite amplitude solution for the 1D mode will be quoted and used as a reference. This is followed by the
upper-bound analysis of the energy in the buckled state for the hexagonal pattern, which is given in sufficient detail to
reveal all the essentials of the analysis. Then the results of the upper-bound analyses for the other modes identified
in Section 4 will presented and discussed.

5.1. The exact 1D solution

The nonlinear Eqs. (3.1)–(3.3), admit an exact solution (Chen and Hutchinson, 2004) for 1D modes of the form
w¼ xt cosðbkx1Þ with b as a wavelength factor which is unity for the critical eigenmode. With s0 as the stress of the
unbuckled film, the elastic energy/area of the film/substrate system in the unbuckled state is

U0 ¼
1�nf

Ef
s0

2t ð5:1Þ

The amplitude of the buckling deflection is

x¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sC
�1

r
ð5:2Þ

and the normalized elastic energy/area of the system in the buckled state, U, (evaluated over one full buckle wavelength), is2

U

U0
¼

1þnf

2

1�nf

1þnf
þ

sC

s0

� �2

1þ
2

3
b2
þ2b�1

� � s0

sC
�1

� �	 
( )
ð5:3Þ

1 Audoly and Boudaoud (2008a) use the superposition of the two 1D modes in their analysis of the square checkerboard mode. They incorrectly

assert that Chen and Hutchinson (2004) did not consider the critical checkerboard mode, evidently due to the difference in the periodicity wavelengths in

the two sets of axes.
2 This equation is obtained from Eq. (12) of Chen and Hutchinson (2004). Eq. (13) of that paper, which has been specialized to b=1, has a misprint:

(1�nf) in the last term should be (1+nf).
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As can be seen immediately, the minimum energy in the buckled state for the 1D mode is given by b=1, corresponding
to the critical mode at the onset of buckling, at all values of overstress, s0/sC41. The normalized energy with b=1 is
shown in Figs. 8 and 9.

5.2. Upper-bound analysis for the hexagonal mode

The analysis of the energy in the buckled state will be presented in enough detail to bring out the essential analytical
features. The approach was first used by Von Karman and Tsien (1941) in their attempt to expose the nonlinear buckling
behavior of cylindrical shells under axial compression. The analysis is similar in some respects to that employed by Audoly
and Boudaoud (2008a) but differs in that it makes no truncation in the evaluation of energy. In particular, emphasis here is
placed on the upper-bound character of the results, and it will be shown that these estimates can be accurate to
surprisingly large overstress.

As the starting point, consider the generalization of the hexagonal mode (4.3):

w¼ tðx1 cosðbkx1Þþx2 cosðbkx1=2Þcosðb
ffiffiffi
3
p

kx2=2ÞÞ ð5:4Þ

where x1 and x2 are independent amplitude factors and b scales the size of the pattern. (It will be seen that minimizing the
energy of the system gives x2=2x1 and b=1 for all s0, thereby establishing that the critical hexagonal mode (4.3) is indeed
preferred among all modes of the form (5.4).) The first step is to solve the compatibility Eq. (3.2) for F exactly in terms of w

Fig. 8. Normalized energies for the various modes in the buckled state according to the upper-bound analysis with nf=1/3.

Fig. 9. Normalized energies in the buckled state in the range of small to moderate overstress according the upper-bound analysis with nf=1/3.
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in (5.4).3 This ensures that in-plane displacements exist associated with the resultant in-plane stresses, and it provides the
basis for arguing that the elastic energy of the system will be an upper-bound, i.e., the energy is computed from admissible
displacement fields. The result is

F ¼�1
2 ðs0�Ds1Þtx2

2�1
2 ðs0�Ds2Þtx1

2� 3
32Ef t3x2

2 cosðbkx1Þþ
1
9cosð

ffiffiffi
3
p

bkx2Þ

� �

�3
8Ef t3x1x2 cosðbkx1=2Þcosð

ffiffiffi
3
p

bkx2=2Þþ1
9cosð3bkx1=2Þcosð

ffiffiffi
3
p

bkx2=2Þ
� �

ð5:5Þ

The terms Ds1 and Ds2 are the reduction in the average in-plane stresses in the buckled state; they are obtained from
conditions (3.3) as

Ds1 ¼
Ef ðtbkÞ2

4ð1�nf Þ
x2

1þ
1

8
x2

2

� �
, Ds2 ¼

3Ef ðtbkÞ2

32ð1�nf Þ
x2

2
ð5:6Þ

The three contributions to the average energy/area of the system (plate bending and stretching, and substrate
deformation, respectively) are

US¼

Z
S

Df

2
ðr

2wÞ2þ2ð1�nf Þðw
2
,12�w,11w,22Þ

� �
dS

þ

Z
S

1

2Ef t
ððr2FÞ2þ2ð1þnf ÞðF

2
,12�F,11F,22ÞÞdS

þ

Z
S

X
i

E
�

S

4
x2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðiÞ21 þkðiÞ22

q
cos2ðkðiÞ1 x1Þcos2ðkðiÞ2 x2ÞdS ð5:7Þ

where S is the area of the periodic cell. The contribution from the substrate is valid for any combination of modes of the
form w¼ xi cosðkðiÞ1 x1ÞcosðkðiÞ2 x2Þ. For the results in (5.4)–(5.6), the energy/area can be evaluated without approximation as

U

s2
Ct=Ef

¼
1

2
2
s0

sC
�
Ds1

sC
�
Ds2

sC

� �2

�2ð1þnf Þ
s0

sC
�
Ds1

sC

� �
s0

sC
�
Ds2

sC

� �" #

þ
1

3
ðb2
þ2b�1

Þ m1þ
1

2
m2

� �
þ

5

128
ðm2

2þ8m1m2Þ ð5:8Þ

Here, m1 ¼ ð1�nf
2Þb2x2

1, m2 ¼ ð1�n2
f Þb

2x2
2, Ds1/sC=(m1+m2/8)/(1�nf), and Ds2/sC=3m2/[8(1�nf)]. Minimizing the energy

with respect to (b,m1,m2) is equivalent to minimizing with respect to (b,x1,x2). One sees immediately that the minimum of
U requires b=1 for all s0. It is then straightforward to show that the equations for the minimum of U with respect to m1 and
m2 are linear with solution

m2 ¼ 4m1 and
Ds1

sC
¼

Ds2

sC
¼
s0

sC
�1�

5

4
m1 ð5:9Þ

It follows from (5.6) (with b=1) that

x1 ¼
1

2
x2 ¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ6nf�5n2

f

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sC
�1

r
ð5:10Þ

The normalized energy/area evaluated using (5.9) and (5.10) with b=1 is

U

U0
¼

sC

s0

� �2

1þ2
s0

sC
�1

� �
þ

5ð1�nf Þ

11�5nf

s0

sC
�1

� �2
" #

ð5:11Þ

As emphasized previously, (5.11) provides an upper-bound to the energy in the buckled state for all hexagonal patterns
by virtue of the fact that the energy is evaluated without approximation using admissible displacement fields. Among the
hexagonal modes, the critical mode with b=1 gives the minimum energy at all overstresses (Figs. 8 and 9).

3 Audoly and Boudaoud (2008a) work directly with the in-plane displacements of the plate rather than the stress function. By doing so, they do not

need to enforce the compatibility conditions on the average in-plane displacements (3.3). However, use of the stress function significantly simplifies the

calculations by reducing algebraic complication especially when all the contributions are retained in evaluating the energy.
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5.3. Upper-bound for the checkerboard mode

The upper-bound to the energy/area for any rectangular checkerboard modes of the form (3.5) is a special case of the
analysis of the herringbone mode given in the next subsection. The following findings emerge. First, among all the critical
rectangular modes of the form (3.5) the square checkerboard mode has the lowest energy in the buckled state. Secondly,
among all sizes of square checkerboard patterns, the critical mode (4.2) is found to give the lowest energy/area for all s0.
For this mode,

x¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð3�nf Þð1þnf Þ

s0

sC
�1

� �s
ð5:12Þ

and

U

U0
¼

sC

s0

� �2

1þ2
s0

sC
�1

� �
þ
ð1�nf Þ

3�nf

s0

sC
�1

� �2
" #

ð5:13Þ

with the latter included in Figs. 8 and 9.

5.4. Upper-bound for equilateral triangular modes

The upper-bound analysis carried out using (4.4) for the critical triangular mode gives precisely the same result for the
energy in the buckled state, (5.11), as for the hexagonal mode. The buckling amplitude is related to the overstress by

x¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11þ6nf�5nf
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sC
�1

r
ð5:14Þ

In addition, one can extend the analysis by considering equilateral triangular patterns of any size and show that the
upper-bound analysis predicts that the critical mode (4.4) gives the lowest energy in the buckled state. Interaction of
triangular and hexagonal modes will be discussed in Section 6.

5.5. Behavior of critical modes at small overstress

It is useful to compare the expansion of U/U0 for each the four critical modes for small overstress with s0/sC slightly above 1:

U

U0
¼ 1�q

s0

sC
�1

� �2

þ 	 	 	

q¼
1þnf

2
ð1D modeÞ

q¼
2

3�nf
ðsquare checkerboard modeÞ

q¼
6

11�5nf
ðhexagonal and triangular modesÞ

To order (s0/sC�1)2, these results are exact for the model. This follows for the 1D mode because (5.3) is exact for the
entire range of overstress. For the other modes, the exactness of these expansions to this order follows from the fact that
the upper-bound solution procedure is equivalent to a rigorous initial post-buckling analysis to this order as laid out
by Koiter (1945, 2009). We have independently verified that Koiter’s initial post-buckling analysis yields the above results.

As established by Audoly and Boudaoud (2008a), the checkerboard mode has the lowest energy in the range of small
overstress. The other three modes having nearly equal energies—the 1D mode has slightly lower energy than the
hexagonal and triangular modes if nf41/5 and vise versa. Fig. 8 suggests that the same ordering of the energies in the
buckled state persists to large overstresses. The full numerical simulations in Section 8 bear this out with the exception
that the 1D mode has the highest energy for s0/sC43.

Accompanying the asymptotic expression for the energy in the buckled state is the asymptotic relation between the
mode amplitude and s0/sC:

bx2
¼ s0=sC�1 ð5:16Þ

where b can be identified from (5.2), (5.10), (5.12), and (5.14):

b=1 (1D mode)

b¼
ð3�nf Þð1þnf Þ

8 (square checkerboard mode)

b¼
11þ6nf�5n2

f

4 (hexagonal and triangular modes)

(5.15)
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5.6. Upper-bound for herringbone modes

The solution procedure based on the herringbone mode (4.7) is the same as that presented for the hexagonal mode. The
stress function is obtained exactly from (3.2) in terms of (4.7) as

F ¼�
1

2
ðs0�Ds1Þtx

2
2�

1

2
ðs0�Ds2Þtx

2
1þ

1

32
Ef t3x2

2 b2

b1

� �2

cosð2b1kx1Þ�
b1

b2

� �2

cosð2b2kx2Þ

 !

�
ðb1b2Þ

2

2½ð2b1Þ
2
þb2

2
�2

Ef t3x1x2 sinð2b1kx1Þcosðb2kx2Þ ð5:17Þ

Conditions (3.3) give

Ds1,Ds2

� �
¼

Ef ðktÞ2

8ð1�nf
2Þ

b1
2 2x2

1þx
2
2

� �
þnfb2

2x2
2, nfb1

2 2x2
1þx

2
2

� �
þb2

2x
2
2

h i
ð5:18Þ

The elastic energy in the buckled state is evaluated without approximation using w and F with the result

U

s2
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now with m1 ¼ ð1�n2
f Þx

2
1, m2 ¼ ð1�n2

f Þx
2
2 and

Ds1

sC
,
Ds2
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¼

1

2ð1�nf
2Þ

b1
2
ð2m1þm2Þþnfb2

2m2,nfb1
2
ð2m1þm2Þþb2

2m2

h i

As remarked earlier, this result specializes to the exact 1D solution (5.3) when minimized with respect to x1 and b1 with
x2=0. It has been used to generate the upper-bound (5.10) for the square checkerboard mode by taking x1=0 and b2=b1�b
followed by minimization of U with respect to x2 and b. While U is quadratic in m1 and m2, its dependence on b1 and b2 is
too complicated to facilitate a closed form solution for the minimum of U when both x1 and x2 are permitted to be nonzero.
Nevertheless, it is straightforward to generate a minimum for specified values of s0/sC using standard numerical
minimization algorithms, as has been done for the upper-bounds to U/U0 for the herringbone mode shown in Figs. 8 and 9.

6. Mode transitions and equi-energy mode combinations

According to the upper-bound results shown in Fig. 8, the herringbone mode has the lowest energy of all the periodic
modes considered in this paper at sufficiently large overstresses. This will be borne out by the numerical analysis present
in Section 8. Nevertheless, because the herringbone mode (3.9) (with both x1 and x2 nonzero) is not a combination of the
critical eigenmodes, there must be some range of s0/sC near unity where the critical modes have lower energy. This is
brought out most clearly in Fig. 9, which is restricted to small to moderate overstress. With nf=1/3, the herringbone mode
has the lowest energy when s0/sCZ1.476 but in the range, 1os0/sCr1.476, the square checkerboard mode has the
lowest energy of all the modes considered.

The herringbone mode arises as a bifurcation from the square checkerboard mode. With b1 ¼ b2 ¼ 1=
ffiffiffi
2
p

and
minimizing the energy in (5.19) with respect to x1 and x2, one finds that bifurcation from the square mode (x1=0 and
bx2

2
=s0/sC�1 from (5.16)) into the herringbone mode with x1a0 occurs when

s0

sC
¼

25ð3�nf Þ

23ð1�nf Þ

1

6
1þ4

ffiffiffi
2
p� �
�

2ð26�nf Þ

25ð3�nf Þ

	 

ð6:1Þ

which gives s0/sC=1.357 for vf=0, s0/sC=1.476 for vf=1/3, and s0/sC=1.595 for vf=1/2. This bifurcation stress is not exact
because the solution for the square mode is only exact to order x1

2
. However, it should be reasonably accurate because the

upper-bound analysis for the square mode is accurate to relatively large values of the buckling amplitude, as the numerical
analysis in Section 8 reveals.

An exact bifurcation analysis from the 1D mode was presented by Audoly and Boudaoud (2008a). The 1D mode is never
the mode with the lowest energy when the fundamental stress state is equi-biaxial compression. However, for
fundamental stress states that are not equi-biaxial, Audoly and Boudaoud present a map that defines the domain of
states wherein the 1D mode is the preferred mode with stress limits defining the bifurcation transitions to other modes
including the herringbone mode.

It has been noted in the previous section that the triangular mode and the hexagonal mode have precisely the same
energy in the buckled state at all values of s0/sC, according to the upper-bound analysis. With this in mind, we have
investigated whether linear combinations of these two critical modes exist, i.e.,

w¼ xT tðsinðkx1Þþ2cosðkx1=2Þcosð
ffiffiffi
3
p

kx2=2ÞÞþxHtðcosðkx1Þþ2cosðkx1=2Þcosð
ffiffiffi
3
p

kx2=2ÞÞ ð6:2Þ
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with the same energy. Here, to produce the correct coupling between the modes, the x1 coordinate in the triangular mode
in (4.4) has been shifted: x1-x1+p/k. The upper-bound analysis can be carried out exactly with only slightly more
algebraic complication than that for the individual modes; the details will not be presented here. Remarkably, one finds
that all mode combinations satisfying

x2
Tþx

2
H ¼

4

11þ6nf�5n2
f

s0

sC
�1

� �
ð6:3Þ

have the same energy, (5.11), while all other combinations have higher energy. According to the upper-bound analysis, at all

levels of overstress, there exists a continuous mode transition connecting the triangular and hexagonal modes along which the

energy is constant. The transitional mode shapes along this path are shown in Fig. 10 plotted as contour plots using (6.2) for
pairs (xT,xH) satisfying (6.3). Another example of a continuous mode transition under increasing overstress will be shown
in Section 8.

7. Role of initial film curvature on the sign of the deflection and mode selection

As anticipated earlier, several aspects of the results obtained so far appear to be at odds with the experimental
observations in Section 2. In particular, the hexagonal pattern is much more likely to be observed than the square
checkerboard pattern in the range of low overstress even though the square pattern has a lower energy. To our knowledge,
the triangular pattern has never been observed even though it has identical energy to the hexagonal pattern, to the
accuracy determined in this paper. In addition, in all instances in which the hexagonal pattern has been observed by us,
the regions interior to the hexagons always deflect into the substrate (i.e., xo0 in (4.3)).

It is straightforward to show that model specified in Section 3 implies that the solutions are independent of the sign of
the normal deflection. That is, if (w,F) is a solution to the governing equations, then so is (�w,F). The numerical finite
element results of the 3D model with full coupling to the substrate presented in the next section also reflect this
symmetry, if not exactly, at least to high approximation. As described in Section 2, the swelling of the film/substrate
system produces a slight initial curvature of the film such that the substrate is on the concave side of the surface. In this
section, the analysis presented in Section 5 will be extended to account for an initial curvature of the film by modeling it as
a shallow spherical shell.

Let R be the radius of curvature of the shallow spherical shell segment representing the film defined positive with the
concave side down. The model in Section 3 is modified by accounting for the curvature of the film. The effect of the
curvature of the substrate on the restoring force on the film, pS, is ignored under the assumption that the shell effect is
dominant. The modified nonlinear equations are known as the Donnell–Mushtari–Vlassov shell equations and are
equivalent to the shallow shell equations; they reduce to the Karman plate equations as R-N. The equations are modified
as follows: R�1r

2F is added to the left hand side of Eq. (3.1), R�1r
2w is added to the right hand side of Eq. (3.2), and R�1w

is added to the integrand of the integral on right hand side of both Eq. (3.3). The expression for the energy of the system in
(5.7) still holds.

Consider modes of the form

w¼ xt cosðb1kx1Þcosðb2kx2Þ ð7:1Þ

with b1 and b2 as free variables and k¼ t�1 3E
�

S=E
� �1=3

as before. These modes are restricted to a shallow segment of the
shell, consistent with the fact that the wavelengths are very small compared to R. The coordinates (x1,x2) are local
orthogonal coordinates in the middle surface of the shallow shell segment.

Fig. 10. Linear combinations of the triangular and hexagonal modes that have precisely the same energy according to the upper-bound analysis. This

property holds for all values of overstress, s0/sC.
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The bifurcation analysis gives the following equations for the critical stress, sR
C:

sR
C

sC
� f ¼

1

3
ðb2
þ2b�1

þ3O2b�2
Þ with b4

�b�3O2
¼ 0 ð7:2Þ

and b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2
þb2

2
q

.4 Here, sC is still (3.4), and the dimensionless curvature parameter is

O¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�nf

2Þ

q t

R

Ef

3E
�

S

 !2=3

ð7:3Þ

As in the case of the flat film, all modes of the form (7.1) with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2
þb2

2
q

¼ b are associated with the critical stress. For
Ooo1, as is the case for the experiments in Section 2, the above equations give sR

C=sCffi1þO2 and bffi1+O2 to order O2.
In the remainder of this section, the upper-bound analysis for the hexagonal mode,

w¼ xt cosðbkx1Þþ2cos 1
2bkx1

� �
cos

ffiffi
3
p

2 bkx2

� �� �
ð7:4Þ

is presented based on an analysis similar to that in Section 5. In this analysis, b is fixed at the value given in (7.2). The
stress function is

F ¼�
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ð7:5Þ

with Ds¼ ð3=2Þð1þnf ÞsCb
2x2. The strain energy from (5.7) is

U
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2t=Ef

¼ ð1�nf Þf
2 s0
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f Þ
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þ
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f Þ
2b4x4

ð7:6Þ

As in the upper-bound analysis of the flat films, no approximation has been made in arriving at (7.6) given (7.4) as the
starting point.

Minimizing U with respect to x gives

s0

sR
C

¼ 1þ
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�n2

f Þ

q
4 f

Oxþ
11þ6nf�5n2

f

4 f
b2x2

ð7:7Þ

which coincides with (5.10) when the curvature vanishes. The curvature introduces asymmetry in the buckling response
as is evident in the plot of (7.7) in Fig. 11. With O40, the applied stress, s0, initially diminishes after bifurcation when the
buckling mode amplitude, x, is negative. The bifurcation point is unstable, and the system is highly sensitive to
imperfections that ‘‘push’’ it towards negative x (Koiter, 1945, 2009). This asymmetry is due to shell curvature not the
placement of the substrate. The implication of (7.7) is that there is a preference for hexagonal regions to buckle towards
the concave side of the film—‘‘inward’’ as opposed to ‘‘outward’’ in the following discussion. According to the model, this
would still be true if the substrate were attached to the convex side of the film.

The normalized energy in the buckled state, U/U0, computed as function of overstress, s0=sR
C , using (7.6) and (7.7), is

shown in Fig. 12. The energy associated with inward buckling of the hexagonal regions is significantly lower than that
associated with outward buckling. It should be noted that the plot in Fig. 12 has been limited to states with s0=sR

C Z1. The
energy for s0=sR

C o1 when Oxo0 is only very slightly below unity for the values of O considered in Fig. 12, as can be
inferred from the intercepts at s0=sR

C ¼ 1.
The asymmetry in buckling response with respect to the amplitude of the hexagonal mode does not occur for either the

triangular mode or the square checkerboard mode because the opposite-signed regions of these bifurcation modes are
identical. More importantly, the upper-bound calculation for the square mode (details omitted) reveals that the normalized

relationship, U/U0 versus s0=sR
C , is independent of O. For the square mode, w¼ xt cosðbkx1=

ffiffiffi
2
p
Þcosðbkx2=

ffiffiffi
2
p
Þ, (7.2) applies

and U/U0 is given by (5.13) with s0/sC replaced by s0=sR
C .

The question of whether a slight curvature can account for the preference for the hexagonal mode over the square
mode in the range of small overstress can now be addressed based on the assumption that the mode with the lowest
energy is the most likely to be observed. For specified a value of s0=sR

C , Fig. 13 plots the value of O for which the energy of
the hexagonal mode (buckling inward) equals that of the square mode. For O to the left of the curve the square mode is
preferred while to the right of the curve the hexagonal mode is preferred. The value of O required to favor the hexagonal
mode over the square mode is very small for very small overstress, approaching zero in the limit of zero overstress. Thus,
any initial curvature would tend to select the hexagonal mode for a perfect system subject to increasing stress such that

4 A nonlinear analysis of buckling of an unsupported spherical shell subject to external pressure was carried out by Hutchinson (1967) based on the

same equations. The normalizations in (7.1) and (7.2) break down in the limit when E
�

S ¼ 0, but one finds the critical stress sR
C ¼ Ef ðt=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�nf

2Þ

q
R�Þ

associated with a similar family of short wavelength modes. The hexagonal pattern is the most unstable. A recent review of buckle patterns on curved

compliant substrates of various shapes has been given by Chen and Yin (2010).
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s0=sR
C exceeds unity from below. Initial imperfections will play some role in promoting individual modes. Imperfections

are also likely to favor hexagonal over square patterns in the presence of curvature because buckling inward in the
hexagonal mode is unstable and strongly imperfection-sensitive, whereas the square mode is not imperfection-sensitive.
Imperfection-sensitivity causes the amplitude of the hexagonal mode to be amplified more than the others, assuming
there exists an imperfection component in the shape of the mode.

The observed hexagonal mode in Fig. 3 is fully developed at s0=sR
C ¼ 1:3. It is reasonable to assume that this mode has

been ‘‘selected’’ for s0=sR
Cffi1:1. Based on Fig. 13, curvature would ensure the selection of the hexagonal mode under this

circumstance if Offi0.025. To estimate the implication for the experimental system described in Section 2, re-express O
using the wavelength of the hexagonal mode, L¼ 4p=ð

ffiffiffi
3
p

kÞ:

O¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�nf

2
q

8p2

L2

tR
) R¼

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�nf

2
q
8p2O

L2

t
ð7:8Þ

With Offi0.025, L=50 mm (cf. Fig. 2) and t=100 nm, one finds Rffi40 mm. For a specimen width 10 mm, this curvature
would imply a rise of 0.3 mm at the center of the specimen relative to its edges. If, instead, one assumed the hexagonal
mode was selected at s0=sR

Cffi1:01 such that Offi0.01, then (7.8) gives Rffi100 mm and the relative rise at the center of

Fig. 11. Effect of spherical curvature on the relation between the applied stress and the buckling amplitude for the hexagonal mode. The centers of the

hexagon prefer to buckle towards the concave (inward) side of the curved film.

Fig. 12. Effect of curvature on the energy in the buckled states of the hexagonal mode.
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the specimen would be 0.13 mm. Direct measurements of the initial curvature of the specimens have not been made,
however, the above curvature estimates are not inconsistent with observations made by eye. Thus, tentatively, we have
concluded that curvature is the source of the preference for the hexagonal mode to buckle inward and for the hexagonal
mode to be favored over the square mode. Initial curvature of the system would also explain why the triangular mode has
not been observed.

8. Numerical analysis of nonlinear buckling of periodic patterns

The finite element code, ABAQUS (www.simulia.com), has been used to carry out three dimensional analyses for all the
patterns described in Section 4 for films that are flat in the unbuckled state. For each of the patterns, a periodic cell is
identified. Both the film and the substrate are meshed with 8 node linear block elements with reduced integration. The
film is represented by 8 layers of elements with approximately 1500 elements in each layer of the cell. The substrate has
depth d which is taken to be five times the largest periodicity wavelength and its bottom surface is prescribed to have zero
displacement. The substrate is represented by approximately 120,000 elements uniformly distributed in 100 layers. The
material for film and substrate are taken to be described by linear isotropic elasticity, except for a few simulations for the
hexagonal pattern where a neo-Hookean substrate has been assumed to explore whether substrate nonlinearity is
important. The nonlinear geometric updating option of ABAQUS is employed. Stress in the film is induced by a thermal
expansion mismatch with the substrate by imposing a temperature drop DT starting from the unstressed state. For this
purpose, the film is assigned a thermal expansion coefficient a while the substrate is assumed to have zero thermal
expansion. For all calculations, Ef/ES=3465 with nf=1/3 and nS=0.48.

For each mode, periodic boundary conditions are imposed on the edges of the film/substrate cell. In all cases, the cell
dimensions are set by the wavelengths associated with the critical modes introduced in Section 4, consistent with the fact
that the upper-bound analysis suggests these produce the lowest energy states even at finite deflection. A very small initial
geometric imperfection in the form of a stress-free out-of-flatness in the shape of the buckling mode is used to promote
the mode. Specifically, with any mode in Section 4 denoted by w=xt f(x1,x2), the initial imperfection for that mode is taken
as w¼ xt f ðx1,x2Þ with x set at 0.01.

The 1D mode was simulated as a check on accuracy given the availability of the exact solution of the model problem for
this case. A rectangular parallelepiped unit cell of dimension L� L�d was employed with L=2p/k and d=5L. As the initial
imperfection has variation in only one direction, the induced mode varies only in that direction. The mode shape is
projected over many cells and shown in Fig. 1a. The normalized energy in the buckled state is shown in Fig. 14. It agrees
with the exact solution for the model in (5.3) (with b=1) to within one or, at most, two percent over the entire range
plotted.

The square checkerboard mode uses the same unit cell as the 1D mode except that L¼ 2
ffiffiffi
2
p

p=k and the imperfection is in
the shape of the square mode. In this case the square mode is generated (Fig. 1b) and the normalized energy is shown
in Fig. 14. The numerical result is very close to the upper-bound prediction for U/U0 in Fig. 8 for s0/sCo4 and falls no more
than 3% below the upper-bound for s0/sC as large as 10.

The unit cells for the hexagonal mode and the equilateral triangular mode are hexagonal prisms as shown in outline
in Fig. 7. For the hexagonal mode the distance across the cell from face to face is 4p=

ffiffiffi
3
p

k while the face to face distance of
the cell for the triangular mode is 4p/k. An imperfection in the shape of the mode is introduced for each calculation as
described above. In addition, for the hexagonal mode, calculations with both positive (hexagon centers deflecting

Fig. 13. For a given nf the curve gives the value of O for which the energy of the hexagonal mode (buckling inward) equals that of the square mode. A

mode-selection criterion based on minimum energy favors the hexagonal mode to the right of the curve and the square mode to the left of the curve.
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outwards, x40) and negative (xo0) imperfections are preformed. The mode shapes are shown in Fig. 1 and the results for
U/U0 are shown in Fig. 14. There is virtually no difference between the energy in the buckled state for inward and outward
deflections of the hexagons, although there are slight differences in the deflections themselves when s0/sC is large. Unlike
the plate model, the 3D model of the system is not strictly independent of the sign of the normal deflection of the film, but
it is evident from Fig. 14 that the difference is extremely small for the overstress range considered. Similarly, as the upper-
bounds for the plate model predict, Fig. 14 reveals that there is virtually no difference between U/U0 for the triangular and
hexagonal modes. The upper-bound is quite accurate for s0/sCo3 and then begins to diverge for larger overstress; it
becomes increasingly inaccurate for larger overstress with U/U0ffi0.40 from the numerical analysis and U/U0ffi0.48 from
the bound at s0/sC=10. Nevertheless, it is quite remarkable that the bound is highly accurate to overstresses as large as
three times the critical stress.

An intriguing mode transition occurred in the numerical simulation for the triangular mode which is shown in Fig. 15.
As expected, the deflection initially assumes the shape of the triangular pattern as the overstress is increased due to the
assumed initial imperfection, but at a certain level of overstress (s0/sC=2.4 in Fig. 15) the mode begins to develop an
asymmetry not present in the initial mode. When s0/sC=3.4 the transition to a three-lobed asymmetric pattern is fully
developed, and new mode persists as the overstress is further increased. A transition from the triangular mode to the
hexagonal mode did not occur in these simulations because the size of the computational cell for the triangular mode was
larger by a factor

ffiffiffi
3
p

than that for the hexagonal cell.
One other set of finite element calculations for the hexagonal mode was carried out to gain further insight into the

observed preference for this mode to buckle into the substrate at the centers of the hexagons. Recent work (Brau et al.,
2011; Sun et al., submitted for publication) has shown that the nonlinearity of the substrate affects the mode shape at very
large overstress when the slopes of the film become large. In the present calculations, the neo-Hookean material is used to

Fig. 14. Normalized energy in the buckled state for the various modes as determined from the numerical analysis of the 3D models.

Fig. 15. Transition from a triangular mode to a asymmetric three lobed mode under increasing overstress. The result was computed with the three-

dimensional finite element model using the computational cell for the triangular mode.
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represent the substrate. Positive and negative imperfections were considered so as to promote both inward and outward
deflections of the hexagonal model. The substrate material (the neo-Hookean option in ABAQUS) was taken to have the
same slight compressibility (nS=0.48) and modulus (Ef/ES=3465) in the ground state as the linear material used in all the
other calculations. The results of these calculations are shown in Fig. 16 where it is seen that they are essentially
indistinguishable from the predictions based on the linear substrate. Even at s0/sC=10 the deflection of the film is still too
small to push the substrate into the nonlinear range. If Ef/ESE1000, it is easy to show that the maximum slopes of the film
are only on the order of 1/10 for s0/sC=10. Thus, the period doubling seen by Brau et al. (to be published) and Sun et al.
(submitted for publication) and the hierarchical wrinkling seen by Efimenko et al. (2005) are not expected in the range of
overstress considered in this paper.

An extensive numerical analysis of the herringbone mode for a 3D model which uses plate theory to model the film was
conducted by Chen and Hutchinson (2004). The reader is referred to that study for details of the cell geometry and how
that geometry was varied to produce herringbone modes with minimum energy in the buckled state. Here we have
employed the parameters of the cell found by Chen and Hutchinson to give the minimum, or near-minimum, energy—a
cell with width L=2p/k perpendicular to the ridge lines and with a ridge kink angle of 901. The pattern is shown in Fig. 1e,
and U/U0 is shown in Fig. 14. As the upper-bound analysis had predicted, the herringbone mode has the lowest energy in
the buckled state among all the modes considered for all s0/sC greater than about 1.5. The upper-bound is less accurate for
the herringbone mode than the other modes, no doubt due to the fact that the assumed deflection in (4.7) is itself an
approximation to a herringbone mode. Thus, at s0/sC=3 the bound is about 10% higher than the numerical result and at
s0/sC=10 it is more than 30% too high.

In summary, the numerical analysis of the 3D model of the film/substrate system indicates: (i) The present results for
the square and herringbone modes are almost identical as those found by Chen and Hutchinson (2004) for a 3D model in
which the film is modeled by plate theory. (ii) With the exception of the herringbone mode, the upper-bound results
in Section 4 are reasonably accurate to surprisingly large overstresses as large as three or four times sC. (iii) The models for
initially flat films, including the incorporation of nonlinearity in the substrate, do not indicate any appreciable difference
between inward and outward buckling of the hexagonal mode, nor is substrate nonlinearity important for the range of
overstress considered in this paper.

9. Concluding remarks

Many details of the energy landscape in the buckled state of the periodic modes considered here have been revealed by
making use of the analytical upper-bound method in combination with the 3D finite element analysis for systems that are
flat in the unbuckled state. The upper-bound retains its accuracy to surprisingly large overstresses for the critical modes.
Based on the notion that the mode with the minimum energy is the most likely to be observed, the square mode should be
the dominant mode for overstresses, s0/sC, below about 1.5 and the herringbone mode should emerge at overstresses
above that. The herringbone mode does begin to emerge in our experiments for s0/sC41.5, but the observed mode below
this is the hexagonal mode not the square mode. Moreover, in all cases in which we have observed the hexagonal mode, it
buckles with the hexagonal regions pushing into the substrate whereas theory suggests there should be no preference. We
have established that a slight initial curvature of the film could explain the two discrepancies just noted and the fact that

Fig. 16. Demonstration that the energy states of the full 3D model are independent of the buckling deflection of the hexagonal mode, to a very good

approximation. This is true for the linear substrate and for the neo-Hookean substrate. Moreover, over the range of overstress plotted, these results

demonstrate that the nonlinearity of the neo-Hookean substrate has essentially no influence on the behavior.
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the triangular mode has not been observed in our experiments even though it has the same energy as the hexagonal mode
when the system is initially flat. The magnitude of the initial curvature observed in our system appears to be consistent
with the curvature level needed to explain the discrepancies but quantitative measurements necessary to establish this as
a certainty have not been made.

As just noted, for flat film/substrate systems, theory suggests that the square mode should be observed in the range of
low overstress and it should give way to the herringbone mode with increasing overstress. However, in the range of low
overstress there is a rich array of competing modes with energies that are only slightly separated. Mode selection based on
minimum energy considerations has its limitations. The attempt initiated by Von Karman and Tsien (1941) to understand
the post-buckling and collapse of cylindrical shells under axial compression provides an illustration of the limitations.
Following the work of von Karman and Tsien, many papers were written aimed at more and more accurate evaluation of
the energy in the collapsed state. Nevertheless, no clear understanding emerged as to the relevance of minimum energy
states to the load carrying capacity and collapse behavior of the shell. It was not until Koiter (1945) emphasized the
importance of initial imperfections and included them in his approach that the highly unstable buckling behavior of
cylindrical shells under axial compression was related to the strong imperfection-sensitivity of the maximum load
carrying capacity. Unlike cylindrical shells, the film wrinkling problem for flat films has a stable buckling behavior and is
not imperfection-sensitive in the way the shell is. Nevertheless, initial imperfections may be playing a role in mode
selection given the small difference in energy between the modes when the overstress is small. If imperfections are
included in the analysis, as Koiter (1945, 2009) has done in his general theory, the development of a specific mode is
promoted by imperfections in the shape of that mode.

Once a periodic mode pattern develops there is a barrier to its evolving to another periodic mode with different
wavelengths even if the other mode has lower energy. Several examples where transitions from one mode to another occur
continuously without a ‘‘jump’’ in wavelengths were presented in the paper, including the transition from the triangular to
the hexagonal mode and the experimental observation of the hexagonal mode evolving into a herringbone mode.
Bifurcation from the square mode into the herringbone mode is another example. In conclusion, this paper has shed
further light on the wrinkling behavior of films under equal biaxial stress states. It has also exposed a number of open
questions highlighting the richness of the nonlinear buckling phenomena.
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Appendix A. Three plane strain analyses of the critical stress

In linear elasticity the plane strain relation between sinusoidal tractions applied on the upper surface of a semi-infinite
half-space, ðs22,s12Þ ¼ ðp̂cosðcx1Þ, t̂ sinðcx1ÞÞ, and the associated displacements, ðu2,u1Þ ¼ ðŵcosðcx1Þ,ûsinðcx1ÞÞ, is

p̂

t̂

" #
¼ BS

ŵ

û

" #
, BS ¼

cESð1�nSÞ

ð3�4nSÞ

2ð1�nSÞ �ð1�2nSÞ

�ð1�2nSÞ 2ð1�nSÞ

" #
ðA:1Þ

A.1. Von Karman plate representation of the film including tangential tractions

Next consider a flat plate which in the unbuckled state is subject to an in-plane compressive stress s11=�s0. The von
Karman strain-displacement relations and the Principle of Virtual Work are invoked, including downward normal and
leftward tangential applied tractions, ðp̂cosðcx1Þ, t̂ sinðcx1ÞÞ. The linearized equations for perturbations of the middle surface
displacements about the unbuckled state, ðŵcosðcx1Þ,ûsinðcx1ÞÞ, are

ðDf c4�s0tc2Þŵ¼�p̂þat̂ct=2

Ef tc2û¼�t̂ ðA:2Þ

where a=0 if the tractions are imagined to be applied along the plate middle surface and a=1 if they are applied along the
bottom surface of the plate. The eigenvalue problem for the critical value of s0 is obtained by eliminating p̂ and t̂ by
coupling (A.1) and (A.2). With c=bk where here kt¼ ð3ES=Ef Þ

1=3, one obtains

s0

ðEf =4Þð3ES=Ef Þ
2=3
¼

1

3
b2
þ2c1b

�1
þac2c3�2c2b

�1 2c2þac1c3b
2c1þ4c3

�2b
ðA:3Þ
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with

c1 ¼
4ð1�nSÞ

2

3ð3�4nSÞ
, c2 ¼

2ð1�nSÞð1�2nSÞ

3ð3�4nSÞ
and c3 ¼

3ES

Ef

 !1=3

The critical value of s0, obtained as the minimum with respect to b, has been shown in Fig. 5 for nS=1/3 for both a=0
and a=1. Note that for these results, as for the other two estimates quoted in Section 2, the film moduli appear only
through Ef .

A.2. The exact solution for the critical stress

In this analysis, the film is taken to be a uniformly pre-stressed layer of thickness t that is attached along its bottom
surface to the compliant substrate along the interface at x2=0. The film layer is taken to be incompressible and undergoes
incremental plane strain deformations. Incompressibility facilitates the exact bifurcation analysis of the system using the
formulation of Biot (1965) and Hill and Hutchinson (1975). As noted earlier, the assumption of an incompressible film
layer is not expected to reduce the applicability of the results since for all the other estimates only the plane strain
modulus of the film,Ef , appears in the results. The film layer is coupled to the substrate which has no pre-stress and is
governed by (A.1). The reader is referred to Hill and Hutchinson (1975) for the general formulation. Here only an outline of
the results will be presented.

A displacement potential, cðx1,x2Þ ¼�ð1=cÞWðx2Þsinðcx1Þ is used to represent the perturbations of the displacements
from the uniform pre-buckling state within the layer

u1 ¼�ð1=cÞdW=dx2 sinðcx1Þ, u2 ¼W cosðcx1Þ ðA:4Þ

The general solution to the governing field equation for c is

Wðx2Þ ¼ a1ecx2þa2e�cx2þa3edcx2þa4e�dcx2 ðA:5Þ

with d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2s0=Ef

� �
= 1þ2s0=Ef

� �q
. The perturbed tractions vanish on the upper surface of the layer at x2=t if

a1

a2

" #
¼M

a3

a4

" #
, M¼

cBeðd�1Þct cAe�ðdþ1Þct

cAeðdþ1Þct cBeð�dþ1Þct
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ðA:6Þ
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Both (A.6) and ðu2,u1Þ ¼ ðŵcosðcx1Þ,ûsinðcx1ÞÞ along x2=0 will be satisfied if

A
a3

a4

" #
¼

ŵ

û

" #
, A¼

cBeðd�1ÞctþcAeðdþ1Þctþ1 cAe�ðdþ1ÞctþcBeð�dþ1Þctþ1

�cBeðd�1ÞctþcAeðdþ1Þct�d �cAe�ðdþ1ÞctþcBeð�dþ1Þctþd

" #
ðA:7Þ

In the notation of Hill and Hutchinson (1975), denote the nominal traction increments along the lower surface of the
film layer by ð _n22, _n21Þ ¼ ðp̂cosðcx1Þ, t̂ sinðcx1ÞÞ. These are the vertical and horizontal components of the force per pre-
bifurcated area following the surface as it deflects. It is these nominal traction increments that must be continuous across
the interface. They are connected to the displacement perturbations by

p̂

t̂

" #
¼ Bf

ŵ

û

" #
, Bf ¼ c

Ef

4
CA�1 ðA:8Þ

with

C ¼
�2A21þð1þ2s0=Ef Þðd�d3Þ �2A22�ð1þ2s0=Ef Þðd�d3Þ

�2A11þ1�d2 �2A12þ1�d2

" #

Finally, the film layer is coupled to the substrate by imposing continuity of the increments of displacement and
tractions using (A.1) and (A.8):

ðBf�BSÞ
ŵ

û

" #
¼ 0 ðA:9Þ

As in the previous analysis, one can let c=bk with k given by (3.5). The equation for s0=Ef is detðBf�BSÞ ¼ 0 which, other
than b, depends only on two dimensionless parameters, ES=Ef and nS; b must be varied to produce the lowest value of
s0=Ef . The matrix inversion and multiplication giving Bf in (A.8) can be performed analytically; the results in Figs. 5 and 6
have been computed based on detðBf�BSÞ ¼ 0. It is worth noting that the exact result for the critical stress lies above the
prediction (A.3) with a=1 because the von Karman plate equations neglect elastic energy stored in transverse (out-of-
plane) shear, which is fully accounted for in the exact formulation.
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