
ANALYSIS OF A WEDGE IMPRESSION TEST FOR

MEASURING THE INTERFACE TOUGHNESS BETWEEN

FILMS/COATINGS AND DUCTILE SUBSTRATES

M. R. BEGLEY 1{, D. R. MUMM 2, A. G. EVANS 2 and J. W. HUTCHINSON 3

1Mechanical Engineering Department, University of Connecticut, Storrs, CT 06269, USA, 2Materials
Institute, Princeton University, Princeton, NJ 05840, USA and 3Division of Engineering and Applied

Science, Harvard University, Cambridge, MA 02138, USA

(Received 13 August 1999; accepted 10 April 2000)

AbstractÐThe adhesion between thin elastic ®lms/coatings and ductile substrates can be measured using a
wedge test, wherein a long sharp edge is impressed through the ®lm into the substrate. The resulting plastic
deformation causes delamination between the ®lm and the substrate. The extent of the delamination can be
correlated with the crack driving force to determine the toughness of the interface. Results are presented
that relate the energy release rate and mode-mixity to the stresses: both residual and those induced by the
impression. Numerical and asymptotic results are presented for the strain transferred to the coating. The
numerical results verify that the asymptotics provide accurate closed-form solutions when the delamina-
tions exceed about seven contact widths. An example is provided for a thermal barrier coating
system. 7 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Impression tests have emerged as a relatively

straightforward method for measuring the adhesion

of ®lms and coatings on ductile substrates, particu-

larly on structural alloys. Methods based on spheres

[1±3], cones [4] and wedges [5] have been developed

and used primarily for thin ®lm interface adhesion

measurements. To apply such tests, the indenter is

impressed through the ®lm into the substrate to

induce plastic penetration, as illustrated in Fig. 1.

This causes an interface delamination that spreads

out from the impression as the depth increases. The

interface toughness is obtained by measuring the

size of the delamination as a function of the im-

pression load.

Among the impression geometries, wedges have

several advantages. The driving force for delamina-

tion is largest, allowing testing of systems with

more adherent interfaces. Plane-strain conditions

eliminate the tensile stresses parallel to the delami-

nation crack front that cause radial cracking. The

plane surface of the wedge may be used as a mirror,

allowing in situ optical measurements of crack

growth [6].

The present article extends an introductory study

of the wedge method [5] with two principal objec-

tives:

(i) To establish a testing domain that allows ap-

plication of a straightforward, broadly appli-

cable closed-form solution.

(ii) To apply the method to multi-layers. A

speci®c example is given for a thermal barrier

coating (TBC) which comprises a thin layer of

Al2O3 �13 mm� and a thick layer of compliant

ZrO2 �1100 mm� having the properties listed in

Table 1.

Experimental measurements made on a TBC [6]

provide a context for the analysis. A typical optical

image of an impressed system (see Fig. 2) indicates

the contrast associated with delamination.

Measurements of the delamination length, a, and

the impression load (or impression width) permit

determination of the interface toughness, as elabo-

rated upon below.

Surface strains are determined by a combi-

nation of numerical calculations and analytical

results. These strains are considered to transmit

to the coating and superpose on the residual

strains. This approach has been used [1, 4] and

veri®ed by means of detailed ®nite element

models [3]. The total strains are subsequently
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used with a multi-layer model to determine the
energy release rate as a function of delamination
length. In this respect, the analysis extends that

from previous studies [4, 5].
Closed-form analytical solutions, similar to those

set forth by Vlassak et al. [5], are derived for both

conical and wedge geometries and compared with
new ®nite element results. The numerical results il-
lustrate that the asymptotics accurately capture the
behavior remote from the plastic zone, particularly

for the wedge geometry. These expressions eliminate
the need for detailed numerical results when the
delaminations are long compared with the im-

pression width. The in¯uence of thickness and sti�-
ness of the elastic ®lm on the solutions is also
explored using ®nite element models.

2. SURFACE STRAINS

The impression test is modeled as an elastic layer

bonded to an elastic±plastic substrate. The response
of the substrate is characterized using conventional
J2 ¯ow theory; this representation is essential for

accurate predictions of the strain near the surface
(e.g. Ref. [1]). The uni-axial behavior of the ma-
terial is considered to follow an isotropic Ramberg±
Osgood strain hardening relationship:

e � s
Es

� a
� s
sy

�n

�1�

where Es is the Young's modulus of the substrate,
sy is its yield strength, n is the hardening exponent,
and a is a parameter which controls the relative

Fig. 1. Schematic diagram of the wedge or cone impression test.

Table 1. Properties of a thermal barrier coating bilayer system comprised of a-Al2O3 and c-Zr2O3

Layer Layer thickness (mm) In-plane modulus (GPa) Thermal expansion coe�cient (p.p.m.)

a-Al2O3 1±5 380 8
c-Zr2O3 100±200 5±20 (13a) 12.6
Substrate 3000 200 15±18

a Value determined from curvature measurements [6].
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contribution of the inelastic strain. The yield strain
is taken as: ey � sy=Es: The surface strains are cal-

culated using the ®nite element models developed in
the commercial code ABAQUS. The plasticity and
contact modeling follow standard procedures;
details are included in the Appendix.

The results are presented in terms the hardness,
H, which is de®ned as the indenter load divided by
the contact area of the impression. The hardness

values we report in Table 2 are based on the ®nite
element results. Alternatively, the material hardness
can be estimated using closed-form relationships set

forth by Johnson [7, 8]. These relationships predict
the classical result that H1�3ÿ 4�sy, which is only
accurate when strain-hardening is limited.

2.1. Thin compliant ®lms

Thin and/or compliant ®lms do not in¯uence the
substrate deformation except for a very small region

near the edge of contact. With the assumption that
the strain at the surface of the substrate is trans-
mitted to the ®lm as a uniform strain in the thick-

ness direction{, the strain in the ®lm can be
determined from impression results obtained for
just the elastic±plastic substrate. Results are shown

in Fig. 3 for a typical yield strain and for several
values of hardening exponent. Since the details of
the deformation in the actual contact zone are not
of interest here, they are not shown in the ®gure.

When the interface crack propagates several con-

tact sizes away from the center of the impression,
the asymptotic surface strain distribution (described

in Section 2.3) can be exploited to simplify the
analysis. The strain far from the impression varies
with distance, x, in accordance with

exx�x� � e0

�
b

x

� 2

�2�

where b is the half-width of the impression.

When the contact area is much greater than the
tip radius of the wedge, the self-similarity of the im-
pression process dictates that the strain coe�cient

e0 be independent of the impression size. This
simply means that the strains scale with the im-
pression size according to equation (2), and that e0
is a function of non-dimensional material properties
only: e0� f �n, ey, a�: Numerical results for a variety
of material properties are provided in Table 2.

2.2. Sti� or thick ®lms

For sti� ®lms or shallow impressions, the ®lm
may a�ect the plastic deformation and limit the
substrate strains transferred to the ®lm. The pre-
sence of the ®lm introduces an additional length

scale that removes the self-similarity of the defor-
mation, such that the shape of the strain distri-
bution becomes dependent on impression size

relative to the ®lm thickness. Strain distributions at
the ®lm±substrate interface have been calculated for
several values of ®lm thickness and modulus, at a

constant impression size (see Fig. 4), with the por-
tion of the ®lm directly under the impression
removed. (In practice, this region experiences exten-

sive cracking and spalling [6].) It is evident that, if
the impression size is about an order of magnitude
larger than the ®lm thickness, h, the ®lm has mini-
mal in¯uence{. Conversely, thicker ®lms a�ect the

Fig. 2. Typical optical image of an impressed TBC system.
The impression area of the wedge appears as a solid dark
line. The delamination distance is approximately 25 times

the impression size of 30 mm.

Fig. 3. Surface strain distributions along the surface of the
substrate for cases where the role of the ®lm has been neg-

lected.

{ This assumption is supported by ®nite element models

that explicitly model the ®lm, both those presented here

and the more extensive calculations in Ref. [3].

{ See also Ref. [3].
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deformation, such that the region where equation
(2) is valid is pushed further from the center of the

impression, as illustrated in Fig. 4.

2.3. Asymptotic analysis

The spatial dependence of equation (2) is pre-
dicted by an approximate analysis, wherein it is
assumed that a semi-cylindrical plastic core forms

underneath the impression. The asymptotic analysis
presented here is very similar to that set forth by
Vlassak et al. [5]; some of the same results are pre-

sented here, both for completeness and to provide
the basis for comparisons with new explicit numeri-
cal models. The analysis is based on the assump-

tions that a plastic zone expands from the center of
contact by purely radial displacements, and the ma-
terial is incompressible in the plastic zone (e.g. Refs

[7, 8]). The strain in the elastic region is given by

exx�x� � e 00

�
c

b

� 2
�
b

x

� 2

�3�

where c is the size of the plastic zone and e 00 is a
constant. An estimate for the size of the zone is

given by Johnson [7] as

c

b
�

������������������������
4 tan b

p�5ÿ 4u�ey

s
�4�

where b is the angle between the surface and the
indenter (see Fig. 1). The constant e 00 is determined
from the pressure acting at the outer edge of the

plastic zone, which can be related to the indentation
load over the contact area, or hardness. Equation
(3) becomes

exx�x� � �1ÿ n�
�
H

sy

� �������������������
4ey tan b

p

r �
b

x

� 2

: �5�

It should be noted that this asymptotic behavior
occurs outside the plastic zone. As such, equation
(4) is a fairly accurate estimate for the minimum

distance at which the asymptotic result applies. The

values for e0 determined via equation (5) are com-

pared in Table 2 with values determined via ®tting
equation (2) to the FEA results. For a wide range

of substrate plastic properties, the agreement is

excellent.

The assumption that deformation occurs in a

purely radial manner depends strongly on the shape

of the impression, the amount of strain hardening

and the yield strain. For either sharp impressions,

small amounts of strain hardening, or low yield

strains, the FEA results illustrate that piling up

around the edge of the impression is more pro-
nounced and the edge of the plastic zone takes on a

non-circular shape. Conversely, for large amounts

of strain hardening or high yield strains, plastic de-

formation is reduced and elastic contributions are

more important. These e�ects ultimately dictate the

accuracy of the asymptotic expression for e0 [i.e. the
term multiplying (b/x )2 in equation (5)].

It is interesting to note that regardless of these

speci®c details of the plastic zone beneath the

Fig. 4. Surface strain distributions along the interface (sur-
face of the substrate) for cases where the ®lm has been

explicitly modeled.

Table 2. Finite element results and asymptotic predictions for 908 and 1208 wedges for several values of plastic properties

Properties 908 Wedge 1208 Wedge

n ey a c/b H/sy
a e0 ®t to FEA e0 equation (5) c/b H/sy

a e0 ®t to FEA e0 equation (5)

5 0.01 0.03 5.79 8.83 0.50 0.66 4.40 7.45 0.26 0.43
10 0.01 0.03 5.79 5.39 0.41 0.41 4.40 4.93 0.25 0.28
15 0.01 0.03 5.79 4.35 0.35 0.33 4.40 4.00 0.22 0.23
5 0.005 0.03 8.19 9.47 0.47 0.53 6.22 8.97 0.25 0.36
10 0.005 0.03 8.19 6.11 0.35 0.33 6.22 4.39 0.22 0.22
15 0.005 0.03 8.19 4.88 0.26 0.26 6.22 4.50 0.19 0.19
5 0.0025 0.03 11.58 10.41 0.31 0.392 8.80 9.80 0.19 0.28
10 0.0025 0.03 11.58 6.51 0.23 0.245 8.80 6.09 0.17 0.17
15 0.0025 0.03 11.58 5.01 0.16 0.19 8.80 4.87 0.13 0.14
10 0.005 0.003 8.19 7.45 0.35 0.40
10 0.005 0.03 8.19 6.11 0.35 0.33
10 0.005 0.3 8.19 4.77 0.27 0.25

a Hardness is de®ned as H � L=2b where L is the indenter load per unit length.
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wedge, the surface strain distribution in the elastic
region is still characterized by the (b/x )2 distri-
bution, as illustrated in Figs 3 and 4. This is

because the strain along the surface is governed by
the dilatation needed to accommodate the inden-
ter{. An alternative yet similar approach to predict-

ing the strain distribution further emphasizes the
role of dilation, as this second asymptotic predic-
tion is independent of the plastic properties of the

substrate. This approach is outlined in the
Appendix, and is most valid for soft materials.
These asymptotic expressions are restricted to

plane-strain deformation. Accordingly, in applying

these results to ®nite-width wedges, it is important
that the delamination distance not exceed the length
of the wedge. As such, the delamination shown in

Fig. 2 exceeds this size and the present results
would only be applied in an approximate sense.

2.4. Comparison with conical impressions

The asymptotic strain distribution for the cone

(see Fig. 5) varies with 1/x 3 (compared with 1/x 2

for the wedge) such that, in the elastic region

err�x� � �1� n�
�
H

sy

� e 2y tan b

6�1ÿ n�

!1=3�
b

x

�3

: �6�

This solution is obtained by applying the same pro-

cedure presented in the previous section and upon

using the results provided by Johnson [7]. The
extent of the plastic boundary is estimated as

c

b
�
�

tan b
6�1ÿ n�ey

�1=3
: �7�

Again, equation (7) provides a useful estimate for
the distance away from the impression beyond
which equation (6) can be used. Detailed results for

strains near the impression are presented [4].
A comparison between asymptotic and numerical

results is provided in Fig. 5 for both a conical and
wedge impression. Note that, near the impression,

the conical deformation transmits a greater strain
than the wedge deformation. However, even at a
small distance from the edge of contact, the wedge

imparts larger strains, and continues to do so out
to very large distances.

3. DELAMINATION MECHANICS

3.1. Energy release rates

With the premise that the surface strain in the
substrate is transmitted to the coating as a uniform
compression (independent of vertical location in the

®lm), the energy release rate, G, can be evaluated
for any multi-layer coating. The analysis assumes
that G is governed by the strain at the surface site
coincident with the delamination front. Here, the

result for a bilayer is derived and reduced to the
monolayer solution. A numerical program exists for
multilayers [9]. The bilayer result for the steady-

state energy release rate is [10]

G � 1

2
PDeÿ 1

2
MDk �8�

where P is the net force acting on the layer before

decohesion, and M is the net moment referenced to
the neutral axis of the layer, again before decohe-
sion. The quantity De is the strain change at the

neutral axis of the layer, caused by decohesion,
while Dk is the curvature change. (For most cases,
the curvature change is simply that resulting from

thermal expansion mismatch.) The strain and curva-
ture changes can be calculated from elementary
strength of materials applied to the decohered layer,
under the restriction that the net force and net

moment acting on the released layer are zero. The
residual strain parallel to the debond front is not
relieved during the delamination{.
The relevant results for a bilayer with thicknesses

h1 and h2 are

P � E 01h1��1� n1�e1r � ei � � E 02h2��1� n2�e2r � ei �
�9�

where e1r and e2r are residual strains in the respect-
ive layers and ei is the strain transferred to the layer
as a result of the substrate deformation [note that it

Fig. 5. Comparison of surface strain distributions for 908
wedges and cones, with asymptotic predictions outlined in

the text.

{ Note that a purely vertical load does not cause a sur-

face strain parallel to the surface, while a surface load

applied tangential to the surface results in the same

asymptotic distribution given by equation (5) [8].

{ As a result of this assumption, the results presented

here will asymptote to the same limit predicted in Ref. [4]

for conical impression. See Fig. 1.
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will be a function of position de®ned by equation
(2)]. The quantities E 01 and E 02 are the plane strain

moduli of the layers, that is E 01 � E1=�1ÿ n 2
1 � and

E 02 � E2=�1ÿ n 2
2 �: The moment M (referenced to

the neutral axis of the released layer) is given by

M � ÿE
0
1E
0
2h1h2��1� n1�e1r ÿ �1� n2�e2r�

2�E 01h1 � E 02h2�
: �10�

The curvature change of the released layer is

Dk � 6��1� n1�e1r ÿ �1� n2�e2r�
h1

�
1� h1=h2

x

�
�11�

where the non-dimensional function x is given as

x � E 01
E 02

�
h1
h2

� 2

�E
0
2

E 01

�
h2
h1

� 2

�4
�
h2
h1

�
� 4

�
h1
h2

�
� 6:

�12�
Note that the curvature depends only on the di�er-
ence in residual strains. It is una�ected by the

wedge-induced strains. In turn, the residual strain
di�erence is governed by the thermal expansion
mis®t, as elaborated upon in Section 4.
The strain change at the neutral axis of the layer

is

De � E 01h1��1� n1�e1r � ei � � E 02h2��1� n2�e2r � ei �
E 01h1 � E 02h2

:

�13�
For simplicity of presentation and also to facili-

tate the mode-mixity analysis described in the next

section, it is convenient to represent the bilayer as a
single layer with an e�ective plane-strain modulus,

E 0e, and an e�ective thickness, he. The modulus and
the thickness of the single layer are de®ned such
that its stretching and bending sti�ness are identical

to those of the bilayer, with the proviso that M for
the single layer is taken about its own centerline.
This implies that

E 0eheDe � P �14a�
and

E 0eh
3
eDk

12
� ÿM: �14b�

Solving equations (14a) and (14b), with equations
(11) and (12), for E 0e and he gives

he �
���������������
ÿMDe
PDk

r
�

h1

�
E 02
E 01

x
�1=2

�
h1
h2
� E 02

E 01

� : �15�

The corresponding e�ective plane strain modulus is

E 0e �
P

heDe
� E 01

�
1� E 01h1

E 02h2

� 2�h1
h2

�
�
x
E 01
E 02

�1=2
: �16�

The energy release rate expressed in terms of the
e�ective properties is

G � 1

2

P 2

E 0ehe

� 6
M 2

E 0eh3e
: �17�

Given the de®nition of the modulus and thickness

of the single e�ective layer, the energy release rate
expressed as equation (17) is identical to the orig-
inal expression (8) for the bilayer.

The above expressions, together with the im-
pression strain (2), are used to calculate the energy
release rate in the wedge test as a function of dela-

mination length, a. The interface toughness, Gi, is
then obtained upon equating G in equation (8) to
Gi and upon equating exx from equation (2) with ei.
After rearranging, the interface toughness becomes

Gi �

 
E 01h1�1� u1�e1r � E 02h2�1� u2�e2r � �E 01h1 � E 02h2�e0

�
b

a

� 2
! 2

2�E 01h1 � E 02h2�
ÿ MDk

2
�18a�

where M is given by equation (10), and Dk must be

estimated or measured experimentally.
For a single layer, the above expression reduces

to

Gi

Eh
� �1� u�

2�1ÿ u�

 
er � e0
�1� u�

�
b

a

� 2
! 2

: �18b�

Note that the delamination length a (for a ®xed

interface toughness) is proportional to the im-
pression half-width, b. Recall that these expressions
are not expected to be accurate when the delamina-
tion length substantially exceeds the wedge length.

The relationships between the interface toughness
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and delamination length for a single layer ®lm are

displayed as Fig. 6. Full numerical results as well as
the closed form given as equation (18b) are shown
for both cone and wedge impressions. Far from the

impression, the curves approach the limit for spon-
taneous edge spalling due to the residual stresses
alone. The corresponding relationships for a bilayer
system, determined from equation (18a) are pre-

sented in Fig. 7, for three levels of residual strain in
the bottom ®lm, e1r, using the normalization
Gi=�E 0ehe�: The layer properties used in Fig. 7 corre-

spond to the bilayer system discussed in subsequent
sections. These results are used below to assess the
interface toughness for a TBC system.

3.2. Mode mixity

Since the interface toughness depends on mode-
mixity, it is of interest to determine the mode I and
mode II stress intensity factors. An exact solution

for the bilayer cannot be obtained without resorting
to numerical methods. However, an approximate
solution can be developed by replacing the bilayer
with the single ``e�ective'' layer.

For a single layer (in this case having the e�ective
properties de®ned earlier), the mode-mixity is given
by the standard decomposition [10]:

KI � P�������
2he

p cos�o� �
���
6
p

M�����
h3e

p sin�o� �19a�

and

KII � P�������
2he

p sin�o� ÿ
���
6
p

M�����
h3e

p cos�o� �19b�

where o is a function of the elastic properties of the
bottom layer and substrate. For a wide range of
material systems, o1528: The phase angle of the

interface crack is given by

c � tanÿ1
�
KII

KI

�
: �19c�

This representation is exact for the case of a single
layer; it is being used here as an approximation to
the bilayer case. It should be noted that the delami-

nation is open when KI > 0; otherwise, it is closed
and c �2908: Note that the impression strain
decreases the mode I component of the energy

release rate, since it elevates the compressive edge
load. Conversely, bending opens the crack and low-
ers the phase angle, as illustrated in Fig. 8.

4. ILLUSTRATION: APPLICATION TO A THERMAL
BARRIER COATING

Application of the wedge impression test is illus-

trated for a TBC system discussed elsewhere [6].
The material properties and dimensions are listed in
Table 1. The modulus of the porous top layer

(ZrO2) was determined to be E2 � 13 GPa, by using
the curvature measured on a fully decohered
bilayer, knowing the layer thicknesses and modulus
of the bottom layer (Al2O3){. This direct measure-

ment of E2 minimizes the uncertainties otherwise
attributed to variability and anisotropy. The rel-
evant parameters for this system are (assuming

values given in Table 1 and thicknesses h1 �
2:88 mm and h2 � 121:6 mm):

he

h1
� 14:1 �20a�

Fig. 7. Energy release rate distributions for the representa-
tive bilayer case considered in Section 4.

Fig. 6. Energy release rates for a single layer for both
cone and wedge indents, including FEA predictions and

the asymptotic predictions outlined in the text.

{ The curvature expression used in this procedure was

similar to equation (11), but based on the assumption that

the residual strain parallel to the decohesion direction was

unconstrained, since the measurement was taken on a

layer that was removed from the substrate.
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E 0e
E1
� 0:17 �20b�

G

Eehe

� 0:373e 21r � 0:822e1rei � 0:5e 2i �20c�

KI

E 0e
�����
he

p �
ÿ
0:582e1r �

���
2
p

ei
�
cos�o�

ÿ 0:189e1r sin�o� �20d�

and

KII

E 0e
�����
he

p �
ÿ
0:582e1r �

���
2
p

ei
�
sin�o�

ÿ 0:189e1r cos�o�: �20e�

Using the properties outlined in Table 1, the re-
sidual strains are approximately e1r1ÿ 0:0076 and
e2r1ÿ 0:0026: Based on these parameters, the

interface toughness is found to be Gi � 56 J=m 2:
The phase angle is c � 908 (pure mode II), since

the bending moment on the decohered layer is not

large enough to open the crack.

To gain some appreciation of the principal source

of the energy release rate, the separate contributions

from the alumina and the TBC are examined, as

well as the importance of bending of the decohered

layer. Without bending, the crack driving force

would be higher by about 10 J/m2{. Hence, the

crack driving force is dominated by the higher re-

sidual strain and modulus of the bottom layer of

Al2O3. If the top zirconia layer is completely neg-

lected, the energy release rate [via equation (18b)]

would be Gi � 52 J=m 2: Despite its thickness, the

comparatively low modulus of the top layer limits

the reduction due to bending. These values were

computed using the low end of the range of the

substrate thermal expansion coe�cient given in

Table 1. Using the high end would lead to a tough-

ness of about 80 J/m2. This di�erence emphasizes

the importance of accurately measuring residual

stresses in the layers.

The toughness is higher than that for the adjoin-

ing Al2O3 �G125 J=m 2), yet the delamination

Fig. 8. Phase angle of the energy release rate for the same material properties and geometry as con-
sidered in Section 4, with di�erent values of residual strain in the top layer.

{ This reduction re¯ects the decrease due to the curva-

ture term in equation (8).
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remains at the interface. A rationale for this is
given elsewhere [6]. Brie¯y, kinking of the crack

into the Al2O3 is inhibited by a combination of fac-
tors, particularly the high modulus of the Al2O3,
and the presence of a large residual compression in

this layer (3±4 GPa). Furthermore, there is an ap-
preciable frictional contribution to Gi since the
crack is closed and growing in pure mode II.

5. CONCLUSION

The wedge test provides a convenient, yet accu-

rate, means of measuring the interface toughness. It
is particularly straightforward for relatively weak
interfaces that lead to large delamination lengths,
such the behavior is accurately captured by closed-

form expressions. The interface toughnesses implied
from the impression test are a strong function of
the residual strain present in the layer, as illustrated

by Figs 6±8. Accurate measurements of this strain
are an essential aspect of interface toughness deter-
mination. The utility of these methods has been

demonstrated by analyzing measurements made on
a thermal barrier coating.
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APPENDIX

A.1. Numerical analyses

The wedge impression test is modeled as plane-
strain line contact between a rigid indenter and an
elastic±plastic half-space with a uni-axial stress±

strain relationship given as equation (1) in the main
body of the text. The tip of the indenter was
rounded to improve convergence during the early

stages of contact. The ®nal impression width was at
least 10 times the tip radius, and numerical studies
indicated that the results away from the tip were

self-similar and independent of indenter tip geome-
try. The outer boundary of the mesh was deter-
mined by increasing the size of the boundary until
the surface strains became independent of mesh

geometry at a location of approximately 150 times
the impression width. A series of convergence tests

indicated that the strain distributions were indepen-
dent of both mesh density and the size of the outer
boundaries. The self-similarity of the solution (i.e.

that the results can be scaled accurately by the im-
pression size) was veri®ed additionally by con®rm-
ing that the predicted normalized hardness, H/sy,
was independent of contact size.
Contact is modeled using an algorithm available

in the code. The rigid indenter is modeled as a con-

straint on the surface displacement and enforced
with a penalty method. The code uses internally
generated gap elements to determine which nodes
are in contact with the indenter at every load incre-

ment. Friction between the indenter and substrate
was modeled with a Coulomb friction law,
st � msn, where m is the coe�cient of friction, and

st, sn are the tangential and normal tractions at the
contact interface, respectively. For slipping nodes,
this relationship is enforced using Lagrange multi-

pliers. The friction coe�cient was taken as m � 0:5,
which for the cases presented (i.e. relatively blunt
indenters), results in strain distributions identical

with sticking friction, except for locations very near
the edge of contact.
Four-noded, reduced integration plane-strain

hybrid elements were used. These elements include

the hydrostatic component of stress as an additional
degree of freedom. These elements avoid signi®cant
convergence di�culties that otherwise result as a

result of the large hydrostatic stress generated by
the nearly incompressible plastic deformation
around the indenter. The models consisted of three

to four elements in the contact zone near the
rounded tip, 20 elements in the contact zone and
150 elements from the edge of contact to the outer
boundary, which were biased towards the im-

pression zone.
The coe�cient controlling the strain magnitude

in equation (2) was determined by a least-squares ®t

to the ®nite element data in the region de®ned by
c=bRx=bR150, where c/b is the closed-form esti-
mate of the plastic zone size, given as equation (4).

These results are presented in Table 2.

A.2. Alternative asymptotic form for strain

If one assumes that the indenter penetration (and

hence, surface dilation) is accommodated purely by
plastic deformation, and that pile-up (or sinking-in)
is negligible, an expression similar to equation (5)

can be derived with (d/x )2 in place of (b/x )
2
. This

procedure involves estimating the plastic zone size
via equation (4), relating the contact size to the

indentation depth via the indenter geometry, and
invoking the requirement that the edge of the plas-
tic zone is exactly at yield (dictated by an elastic±
perfectly plastic yield strain ey � sy=E). The asymp-
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totic strain distribution becomes

exx�x� �
 
4�1ÿ n 2�tan b

p
���
3
p �5ÿ 4n�

!�
d
x

� 2

:

The ®nite element results support this approxi-
mation when the material is ``soft'', with a small

yield strain and moderate hardening exponent;
when the results in Fig. 3 are re-plotted with this

normalization, they collapse to a single curve away
from the center of the impression. However, the

®nite element models do indeed account for the
downward displacement of the indenter due to elas-
tic deformation, which strictly speaking is a func-

tion of the size of the mesh. Thus, agreement
between numerical results and asymptotic forms
based on indenter displacement can be somewhat

sensitive to the dimensions of the mesh.
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