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ABSTRACT

Indentation tests at scales on the order of one micron have shown that measured hardness increases
signi_cantly with decreasing indent size\ a trend at odds with the size!independence implied by conventional
plasticity theory[ In this paper\ strain gradient plasticity theory is used to model materials undergoing
small!scale indentations[ Finite element implementation of the theory as it pertains to indentation modeling
is brie~y reviewed[ Results are presented for frictionless conical indentations[ A strong e}ect of including
strain gradients in the constitutive description is found with hardness increasing by a factor of two or more
over the relevant range of behavior[ The results are used to investigate the role of the two primary
constitutive length parameters in the strain gradient theory[ The study indicates that indentation may be
the most e}ective test for measuring one of the length parameters[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

Keywords ] A[ indentation and hardness\ B[ elasticÐplastic material\ C[ _nite elements[

0[ INTRODUCTION

Indentation tests have been used extensively to characterize the plastic properties of
solids[ Historically\ one of the primary goals of indentation testing has been to
estimate the yield stress by measuring the hardness\ de_ned as the load on the indenter
divided by the area of the resulting impression "e[g[ Atkins and Tabor\ 0854 ^ Johnson\
0869 ^ Rubenstein\ 0870#[ Recently\ hardness has been shown to be size!dependent
when the width of the impression is below about _fty microns[ Such small!scale
experiments are often referred to as micro!indentation tests "or nano!indentation tests
at the sub!micron scale# and have become a popular method of illustrating the size!
dependence of plastic deformation "Gane and Cox\ 0869 ^ Pethica et al[\ 0872 ^ Doerner
and Nix\ 0875 ^ Samuels\ 0875 ^ Stelmashenko et al[\ 0882^ Atkinson\ 0884 ^ Ma and
Clark\ 0884 ^ Poole et al[\ 0886#[ The measured hardness may double or even triple as
the size of indent decreases from about _fty microns to one micron[ In e}ect\ the
smaller the scale the stronger the solid[ This is a large e}ect which almost certainly
has signi_cant implications for other applications of metal plasticity at the micron
scale[ A size!dependence of indentation hardness is not encompassed by conventional
plasticity[ Simple arguments\ based on dimensional analysis\ reveal that any plasticity
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theory which does not contain a constitutive length parameter will predict size!
independent indentation hardness[

Recently\ new plasticity theories containing constitutive length scales have been
developed to characterize size!dependent plastic deformation "e[g[ Fleck and Hutch!
inson\ 0882\ 0885 ^ Acharya and Bassini\ 0885\ 0886#[ Micro!hardness tests are thought
to provide an e}ective method for characterizing a material|s ~ow response at small
length scales[ By correlating an indentation solution for a given theory with test data
in the size!dependent range\ one should be able to infer values of the constitutive
length parameters\ in much the same way as the macroscopic hardness test is used to
measure ~ow stress[

In this paper\ the FleckÐHutchinson "0886# strain gradient plasticity theory has
been used to determine the e}ect of the material length scale on predicted hardness
for small indents[ Prior to this work\ only one attempt appears to have been made to
analyze the size!dependence of micro!hardness tests with a continuum theory of strain
gradient plasticity[ Shu and Fleck "0885# applied an earlier version of the plasticity
theory that accounts for contributions of rotation gradients to hardening but not of
stretch gradients[ They found that a version of the theory based on rotation gradients
alone cannot account for the strong size!dependence observed experimentally[ In part\
their _nding provides the motivation for the present work which extends the study to
include the role of stretch gradients[ In addition\ contact will be made between the
present results and predictions from dislocation!based models of micro!indentation
size!dependence by Ma and Clarke "0884#\ Brown "0886# and Nix "0886#[

The constitutive behavior and its _nite element implementation are _rst brie~y
reviewed[ Results are then presented for conical indentation without friction[ The two
primary goals of this paper are ] "a# to assess the e}ectiveness of strain gradient
plasticity theory in accounting for the strong size!dependence observed in indentation
tests ^ and "b# to infer values of the constitutive length parameters via correlation of
the mechanics results with experimental data available in the literature[

1[ CONSTITUTIVE DESCRIPTION

The constitutive behavior of the material is described within the context of small
strains and small rotations[ A deformation theory version of strain gradient plasticity
is used here in the form given by Fleck and Hutchinson "0886#[ The formulation is
for a small strain\ non!linear elastic solid\ where both strain and strain gradients
contribute to the strain energy density[ It falls within the general class of solids
considered by Toupin "0851# and Mindlin "0854#[ Interpretation of the strain gradient
contribution to strain hardening in terms of the connection of strain gradients to the
generation of geometrically necessary dislocations has been discussed by Fleck et al[
"0883#[

The strain tensor is de_ned in terms of the displacements ui in the usual manner\
that is oij �

0
1
"ui\ j¦uj\i#[ The second gradient of the displacement vector is de_ned as

hijk � uk\ij ^ it can be expressed in terms of the strain gradients as hijk � ojk\i¦oik\j−oij\k[
The e}ective strain measure introduced below is taken to be a function of only the
deviatoric parts of the strain and strain gradient tensors\ de_ned as
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o?ij � oij−
0
2
dijokk "0a#

h?ijk � hijk−
0
3
"dikhjpp¦djkhipp# "0b#

such that h?ikk � 9[ Non!zero deviatoric strain gradients for the general axisymmetric
case are given in terms of the displacements in the Appendix[ Smyshlaev and Fleck
"0884# showed that the deviatoric strain gradient tensor could be decomposed into
three unique\ mutually orthogonal third order deviatoric tensors according to
h?ijk � h"0#

ijk ¦h"1#
ijk ¦h"2#

ijk \ where h"m#
ijk h"n#

ijk � 9 for m� n and each tensor preserves the
properties h"n#

ijk � h"n#
jik and h"n#

ikk � 9[ The steps required to carry out this decomposition
are also given in the article by Fleck and Hutchinson "0886#[

The e}ective strain measure used to de_ne the deformation theory is taken to be
the isotropic invariant

E1
e � 1

2
o?ijo?ij¦l1

0h
"0#
ijk h"0#

ijk ¦l1
1h

"1#
ijk h"1#

ijk ¦l1
2h

"2#
ijk h"2#

ijk [ "1#

The _rst term in "1#\ 1
2
o?ijo?ij\ is the invariant used to form the classical J1 deformation

theory\ and the strain gradient theory reduces to the classical theory in the limit in
which the strain gradients are small[ The three invariants of the strain gradients in
"1# represent the most general dependence on the deviatoric strain gradient tensor
that is isotropic and homogeneous of degree two[ The contribution is positive de_nite
when the three length quantities\ l\ are each non!zero[ These lengths are the new
constitutive parameters in the theory[

It is instructive to write the e}ective strain in a form which reveals more explicitly
its dependence on rotation gradients[ With the rotation as ui �

0
1
eijkuk\j\ where eijk is

the permutation tensor\ de_ne xij � ui\ j � eipko?kj\p as the rotation gradient[ As Fleck
and Hutchinson "0886# have noted\ the second and third of the above strain gradient
invariants depend only on the rotation gradients ]

h"1#
ijk h"1#

ijk � 3
2
xijxij¦

3
2
xijxji and h"2#

ijk h"2#
ijk � 7

4
xijxij−

7
4
xijxji "2#

Thus\ an equivalent alternative expression to "1# is

E1
e � 1

2
o?ijo?ij¦l1

0h
"0#
ijk h"0#

ijk ¦1
2
l1
CSxijxij¦" 3

2
l1
1−

7
4
l1
2#xijxji "3#

where l1
CS �"1l1

1¦01l1
2:4#[ The invariant h"0#

ijk h"0#
ijk depends on both stretch and rotation

gradients[ For deformations which are irrotational "i[e[ xij �9#\ only the _rst of the
length parameters\ l0\ has any in~uence[ It is through l1

0h
"0#
ijk h"0#

ijk that stretch gradients
make their presence felt[

The _rst version of the strain gradient theory "Fleck et al[\ 0883 ^ Fleck and
Hutchinson\ 0883# assumed strain gradients enter only through the one in invariant
of the rotation gradients\ xijxij\ according to

E1
e � 1

2
o?ijo?ij¦

1
2
l1
CSxijxij[ "4#

This is a special case of "3# with l0 �9\ l1 � 0
1
lCS and l2 �z

4
13

lCS[ This class of solids
falls within the framework of couple stress theory\ a sub!set of ToupinÐMindlin
theory[ Fleck et al[ "0883# analyzed wire torsion data for annealed copper wires
ranging in radius from 6Ð59 microns using the version of the plasticity theory based
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on "4#[ By _tting the theory to the data\ they inferred that lCS 3 3 mm for this material[
The deformations in wire torsion are such that the two other invariants of the strain
gradients in "3#\ h"0#

ijk h"0#
ijk and xijxji\ are identically zero "Fleck and Hutchinson\ 0886#[

Thus\ for this application\ there is no loss in generality in using a theory based on "4#
rather than "3#[ In other applications\ however\ contributions from stretch gradients
through l1

0h
"0#
ijk h"0#

ijk can be of dominant importance\ particularly when deformations
are nearly irrotational[ Examples of this type discussed by Fleck and Hutchinson
"0886# include void growth and cavitation\ crack tip _elds\ and indentation[

No examples have been identi_ed yet for which the third invariant of the strain
gradients in "3#\ xijxji\ plays a particularly important role[ To reduce the set of length
parameters from three to two\ we will exclude any dependence on xijxji in "3# by
taking l1 �z5:4l2 "with l1 � lCS:1 and l2 �z4:13lCS# such that "3# becomes

E1
e � 1

2
o?ijo?ij¦l1

0h
"0#
ijk h"0#

ijk ¦1
2
l1
CSxijxij[ "5#

From "1#\ it can be noted that this combination is positive de_nite if both l0 and lCS

are non!zero[ As mentioned above\ lCS controls the size e}ect in wire torsion\ while
the outcome of the present work will be that l0 is by far the more important of the two
parameters in micro!indentation[ Thus\ it seems likely that both length parameters\ l0
and lCS\ must be retained for general application of the theory[ Moreover\ unless it
turns out that these two length parameters have _xed proportion for all metals\ it
would appear that experimental data from at least two di}erent types of small scale
tests will be required to separately determine l0 and lCS[ Further discussion of this
issue will be given at the end of the paper[

A strain energy density function is assumed in the form

W"Ee# �w"Ee#¦
E

5"0−1n#
o1
ii "6#

where E is Young|s modulus and n is Poisson|s ratio[ The dependence on deviatoric
quantities w"Ee# is chosen such that in uniaxial tension the stressÐstrain behavior
derived from "6# reproduces the RambergÐOsgood tensile relation

o�
s

E
¦

2
6

sy

E 0
s

sy1
n

[ "7#

The work increment per unit volume associated with an arbitrary variation of the
displacements is

dW�sijdoij¦tijkdhijk "8#

where the stress quantities\ sij �sji and tijk � tjik\ are obtained from W by

sij �
1W
1oij

and tijk �
1W
1hijk

[ "09#

The principle of virtual work is given by

gV

ðsijdoij¦tijkdhijkŁ dV� gV

fidui dV¦gS

ðtidui¦rinjdui\ jŁ dS "00#
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where dV and dS are the volume and surface elements\ fi is the body force per unit
volume\ ti is the surface traction\ ri is the double stress traction\ and ni is unit surface
normal[ The equilibrium relationship derived from the principle is

sik\i−tijk\ij �−fk "01a#

while the stressÐtraction relationships for a straight boundary aligned with the x0 axis
are

tk �s1k−t1jk\j−t10k\0 "01b#

rk � t11k[ "01c#

StressÐtraction relationships for arbitrarily oriented and shaped boundaries are given
by Fleck and Hutchinson "0886#[

2[ FINITE ELEMENT FORMULATION AND INDENTATION MODEL

On the basis of the deformation strain gradient plasticity behavior outlined in the
previous section\ a _nite element scheme was derived for the general axisymmetric
case[ The potential energy of the system is given by

p"u# � gV $w"Ee#¦
0
1
k 0

oii

21
1

%dV−gS

ðtkuk¦rkDukŁ dS "02#

where k�E:"2"0−1n## is the bulk modulus and S is the portion of the boundary on
which tractions are prescribed[ The principle of minimum potential energy applies in
the usual manner\ i[e[ of all kinematically admissible displacement _elds\ the actual
displacement _eld will render p a minimum[ The governing equations are then found
by taking the _rst variation of "03# in the usual manner[ The _nite element dis!
cretization of the result follows standard procedures\ but is complicated by the
dependence of w on strain gradients[

The _nite element model is illustrated in Fig[ 0[ The contact radius is de_ned as a ^
the depth of penetration of the indenter is d[ The half!angle of the indenter\ b\ was
taken to be 61>\ which corresponds to a Vickers indenter[ The indenter is assumed to
be rigid[ Contact between the indenter and the substrate is assumed to be frictionless[
Studies on conventional elasticÐplastic solids indicate little di}erence between the
hardness predicted for a frictionless indenter and that for an indenter!substrate system
permitting no sliding[ The material is modeled as being a semi!in_nite half plane ^ the
size of the mesh was chosen by decreasing the size relative to the contact radius until
there was a negligible change in the calculated hardness[

2[0[ Choice of element

It is important to note that admissibility requirements of the second gradient terms
require C0 continuity in displacements[ Previous strain gradient modeling e}orts have
explored a variety of types of elements "Xia and Hutchinson\ 0885# and have shown
that element performance is strongly dependent on the constitutive behavior[ Based



M[ R[ BEGLEY and J[ W[ HUTCHINSON1943

Fig[ 0[ Geometry of the axisymmetric indentation model and boundary conditions[

on this earlier work\ an element similar to one initially derived for plate applications
was chosen ^ problems in previous work "Xia and Hutchinson\ 0885# with the element
concerning adequate hydrostatic stress _elds did not arise for the compressible
material modeled here[ More recently\ C9 elements with displacement gradients as
nodal degrees of freedom have been investigated and performed admirably for linear
elastic boundary value problems ^ these elements may prove more desirable for future
e}orts in strain gradient plasticity "Shu et al[\ 0886#[

The element is a three noded triangle with eighteen degrees of freedom[ For each
node\ the nodal variables are

ur\
1ur

1r
\

1ur

1z
\ uz\

1uz

1r
\

1uz

1z
[ "03#

Thus\ the elements produce C0 continuity at the nodes[ The shape functions were
derived by Specht "0877# and are outlined and discussed by Zienkiewicz and Taylor
"0878#[ In general\ the displacement gradients are not continuous across element
boundaries\ only at the nodes[ However\ the variation of displacement gradients along
element faces are de_ned such that the element passes the patch test and can exactly
reproduce constant strain gradient _elds[ This implies that there is no spurious energy
contribution from jumps in displacement gradients across element boundaries[

The constitutive behavior and interpolation outline above were used in de_ning a
general axisymmetric user element in the commercial code ABAQUS[

2[1[ Boundary conditions

Axisymmetry dictates that ur and 1ur:1z are zero along the axis of symmetry[ The
vertical displacement along the bottom of the mesh was constrained to be zero\
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while the radial quantities were unconstrained[ Derivatives of displacements must be
speci_ed in addition to displacements\ as they are additional nodal degrees of freedom[

For a frictionless indenter\ the proper boundary condition underneath the indenter
is a constraint between the radial and vertical displacements ^ the nodes in the contact
region are constrained to fall on the indenter\ with freedom to slide up and down the
face of the indenter[ For small strain theory and the shallow indenters considered
here\ this can be approximated by specifying the downward displacement and allowing
the radial displacement to be free[ The more shallow the indenter\ the more accurate
are these linearized boundary conditions[ Thus\ the following modi_ed boundary
conditions under the indenter were imposed ]

"i# uz"r# �−d¦
r

tanb
\

1uz

1r
�

0
tanb

"04a#

"ii# no restriction on ur\
1ur

1r
\

1ur

1z
\

1uz

1z
[ "04b#

In addition to approximating zero shear traction under the indenter\ "04b# results in
a zero double stress traction ðgiven by "01c#Ł\ enforced by the variational principle[

2[2[ Determinin` the proper contact radius and indent depth

The contact between the indenter and the substrate was simulated by assuming a
contact radius\ a\ and iterating to _nd the proper indentation depth\ d\ for that size
of indent[ The proper indentation depth is de_ned as the depth at which the normal
pressure between the indenter and material goes to zero at the edge of contact\ i[e[ at
r� a[ Using small strain theory for shallow indenters\ the pressure is given by the
traction in the vertical direction\ given by "01b#[ The pressure under the indenter
simpli_es to

tz �szz−1
1tzrz

1r
−

1tzzz

1z
[ "05#

For the strain gradient solid\ evaluating the tractions under the indenter using "05#
and the _nite element solution proved unreliable\ due to the di.culty in evaluating
the derivatives of the higher order stress quantities[ To avoid this\ the correct depth
was assumed to be that at which the nodal forces went to zero at the edge of contact[
Since the nodal forces represent the integrated average of the tractions over the
element faces\ this is consistent with the zero!traction criterion[ The benchmark test
results summarized below con_rm the accuracy of this method[

2[3[ Benchmark tests

The element performance and mesh geometry were tested by comparing predicted
hardness values with an analytical solution for shallow conical indentation of an
elastic half!space and some results based on conventional plasticity for the same
problems which were presented by Shu and Fleck "0885#[ In general\ the model was
quite accurate[ There was less than 1) error in the indentation load at a given
indentation radius compared with the analytical solution for the elastic problem[ The
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Fig[ 1[ Size!dependent hardness predictions as a function of material length scale over contact radius\ for
a frictionless conical indenter with a 61> half!angle[

hardness values "loads# for conventional plasticity were within 4) of the benchmark
tests outlined by Shu and Fleck "0886#[

The added computational expense of six degrees of freedom per node was partially
compensated by the greater accuracy of the higher order element[ The mesh density
was chosen by examining the hardness values as the size of the smallest element
"located adjacent to the contact radius# decreased[ For both the conventional and
strain gradient theories\ the change in hardness was less than several percent when
the minimum element size was decreased from 9[923a to 9[905a ^ decreasing the
minimum element size further by a factor of two led to even smaller changes in
predicted hardness\ although computation time increased signi_cantly[ The mesh used
to generate the results was comprised of 0499 elements\ with a minimum element size
of 9[905a[

3[ NUMERICAL RESULTS

3[0[ Size!dependent hardness

Computed size!dependent hardness for the conical indenter with a half!angle
b�61> is presented in Fig[ 1\ where the hardness H is de_ned as P:"pa1# with P as
the load[ These results are for the strain gradient solid with l0 � lCS 0 l for several
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Table 0[ Values of the material len`th scale determined from least squares _ts with
several experiments from the literature

—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Macroscopic
hardness*H9 n � 2 n � 4

Orientation MPa mm mm
*ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
Stelmashenko et al[ "0882# "099#ð900Ł 2099 9[41 9[30

"009# 2199 9[27 9[21
"000#ð900Ł 2299 9[14 9[11

Ma and Clarke "0884# ð099Ł 259 9[28 9[23
ð009Ł 264 9[11 9[08

Nix "0886# 455 9[59 9[31
Atkinson "0884# Work!hardened 9[70 9[62

Annealed 0[65 0[45
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

values of the hardening exponent n[ The particular solid with l0 � lCS 0 l hardens in
response to both stretch and rotation gradients[ It was labeled an SG solid by Fleck
and Hutchinson "0886# and was used in that paper to study the e}ect of strain
gradients in several examples[ Emphasis is on the variation of hardness with relative
size of the indent as measured by the ratio of the indent radius to the material length
parameter l[ The results in this paper have been computed with sy:E�0:299 and
n�9[2[

The hardness\ H\ in Fig[ 1 has been normalized by the conventional plasticity result
at the same value of n\ i[e[ the limiting result for l:a: 9\ which is given in Table 1 in
the Appendix[ The values for the conventional limit in Table 1 can be used with Fig[
1 to determine the actual hardness for a given length scale or size of indent[ The plot
thus represents the relative increase in hardness due to including strain gradients in
the constitutive formulation[ The abscissa in Fig[ 1 is l:a\ and it can be seen that size!
dependent increases in hardness begin to become signi_cant when a is less than about
09l[ Hardness is approximately doubled for indentation radii as small as about twice
the length scale parameter l[ The relative increase in hardness for n�4 is greater than
for n�2\ although the absolute increase in hardness at corresponding values of l:a
are very nearly the same for the two strain hardening levels[ In Section 4\ the absolute
value of the material length parameter will be estimated by comparison with exper!
iments available in the literature[

3[1[ Deformation characteristics

The deformed surface pro_les under the indenter are shown in Fig[ 2"a# for several
indent sizes[ In this _gure\ the radial and vertical locations have been normalized by
the material length scale\ which is assumed to be a material property[ The values of
the indent load "labeled in the _gure# and displaced pro_les accent the role of the
normalizations used in calculating the hardness[ The hardness\ which is de_ned as the
average stress under the indenter\ is a function of the size of indent relative to the
material property l\ as already noted[
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Fig[ 2[ "a# Deformed surface pro_les for several indent sizes and constant material length scale[ Given in
the _gure are normalized values of the indent load[ "b# Deformed surface pro_les for constant indent size
and various length scales[ Given in the _gure are normalized values of material length scale and cor!

responding indent load[



The mechanics of size!dependent indentation 1948

Fig[ 3[ E}ective strain contours for various material length scales ^ each curve represents the estimated
plastic zone size "i[e[ Ee ¼ 0[2oy# for a given length scale to indent size ratio[

Figure 2"b# illustrates the e}ect of variations of material length parameter at
constant indent size[ These cases can be considered to be indents of the same size
"de_ned as having the same contact radius# in materials with di}erent length par!
ameters l[ The materials with the larger l are harder\ and require greater loads to
create the same contact radius[ This is consistent with both the experimental behavior
and anticipated behavior of the constitutive description\ which dictates that the
amount of hardening increases as l increases[ The curves show that this increased
hardening results in pro_les that are increasingly similar to the elastic case where no
pile!up occurs[

The e}ect of the material length parameter on the amount of plasticity underneath
the indenter can be investigated by estimating the size of the plastic zone under the
indenter[ In Fig[ 3\ approximate boundaries to the plastic zone are shown for several
length parameters l\ all for the same contact radius a and the same strain hardening
level\ n�4[ The plastic zone is estimated as the region in which the e}ective stress
measure is greater than sy or\ equivalently\ Ee × 0[2oy\ as determined by the stressÐ
strain relationship "7#[ The size of the plastic zone for the conventional plasticity
limit\ given approximately for the case l:a�9[990# is consistent with previously
published results "e[g[ Bhattacharya and Nix\ 0880 ^ Giannakopoulos and Larsson\
0886 ^ Shu and Fleck\ 0886#\ regardless of whether ~ow or deformation plasticity
theory was used[ Figure 3 illustrates that increasing the material length parameter l\
or\ equivalently\ decreasing the size of the indent a\ increases the extent of the plasticity



M[ R[ BEGLEY and J[ W[ HUTCHINSON1959

Fig[ 4[ Ratio of indentation volume over estimated plastic zone volume vs indentation depth[ The volume
of the plastic zone was estimated by _tting the curves in Fig[ 3 with a half!ellipsoid of revolution[

zone relative to the indent size[ When the indent radius is as small as 1l\ the extent of
the plastic zone is nearly doubled[ This is a large e}ect\ but not surprising given the
e}ect of l on the indentation load[

The e}ect is further illustrated in Fig[ 4\ which presents the ratio of the indentation
volume over the volume of the plastic zone[ The volume of the plastic zone was
estimated by identifying the plastic zone as the region inside the appropriate contour
in Fig[ 3 and _tting the shape of the zone with a half!ellipsoid of revolution[ Ma and
Clarke "0884# have presented experimental results in a similar manner[ They estimated
the extent of plastic ~ow by measuring the size of the plastic zone at a given depth[
Their results are presented in the same manner as in Fig[ 4\ with the ratio of indentation
volume to plastic zone volume vs indentation depth[ Their experiments con_rm the
trend displayed in Fig[ 4 ] smaller indents have signi_cantly larger relative plastic zone
sizes[

3[2[ Role of the individual len`th parameters\ l0 and lCS[

The results presented above are for the SG solid for which the ratio of the amplitudes
of the length parameters in "5# are _xed according to l0 � lCS 0 l "with l1 � 0

1
lCS and
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Fig[ 5[ Normalized hardness predictions as a function of individual length scale parameters ^ in case "i# lCS

is constant and l0 varies\ in case "ii# l0 is constant and lCS varies[

l2 �z
4
13

lCS#[ There is no physical basis for this particular choice of ratio\ except that
it ensures that both stretch and rotation gradients in~uence gradient hardening[ This
choice also ensures that Ee is positive de_nite because each of the three length
parameters\ li\ in "1# are non!zero[

To gain some insight on the role of individual length parameters on hardness\
calculations were carried out in which l0 and lCS were varied independently[ Nor!
malized hardness predictions are shown in Fig[ 5 for a material with sy:E�0:299\
n�4 and n�9[2[ Case "i# displays the dependence of the normalized hardness on
l0:a with lCS:a _xed at 9[2\ while case "ii# gives the dependence on lCS:a with l0:a _xed
at 9[2[ The point where the two curves cross at l0:a� lCS:a�9[2 is the case of the SG
solid[ The relative slopes of the two cases illustrate that l0 has much more e}ect on
the hardness than lCS[ A decrease of l0 by 49) ðcase "i#Ł drops the size!dependent
hardness elevation by 59)[ Conversely\ the length parameter associated with the
couple stress theory\ lCS\ plays a relatively insigni_cant role[ A 49) change in lCS only
results in approximately a 09) change hardness elevation[ The results are consistent
with the results of Shu and Fleck "0885#\ who found the couple stress theory did not
predict signi_cant hardness increases[ Extrapolating the results for case "i# to l0:a�9
"see Fig[ 5#\ one _nds a size!dependent hardness elevation on the order of 09) for
the couple stress solid with lCS:a�9[2[ Shu and Fleck report a 4) elevation for this
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case ^ the discrepancy can be explained by minor di}erences in the assumed tensile
stressÐstrain law "7# and element performance[

An open question remains ] What is the relative proportion of the material length
parameters l0 and lCS< Hopefully\ insights will come from fundamental dislocation
mechanics[ It seems more likely\ however\ at least in the short term\ that the answer
will come from correlation with experiments which di}erentiate the two contributions\
such as indentation and wire torsion[ The parameter lCS is clearly of secondary
importance in indentation[ By contrast\ as noted earlier\ l0 has no in~uence on wire
torsion[ In the present study\ a non!zero value of lCS is required to ensure a positive
de_nite formulation for the strain energy density[ When the ratio lCS:l0 is taken to be
too small\ the _nite element model becomes ill!conditioned[ Thus\ the SG solid with
l0 � lCS 0 l provides a useful choice in the present study[ Identi_cation of l by _tting
the solutions for the SG solid to experimental indentation data should be regarded as
an approximate determination of l0 with no implication for lCS[

4[ COMPARISON WITH EXPERIMENTS AND DISLOCATION
MODELS ] CHOICE OF THE MATERIAL LENGTH PARAMETER l

Indentation hardness data of Ma and Clark "0884# on silver single crystals with
two orientations relative to the axis of the indenter are shown in Fig[ 6"a#\ and another
set of data on tungsten single crystals from Stelmashenko et al[ "0882# at three
orientations are shown in Fig[ 6"b#[ In the _rst case\ the hardness H is plotted against
the indentation depth "h#\ while in the second it is plotted against the indent diagonal
"D#[ Ma and Clarke used a Berkovich indenter "54[2> face angle# with the same area!
depth ratio as the Vicker|s indenter "57> face angle# used by Stelmashenko et al[ There
is some dependence of the measured hardness on crystal orientation relative to the
indentation direction in both sets of data\ but size!dependence dominates[ Super!
imposed on the data in Fig[ 6 are the present theoretical predictions from Fig[ 1 for
n�2\ corresponding to a high strain hardening level characteristic of annealed metals[

The theoretical predictions were generated in the following manner[ The results in
Fig[ 1 were _tted with second order polynomials to obtain H:H9 as a function of
l:a[ The limiting macroscopic hardness "H9 0H for l:a�9# chosen for the _t is
approximately the value of the hardness obtained in the experiments for the largest
indent[ These values are given in Table 0 and are indicated in each plot in Fig[ 6[
Indents of the same area are compared ^ the contact radius in the prediction was
related to the experimental depth "or diagonal size# that would give the same projected
area[ Equating the areas for a 61> cone and a Berkovich indenter yields a�1[7h\
where h is the experimental depth[ The relationship for a Vickers indenter is a�9[34D\
where D is the diagonal of the impression in the experiment[� These equations
substituted into the polynomials yields an expression for the predicted hardness as a

� Since the cone used here has a slightly higher area:depth ratio than the Vickers and Berkovich indenters\
the depth of the prediction is slightly smaller than the actual depth in the experiments[ Using a cone angle
of 69[2> gives the same area:depth relation and hence\ compares indents of equal area and depth ^ the
equations above would not change[
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Fig[ 6[ "a# Comparison of the experimental results of Ma and Clarke "0884# and the theoretical predictions
given in Fig[ 1[ The lines indicate the results of a least squares _t to determine the material length scale[
The experiments were done using a Berkovich indenter with a 54[2> face angle[ "b# Comparison of the
experimental results of Stemalshenko et al[ "0884# and the theoretical predictions given in Fig[ 1[ The lines
indicate the results of a least squares _t to determine to the material length scale[ The experiments were

done using a Vickers indenter with a 57> face angle[
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function of experimental depth "or diagonal# and the material length scale l[ The
length scale was then determined by a least squares _t of the functions H� f"h\ l# to
the experimental data[ This was done for both n�2 and n�4\ and the results are
tabulated in Table 0[ For all cases\ values for l in the range 9[1Ð9[5 mm _t the data
very well[

For hardnesses which do not exceed the macroscopic hardness\ H9\ by more than
a factor of about 1\ the numerical results of Fig[ 1 can be well approximated by a
linear dependence on the inverse indent radius according to

H
H9

� 0¦c"n\sy:E#
l
a
[ "06#

For sy:E�0:299\ the numerical results give c 3 0[74 for n�2 and c 3 1[32 for n�4[
A somewhat di}erent dependence of H on the indent size has been suggested on

the basis of dislocation arguments by De Guzman et al[ "0882#\ Ma and Clarke "0884#\
Poole et al[ "0886# and Nix "0886#[ Here\ Nix|s "0886# result will be quoted as it is the
most detailed[ The starting point of each of the above derivations is that the ~ow
stress follows Taylor|s relation t� ambr0:1\ where a is a constant depending on
structure which is about 9[2 for FCC materials\ m is the shear modulus\ b is the
Burgers vector\ and r is the total dislocation density[ The total dislocation density is
taken to be the sum of the statistically stored dislocations\ rS\ and the geometrically
stored dislocations\ rG\ according to r�rS¦rG[ The statistically stored dislocations
are related to the average plastic strain\ while the geometrically necessary dislocations
are tied to the incompatibility of the deformations induced by the indenter[ Nix takes
rG �2"cotb#1:"05bh#[ His _nal result for the size!dependent hardness is

0
H
H91

1

� 0¦
h�
h

"07#

where H9 � 2z2ambzrS and h��2"cotb#1:"05brS#[ Note that h�:h is equivalent to
a�:a\ where a�� h�:cotb[ For small values of a�:a\ "07# also gives an inverse depen!
dence on indent size as in "06#[ The two results are brought into coincidence if

c"n\sy:E#l� 0
1
a�[ "08#

Di}erences between "06# and "07# become noticeable for values of a�:a greater than
about 0:1[

Nix "0886# plotted data for copper single crystals of McElhaney et al[ "0886# as
"H:H9#1 vs 0:h\ presented here in Fig[ 7[ This data is taken with a Berkovich diamond
pyramidal indenter with a 54[2> face angle[ The linear dependence of "H:H9#1 with
0:h displayed by the data over the range from h�0:4Ð1 mm is striking[ Nix extrapo!
lated the unnormalized data to 0:h�9 to obtain H9 �445 MPa[ The value\ h��0[57
mm\ in "07# gives the best _t to the data[ Poole et al[ "0885# also presented plots of H1

vs 0:h for their micro!indentation data on two sets of copper polycrystals\ one
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Fig[ 7[ "a# Comparison of the experimental results of McElhaney et al[ "0886#\ the theoretical predictions
of Nix ðeqn "07#Ł and the theoretical predictions given in Fig[ 1[ The experiments were done using a

Berkovich indenter with a 54[2> face angle[

annealed and one work hardened[ Their data indicates a value of h� for the work
hardened copper\ which is roughly one quarter that for the annealed copper[ Their
data\ however\ is less convincing as to the linear dependence of "H:H9#1 on 0:h[

Superimposed onto Fig[ 7 are the numerical results from the present analysis " from
Fig[ 1# for the case n�2\ using H9 �445 MPa and accounting for the di}erence
between the pyramidal and conical indenters in the manner discussed earlier[ The
least squares _t outlined earlier results in the value l�9[5 mm[ "A summary of the
_tting results is included in Table 0[# As mentioned above\ the present results do not
produce a linear dependence of "H:H9#1 on 0:h over the full range of 0:h[ The
dependence of the presence results seen in Fig[ 7 is a consequence of the composition
of the invariants employed in "5#[ In strain gradient plasticity\ strain gradients are
associated with geometric dislocations\ while statistically stored dislocations are
associated with the deviator strains "Fleck and Hutchinson\ 0886#[ Thus\ rather than
a linear dependence of the form rS¦rG\ the e}ective strain Ee in "5# models a
dependence composed according to the so!called harmonic mean as zr1

S¦r1
G[ This

choice has been made largely for mathematical convenience[ Alternative compositions
to "5# are discussed by Fleck and Hutchinson which are capable of modeling the
linear dependence\ rS¦rG[ Speci_cally\ the choice

Ee � $0
1
2
o?ijo?ij1

l:1

¦0l1
0h

"0#
ijk h"0#

ijk ¦
1
2
l1
CSxijxij1

l:1

%
0:l

"19#

models the linear dependence for l�0 and reduces to "5# for l�1[ Until more data
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becomes available\ we leave for the future the investigation of whether an alternative
composition such as "19# should be used in the strain gradient plasticity formulation[

Finally\ the theoretical results in Fig[ 1 have been _t to hardness data collected and
analyzed by Atkinson "0884#[ Atkinson conducted indentation tests on a wide range
of polycrystalline metals and extensively analyzed the data\ with the goal of quan!
tifying the size e}ect through relatively simple empirical formulae containing par!
ameters to be determined by _tting the experimental hardness trends[ One of the
signi_cant results of Atkinson|s analysis is the _nding that the variance of the _tting
parameters is not greater for smaller indents than larger indents[ This emphasizes
that measurement error does not systematically increase with decreasing indent size[
Atkinson|s took data for relatively large indents\ with the radius of the smallest
indents no smaller than about 4 mm[ Consequently\ his hardness measurements for
the smallest indents were no more than 14Ð24) above the macroscopic hardness
values[ Atkinson found distinct di}erences among metals that divided along two
lines ] metals which were strain hardened by plastic working and those that were
annealed[ By choosing the material length parameter l for the present results in Fig[
1 to _t Atkinson|s data for a given class of metals\ we were able to accurately reproduce
the variation of H:H9 with indent size[ Typically\ the value of l for an annealed "soft#
metal was found to be about 0[5 mm[ The corresponding value for a work hardened
"hard# metal was between 0:1 and 0 mm[ The values given in Table 0 are the results
to _tting average results presented in Atkinson|s paper[

In summary\ indentation data appears to be an excellent means to infer the material
length scale l in the strain gradient plasticity theory[ As emphasized in Section 3\ l
should be identi_ed with the length parameter l0 associated with stretch gradients in
"5#\ since lCS has little in~uence on indentation[ The values of l inferred from exper!
imental data for a number of materials lies with the range for about 0:3Ð0 mm\ with
the hardest materials having the smallest values of l[ This is consistent with the fact
that the free slip distance of dislocations decreases with hardness\ and that l is related
to the free slip distance[

ACKNOWLEDGMENTS

This work was supported in part by the ONR through Grant N99903!85!09948\ by the NSF
through Grant NSF!CMS!85!23521\ and by the Division of Engineering and Applied Sciences\
Harvard University[

REFERENCES

Acharya\ A[ and Bassani\ J[ L[ "0885# On non!local ~ow theories that preserve the classical
structure of incremental boundary value problems[ In IUTAM Symposium on Mic!
romechanics of Plasticity and Dama`e\ ed[ A[ Pineau and A[ Zaoui\ pp[ 2Ð09[ Kluwer
Academic Publishers[

Acharya\ A[ and Bassani\ J[ L[ "0886# Incompatibility and crystal plasticity[ To be published[
Atkinson\ M[ "0884# Further analysis of the size e}ective in indentation hardness tests of some

metals[ J[ Mater[ Res[ 09\ 1897Ð1804[



The mechanics of size!dependent indentation 1956

Atkins\ A[ G[ and Tabor\ D[ "0854# Plastic indentation in metals with cones[ Journal of the
Mechanics and Physics of Solids 02\ 038Ð053[

Bhattacharya\ A[ K[ and Nix\ W[ D[ "0880# Finite element analysis of cone indentation[
International Journal of Solids and Structures 16\ 0936Ð0947[

Brown\ L[ M[ "0886# Transition from laminar to irrotational motion in plasticity[ To be
published[

De Guzman\ M[ S[\ Neubauer\ G[\ Flinn\ P[ and Nix\ W[ D[ "0882# The role of indentation
depth on the measured hardness of materials[ Mater[ Res[ Symp[ Proc[ 297\ 502Ð507[

Doerner\ M[ F[ and Nix\ W[ D[ "0875# A method for interpreting the data from depth sensing
indentation measurements[ J[ Mater[ Res[ 0\ 590Ð598[

Fleck\ N[ A[ and Hutchinson\ J[ W[ "0882# A phenomenological theory for strain gradient
e}ects in plasticity[ Journal of the Mechanics and Physics of Solids 30\ 0714Ð0746[

Fleck\ N[ A[ and Hutchinson\ J[ W[ "0886# Strain gradient plasticity[ In Advances in Applied
Mechanics\ ed[ J[ W[ Hutchinson and T[ Y[ Wu\ Vol[ 22[ Academic Press\ New York[

Fleck\ N[ A[\ Muller\ G[ M[\ Ashby\ M[ F[ and Hutchinson\ J[ W[ "0883# Strain gradient
plasticity ] theory and experiment[ Acta Metallica Materiala 31\ 364Ð376[

Gane\ N[ and Cox\ J[ M[ "0869# The microhardness of metals at very low loads[ Philos[ Ma`[
11\ 770Ð780[

Giannakopoulos\ A[ E[ and Larsson\ P[!L[ "0886# Analysis of pyramid indentation of pressure!
sensitive hard metals and ceramics[ Mech[ Matls 14\ 0Ð24[

Johnson\ K[ L[ "0869# The correlation of indentation experiments[ Journal of the Mechanics
and Physics of Solids 07\ 004Ð015[

Ma\ Q[ and Clarke\ D[ R[ "0884# Size dependent hardness of silver single crystals[ J[ Mater[
Res[ 09\ 742Ð752[

McElhaney\ K[ W[\ Vlassak\ J[ J[ and Nix\ W[ D[ "0886# J[ Mater[ Res[\ to be published[
Mindlin\ R[ D[ "0854# Micro!structure in linear elasticity[ Arch[ Ration[ Mech[ Anal[ 05\ 40Ð

67[
Nix\ W[ D[ "0886# Elastic and plastic properties of thin _lms on substrates ] nanoindentation

techniques[ Mat[ Sci[ and En`r[ A\ 123Ð125\ 26Ð33[
Pethica\ J[ B[\ Hutchings\ R[ and Oliver\ W[ C[ "0872# Hardness measurements at penetration

depths as small as 19 nm[ Philos[ Ma`[ A37\ 482Ð595[
Poole\ W[ J[\ Ashby\ M[ F[ and Fleck\ N[ A[ "0885# Micro!hardness tests on annealed and

work!hardened copper polycrystals[ Scripta Metall[ Mater[ 23\ 448Ð453[
Rubenstein\ C[ "0870# A critical appraisal of static hardness measurements[ Journal of Applied

Mechanics 37\ 685[
Samuels\ L[ E[ "0875# Microindentation Techniques in Materials Science and En`ineerin`\ ed[

P[ J[ Blau and B[ R[ Law\ pp[ 4Ð13[ ASTM STP 779\ American Society for Testing and
Materials\ Philadelphia\ PA[

Shu\ J[ and Fleck\ N[ A[ "0886# The prediction of a size e}ect in micro!indentation[ International
Journal of Solids and Structures\ submitted[

Shu\ J[ Y[\ King\ W[ E[ and Fleck\ N[ A[ "0886# Finite elements for materials with strain
gradient e}ects[ International Journal of Numerical Methods in En`ineerin`\ submitted[

Smyshlaev\ V[ P[ and Fleck\ N[ A[ "0885# The role of strain gradients in the grain size e}ect
for polycrystals[ Journal of the Mechanics and Physics of Solids 33\ 354Ð385[

Specht\ B[ "0877# Modi_ed shape functions for the three node plate bending element passing
the patch test[ International Journal of Numerical Methods in En`ineerin` 15\ 694Ð604[

Stelmashenko\ N[ A[\ Walls\ M[ G[\ Brown\ L[ M[ and Miman\ Y[ V[ "0882# Microindentation
on W and Mo oriented single crystals ] An SEM study[ Acta Metallica Materiala 30\ 1744Ð
1754[

Toupin\ R[ A[ "0851# Elastic materials with couple stresses[ Arch[ Ration[ Mech[ Anal[ 00\ 274Ð
303[

Xia\ Z[ C[ and Hutchinson\ J[ W[ "0885# Crack tip _elds in strain gradient plasticity[ Journal
of the Mechanics and Physics of Solids 33\ 0510Ð0537[

Zienkiewicz\ O[ C[ and Taylor\ R[ L[ "0878# The Finite Element Method ] Volumes I and II\ 3th
edn[ McGraw!Hill\ London[



M[ R[ BEGLEY and J[ W[ HUTCHINSON1957

APPENDIX

Table A0[ Non!zero strain `radients for the `eneral axisymmetric case
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Table A1[ Hardness predicted for conventional plasticity
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

"sy:E# � 0:299 ^ n � 9[2 ^ "l:a# � 9[990
"H:sy# �"P:sypa1# Approximate d:a

n � 2 6[38 9[26
n � 4 4[46 9[24
n � 09 2[74 9[22
—––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––


