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Abstract

An investigation of asymptotic crack tip singular ®elds and their domain of validity is carried out for
mode I cracks in solids characterized by the phenomenological strain gradient plasticity theory proposed
by Fleck NA, Hutchinson JW. (Strain gradient plasticity. In: Hutchinson JW, Wu TY, editors.
Advances in applied mechanics, vol. 33. New York: Academic Press, 1997. pp. 295±361.) Separable
near-tip singular ®elds are determined where ®elds quantities depend on the radial and circumferential
coordinates �r, y� according to r pf �y�. The singular ®eld is completely dominated by the strain gradient
contributions to the constitutive law. In addition to the asymptotic analysis, full ®eld numerical
solutions are obtained by a ®nite element method using elements especially suited to the higher order
theory. It is found that the singular ®eld provides a numerically accurate representation of the full ®eld
solution only within a distance from the tip that is a tiny fraction of the constitutive length parameter.
The constitutive theory itself is not expected to be valid in this domain. Curiously, the normal traction
acting across the extended crack line ahead of the crack tip is found to be compressive in the singular
®eld. The conclusion which must be drawn is that the singular ®eld has a tiny domain of mathematical
validity (neglecting crack face interaction), but no domain of physical validity. The signi®cant elevation
of tractions ahead of the crack tip due to strain gradient hardening occurs at distances from the crack
tip which are well outside this tiny domain in a region where the plasticity theory is expected to be
applicable. The asymptotic singular ®elds are incapable of capturing the e�ect of traction
elevation. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Attempts to link macroscopic fracture behavior to atomistic fracture processes are frustrated
by the inability of classical plasticity theories to model stress±strain behavior adequately at the
small scales involved in crack tip deformation. For example, in a remarkable series of
experiments, Elssner et al. [1] measured both the macroscopic fracture toughness and atomic
work of separation of an interface between a single crystal of niobium and a sapphire single
crystal. The macroscopic fracture toughness was measured using a four-point bending specimen
designed for the determination of interfacial toughness, while the atomic value was inferred
from the equilibrium shape of microscopic pores on the interface. The macroscopic fracture
toughness was 2±3 orders of magnitude higher than the atomic work of separation because of
the large amount of plastic ¯ow in niobium. On the other hand, the interface crack tip
remained atomistically sharp, i.e., it was not blunted even though niobium had a large number
of dislocations. The stress level needed to produce atomic decohesion of a lattice or a strong
interface is typically of the order of 0.03 times the Young's modulus, or 10 times the tensile
yield stress. However, as Hutchinson [2] pointed out, the stress level that can be achieved near
a crack tip is not larger than 4±5 times the yield stress according to the models based on
classical plasticity theories. This clearly falls short of triggering the atomic decohesion observed
in Elssner et al's [1] experiments.
The strain gradient plasticity theories may provide such a link between macroscopic fracture

behavior and atomistic fracture processes. The theories have been developed for application to
materials and structures whose dimension controlling plastic deformation falls roughly between
0.1 and 10 microns (e.g., [3±7]). Within this range of microns and submicrons, metals require
signi®cantly higher stresses to induce plastic deformation than at larger macroscopic scales.
This signi®cant elevation in stresses has been observed in many small-scale experiments, such
as micro-indentation and nano-indentation [8±13], micro-torsion [5] and micro-bending [14].
This increase in stress level comes from the storage of geometrically necessary dislocations at
the microscale [15±17], which causes materials to further work harden in addition to plastic
work hardening from statistically stored dislocations. The geometrically necessary dislocations
are directly related to the local curvature of deformation, or equivalently strain gradients (e.g.,
[5,6,17], which is the reason that strain gradient appears in the constitutive model of microscale
(strain gradient) plasticity.
There are several theories of strain gradient plasticity. Fleck and Hutchinson [3] and Fleck et

al. [5] developed a phenomenological theory of strain gradient plasticity based on the rotation
gradients of deformation. Fleck and Hutchinson [4] further extended the phenomenological
theory to include both stretch gradients and rotation gradients of deformation. An alternative
formulation of strain gradient plasticity was proposed by Gao et al. [6] and Huang et al. [7],
which was derived from Taylor's dislocation model and a multiscale approach to connect
strain gradients with the density of geometrically necessary dislocations.
Strain gradient e�ects are important near a crack tip due to the crack tip singularity. There

are some studies on the asymptotic crack tip ®elds [18±21] as well as full-®eld solutions [20,22]
in rotation-gradient-based strain gradient plasticity. However, the anticipated signi®cant
elevation in stresses is not observed near the crack tip because the e�ect of stretch gradients
has not been accounted for in their studies (e.g., [23,24]).
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In order to account for both stretch gradients and rotation gradients of deformation, we use
the phenomenological strain gradient plasticity theory [4] to investigate the asymptotic crack
tip ®eld and its domain of validity. We begin with a summary of the phenomenological strain
gradient theory in Section 2. The asymptotic crack tip ®elds are obtained in Section 3, while a
®nite element method especially suite to the higher order continuum theory is used in Section 4
to determine the domain of validity of the asymptotic crack tip ®elds. It is found that the
singular asymptotic crack tip ®eld provides a numerically accurate representation of the full-
®eld solution only within a distance from the tip that is a tiny fraction of the constitutive
length parameter. The constitutive theory is not expected to be valid in this domain. It is
concluded that the asymptotic ®eld has a tiny domain of mathematical validity, but no domain
of physical validity. The signi®cant elevation in stresses due to strain gradient e�ects, however,
occurs well outside this tiny domain and in a region where the plasticity theories are expected
to be applicable.

2. Summary of the phenomenological strain gradient plasticity theory

2.1. The phenomenological strain gradient plasticity theory

The phenomenological strain gradient plasticity theory [4] includes both rotation gradients
and stretch gradients of deformation. It is summarized in this section for plane-strain �e33 � 0�
deformation theory.
The in-plane strains eab and strain gradients Zabg are related to displacements ua by

eab � 1

2
�ua, b � ub, a�, a, b � 1, 2, �1�

Zabg � ug, ab, a, b, g � 1, 2: �2�
Since the near-tip asymptotic ®eld is dominated by plastic deformation, elastic deformation can
be neglected such that the material is incompressible. This requires

eaa � 0, Zgaa � 0, g � 1, 2: �3�
The work conjugates of strains and strain gradients are (symmetric) stresses sab �� sba, a,
b � 1, 2�, and (symmetric) higher-order stresses tabg �� tbag a, b, g � 1, 2�, respectively. For an
incompressible solid, the constitutive law of the deformation theory of strain gradient plasticity
can be written in terms of the strain energy density as W as

s 0ab �
@W

@eab
, t 0abg �

@W

@Zabg
, a, b, g � 1, 2, �4�

where s 0ab�sabÿ 1
3�sdd�s33�dab, a, b � 1, 2 are deviatoric stresses, t 0abg�tabgÿ 1

4 ��tadd�ta33�dbg��tbdd� tb33�dag�, a, b, g � 1, 2 are deviatoric higher-order stresses. The strain energy density W
is assumed to depend only on second-order invariants of strains and strain gradients. The
second-order invariant of strains is

J.Y. Chen et al. / Engineering Fracture Mechanics 64 (1999) 625±648 627



ee �
���������������
2

3
eabeab

r
, �5�

while there are three second-order invariants of strain gradients for an incompressible solid and
they are given by [25]

ZaagZbbg ZabgZabg and ZabgZgba: �6�

Fleck and Hutchinson [4] combined the second invariants of strains and strain gradients to
de®ne a new e�ective strain as

E �
������������������������������������������������������������������������������������������
2

3
eabeab � c1ZaagZbbg � c2ZabgZabg � c3ZabgZgba

r
, �7�

where constants c1, c2 and c3 have the unit of square of length. Fleck and Hutchinson [4]
proposed to determine these constants by ®tting microscale experiments, as discussed in detail
in Section 2.3. With the new e�ective strain E, the strain energy density takes the same form as
that in uniaxial tension, i.e., for a power law material

W � n

n� 1
S0E0

�
E

E0

�n�1=n
, �8�

where n is the plastic work hardening exponent,
P

0 is the tensile yield stress, and E0 is the
yield strain ��P0 =Young 0s modulus). With Eqs. (7) and (8), the constitutive law (4) can then
be written as

s 0ab �
2

3

S0

E0

�
E

E0

�1
nÿ1

eab, �9�

t 0abg �
S0

E0

�
E

E0

�1
nÿ1�

c1Zddgdab � c2Zabg �
c3
2

ÿ
Zgba � Zgab

�ÿ 1

4

�
c1 � c3

2

�
Zddadbg

ÿ 1

4

�
c1 � c3

2

�
Zddbdag

�
:

�10�

Here we emphasize that s 0ab and t 0abg are symmetric and deviatoric, i.e., s 0ab�s 0ba, s 0aa � 0, t 0abg�
t 0bag and t 0agg � 0.
Equilibrium equations in the higher-order continuum theory are

s 0ba, b ÿ t 0bga, bg �H, a � 0, a � 1, 2, �11�

where

H � 1

3
�sdd � s33� ÿ 1

2
�tagg, a � ta33, a � t3gg, 3 � t333, 3� �12�
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is a combined measure of hydrostatic stress and hydrostatic higher-order stress for
incompressible solids.
For a semi-in®nite crack coinciding with the negative x1 axis, the traction-free conditions on

the crack faces �x1 < 0, x2 � 0� in an incompressible solid can be written as

t̂1 � s 021 ÿ 2t 0211, 1 ÿ t 0221, 2 � t 0222, 1 � 0, �13a�

t̂2 � s 022 ÿ 2t 0212, 1 ÿ t 0222, 2 �H � 0, �13b�

r̂1 � t 0221 � 0, �13c�
where t̂1, t̂2 and r̂1 are the stress tractions and higher-order stress traction in the corresponding
directions, respectively, and the unit normal on the crack face has been taken as n = (0, 1).

2.2. J-integral in strain gradient plasticity

The path-independent J-integral for classical plasticity [26] can be generalized for strain
gradient plasticity as

J �
�
G

h
Wn1 ÿ

ÿ
t̂k �Hnk

�
uk, 1 ÿ r̂kDuk, 1

i
ds, �14�

where G is an arbitrary contour surrounding the crack tip, originating from the lower crack
face and ending at the upper crack face; nk is the unit normal of the contour, W is the strain
energy density in Eq. (8), H is the combined measure of hydrostatic stress and hydrostatic
higher-order stress in Eq. (12), uk is the displacement, and t̂k and r̂k are reduced stress tractions
and higher-order stress tractions given by

t̂k �Hnk � ni
�
s 0ik ÿ t 0ijk, j

�
�Dk

�
ninjnpt 0ijp

�
ÿDj

�
nit 0ijk

�
�
�
ninjt 0ijk ÿ nkninjnpt 0ijp

�
� ÿDqnq

��Hnk, �15�

r̂k � ninjt 0ijk ÿ nkninjnpt 0ijp: �16�

The operators D and Dj in Eqs. (14) and (15) are the normal-gradient operator and surface-
gradient operator, respectively, and are de®ned as

D � nk
@

@xk
, Dj �

ÿ
djk ÿ njnk

� @
@xk

: �17�

It is convenient to use the asymptotic crack tip ®eld to evaluate the J-integral. In polar
coordinates �r, y� centered at the crack tip, the contour G can be taken as a circle of radius r
such that the unit normal n becomes the unit vector er in the radial direction. The normal-
gradient operator in Eq. (17) becomes D � @

@ r . The tractions in Eqs. (15) and (16) are given by
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Ãt �Hn �
�
Hÿ @t

0
rrr

@r
ÿ 2

r

@t 0ryr
@y
ÿ 2t 0rrr ÿ 2t 0ryy ÿ t 0yyr

r

�
er

�
�
ÿ @t

0
rry

@r
ÿ 1

r

@

@y

ÿ
2t 0ryy ÿ t 0rrr

�ÿ t 0rry � 2t 0ryr ÿ t 0yyy
r

�
ey,

�18�

Ãr � t 0rryey �19�
where ey is the unit vector in the circumferential direction y.

2.3. Length scales in strain gradient plasticity

One important aspect of strain gradient plasticity is the length scale. From microscopic or
dislocation point of view, this characteristic length has been identi®ed as L2

d=b [27], where Ld is
the average spacing between dislocations and b is the Burger's vector. In terms of macroscopic
shear modulus m and uniaxial tensile yield stress sY, this intrinsic material length is on the
order of � msY

�2b. From continuum mechanics point of view, however, this length scale is related
to constants c1, c2 and c3 scaling the invariants of strain gradients, as discussed in the
following.
Smyshlyaev and Fleck [25] have shown the strain gradient tensor Zijk can be decomposed to

a stretch gradient tensor, Z�1�ijk , and two rotation gradient tensors, Z�2�ijk and Z�3�ijk . The second
invariants of strain gradients in Eq. (7) are related to these stretch and rotation gradients of
deformation by

c1ZaagZbbg � c2ZabgZabg � c3ZabgZgba � l21Z
�1�
ijk Z
�1�
ijk � l22Z

�2�
ijk Z
�2�
ijk � l23Z

�3�
ijk Z
�3�
ijk , �20�

where l1 is the material length associated with the stretch gradients of deformation, while l2
and l3 are material lengths associated with rotational gradients of deformation. These lengths
are related to constants c1, c2 and c3 by [4,25]

l21 � c2 � c3, l22 � c2 ÿ c3
2
, l23 �

5

2
c1 � c2 ÿ c3

4
: �21�

From solutions to a variety of problems, it appears that only two of the three constitutive
length parameters need to be treated as independent. The connection l3 �

��������
5=6
p

l2 will be
enforced in the study which follows. By ®tting micro-bend [14], micro-torsion [5], and micro-
indentation data [8±13], Begley and Hutchinson [28] determined that l1, l2 and l3 scale with one
material length, l,

l1 � l

16
±
l

8
, l2 � l

2
, l3 �

������
5

24

r
l: �22�

Their values for copper are l14 mm with l110:25±0:5, l212 and l311:8 mm, while the values
for nickel are l16 mm with l110:38±0:75, l213 and l312:7 mm.
The rotation-gradient-based strain gradient plasticity theory [3,5] corresponds to the

following choice of material length,
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l1 � 0, l2 � 1

2
, l3 �

������
5

24

r
l: �23�

This choice of material lengths, however, can predict only 10±20% increase of hardness in
micro-indentation [29], which clearly falls short to agree with the 200±300% increase observed
in experiments [8±13].
Gao et al. [6] and Huang et al. [7] developed dislocation models to connect the e�ective

strain gradient with the density of geometrically necessary dislocations. They established the
following choice of material lengths from dislocation models,

l1 � l2 � l3 � 1

2
: �24�

It is clear that l2 and l3 are quite close to those in Eq. (22), but l1 is much larger for calibration
against the dislocation models. This combination of material lengths gives the constants c1 �
c3 � 0 and c2 � l2=4. Besides the di�erences in material lengths, Gao et al's [6] and Huang et
al's [7] constitutive models are also di�erent from those of phenomenological strain gradient
plasticity [4]. However, the present study is limited to phenomenological strain gradient
plasticity.

3. The asymptotic ®elds near a crack tip in strain gradient plasticity

Polar coordinates �r, y� centered at the crack tip are used in the near-tip asymptotic analysis
in this section, where crack faces coincide with y �2p. A displacement potential f is
introduced from the incompressibility of the crack tip ®eld,

ur � ÿ1
r

@f
@y

, uy � @f
@r
: �25�

Similar to the HRR ®eld [30,31] in classical plasticity, we look for a separable crack tip ®eld,
i.e., the displacement potential can be written as

f � r p�1 ~f�y�, �26�
where the power p �p > 0� and angular distribution ~f�y� are to be determined. The
displacements are obtained from Eq. (25) as

ur � ÿr p ~f
0�y�, uy � �p� 1�r p ~f�y�: �27�

From kinematic relations (1) and (2), strains and strain gradients are given by

err � @ur
@r
� ÿpr pÿ1 ~f

0
, �28a�

eyy � 1

r

@uy
@y
� ur

r
� pr pÿ1 ~f

0
, �28b�
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ery � eyr � 1

2

�
1

r

@ur
@y
� @uy
@r
ÿ uy

r

�
� 1

2
r pÿ1

h
ÿ ~f

00 �
ÿ
p2 ÿ 1

�
~f
i
, �28c�

Zrrr �
@2ur
@r2
� ÿp�pÿ 1�r pÿ2 ~f

0
, �29a�

Zrry �
@2uy
@r2
� p

ÿ
p2 ÿ 1

�
r pÿ2 ~f, �29b�

Zryr � Zyrr �
@

@r

�
1

r

�
@ur
@y
ÿ uy

��
� ÿ�pÿ 1�r pÿ2

h
~f
00 � �p� 1� ~f

i
, �29c�

Zryy � Zyry �
@

@r

�
1

r

�
@uy
@y
� ur

��
� p�pÿ 1�r pÿ2 ~f

0
, �29d�

Zyyr �
@

@r

�
ur
r

�
� 1

r2
@2ur

@y2
ÿ 2

r2
@uy
@y
� ÿr pÿ2

h
~f
000 � �3p� 1� ~f 0

i
, �29e�

Zyyy �
@

@r

�
uy
r

�
� 1

r2
@2uy

@y2
� 2

r2
@ur
@y
� �pÿ 1�r pÿ2

h
~f
00 � �p� 1� ~f

i
: �29f �

They can generally be written as eab� r pÿ1~eab�y� and Zabg� r pÿ2 ~Zabg�y�, where ~eab and ~Zabg are
angular distributions in Eqs. (28) and (29). Since strain gradients are more singular than strains
near a crack tip, the dominant singular term in the e�ective strain in Eq. (7) can be written as

E � r pÿ2 ~E�y�, �30�
where

~E �
����������������������������������������������������������������������
c1 ~Zaag ~Zbbg � c2 ~Zabg ~Zabg � c3 ~Zabg ~Zgba

q
: �31�

The constitutive relations (9) and (10) give the deviatoric stresses and deviatoric higher-order
stresses as

s 0ab �
S0

E 1=n
0

r
pÿ2
n �1 ~s 0ab�y�, �32�

t 0abg �
S0

E 1=n
0

r
pÿ2
n ~t 0abg�y�, �33�

where the angular distributions of stresses and higher-order stresses are related to the angular
distributions of strains and strain gradients by
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~s 0ab �
2

3
~E
1
nÿ1~eab, �34�

~t 0abg � ~E
1ÿn
n

�
c1 ~Zddgdab � c2 ~Zabg �

c3
2

ÿ
~Zgba � ~Zgab

�ÿ 1

4

�
c1 � c3

2

�
~Zddadbg

ÿ 1

4

�
c1 � c3

2

�
~Zddbdag

�
:

�35�

The dominant singular term in the combined measure H of hydrostatic stress and hydrostatic
higher-order stress in the crack tip ®eld can be written as

H � S0

E 1=n
0

r
pÿ2
n ÿ1 ~H�y�, �36�

where ~H is the angular distribution of H and is to be determined.
In polar coordinates �r, y), the equilibrium equations (11) take the following form,

@s�rr
@r
� 1

r

@s�yr
@y
� s�rr ÿ s�yy

r
� 0, �37a�

@s�ry
@r
� 1

r

@s�yy
@y
� s�ry � s�yr

r
� 0, �37b�

where

s�rr � s 0rr �Hÿ
�
@t 0rrr
@r
� 1

r

@t 0yrr
@y
� t 0rrr ÿ t 0yry ÿ t 0yyr

r

�
, �38a�

s�yr � s 0yr ÿ
�
@t 0ryr
@r
� 1

r

@t 0yyr
@y
� t 0ryr � t 0yrr ÿ t 0yyy

r

�
, �38b�

s�ry � s 0ry ÿ
�
@t 0rry
@r
� 1

r

@t 0yry
@y
� t 0rry � t 0yrr ÿ t 0yyy

r

�
, �38c�

s�yy � s 0yy �Hÿ
�
@t 0ryy
@r
� 1

r

@t 0yyy
@y
� t 0ryy � t 0yry � t 0yyr

r

�
: �38d�

Since the deviatoric stresses are less singular than the higher-order deviatoric stresses and
hydrostatic stress H, they are negligible in the asymptotic crack tip ®eld. The substitution of
the asymptotic expressions (33) and (36) into the equilibrium equations (37) gives
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d2 ~t 0yyr
dy2
� 2

�
pÿ 2

n
� 1

�
d~t 0yrr
dy
ÿ 2

d~t 0yyy
dy
�
�
pÿ 2

n
� 1

�
pÿ 2

n
~t 0rrr ÿ 2

�
pÿ 2

n
� 1

�
~t 0ryy

ÿ
�
pÿ 2

n
� 1

�
~t 0yyr ÿ

�
pÿ 2

n
ÿ 1

�
~H � 0,

�39a�

d2 ~t 0yyy
dy2

� 2

�
pÿ 2

n
� 1

�
d~t 0ryy
dy
� 2

d~t 0yyr
dy
�
�
pÿ 2

n
� 1

�
pÿ 2

n
~t 0rry

�2
�
pÿ 2

n
� 1

�
~t 0yrr ÿ

�
pÿ 2

n
� 1

�
~t 0yyy ÿ

d ~H

dy
� 0, �39b�

where the symmetry t 0ryr � t 0yrr, t
0
yry � t 0ryy has been used. The replacement of ~t 0abgin the above

equations by the angular function ~f of the displacement potential via Eq. (35) yields two
ordinary di�erential equations for ~f and ~H.
In polar coordinates �r, y�, the traction-free boundary conditions (13) can be written as

ÿ2@t
0
yrr

@r
ÿ 1

r

@t 0yyr
@y
ÿ 2t 0yrr ÿ t 0yyy

r
� @t

0
yyy

@r
� 0 at y � p, �40a�

ÿ2@t
0
ryy

@r
ÿ 1

r

@t 0yyy
@y
ÿ 2t 0ryy � t 0yyr

r
�H � 0 at y � p, �40b�

t 0yyr � 0 at y � p, �40c�
where deviatoric stresses in Eq. (13) have been neglected since they are less singular. The
substitution of asymptotic expressions (9) and (12) into the above boundary conditions gives

d~t 0yyr
dy
� 2

�
pÿ 2

n
� 1

�
~t 0yrr ÿ

�
pÿ 2

n
� 1

�
~t 0yyy � 0 at y � p, �41a�

d~t 0yyy
dy
� 2

�
pÿ 2

n
� 1

�
~t 0ryy � ~t 0yyr ÿ ~H � 0 at y � p, �41b�

~t 0yyr � 0 at y � p: �41c�
The symmetry condition ahead of a mode I crack tip �y � 0� requires ~f be an odd function of
y such that

~f � ~f
�2� � ~f

�4� � 0 at y � 0, �42�
or equivalently,

Zrry � Zyyy �
@Zyyr
@y
� 0 at y � 0: �43�
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Eqs. (39), boundary conditions (41) and (42) constitute an eigenvalue problem for mode I
crack tip ®elds in strain gradient plasticity, with the power p as the eigenvalue and ~f and ~H as
the eigenvector. However, due to the path-independent J-integral (14) in strain gradient
plasticity, it can be shown that the strain energy density is of the order of rÿ1, such that the
power p is known a priori as,

p � n� 2

n� 1
, �44�

where n (>1) is the plastic work hardening exponent.
Similar to the HRR ®eld in classical plasticity [30,31], a numerical shooting method is used

to solve the ordinary di�erential equations (39), (41) and (42). Details of the numerical method
are given in the Appendix A. Only the asymptotic crack tip ®elds are presented in the
following.
In all studies, the plastic work hardening exponent n is ®xed at a typical value of n = 5,

while three combinations of the material lengths l1, l2 and l3 are given by,

l1 � 0, l2 � l

2
, l3 �

������
5

24

r
l, �45�

l1 � l

16
±
l

8
, l2 � l

2
, l3 �

������
5

24

r
l, �46�

l1 � l2 � l3 � l

2
, �47�

where l is an intrinsic material length. These combinations of material lengths correspond
respectively to rotation-gradient-based strain gradient plasticity [3,5], phenomenological strain
gradient plasticity theory [4] which accounts for both rotation and stretch gradients of
deformation, and the dislocation models to connect strain gradient plasticity with the density
of geometrically necessary dislocations [6,7].

3.1. Rotation-gradient-based strain gradient plasticity �l1�0, l2� l
2 , l3�

�����
5
24

q
l)

Huang et al. [18] and Xia and Hutchinson [20] obtained analytically the asymptotic ®elds
near a mode I crack tip in rotation-gradient-based strain gradient plasticity. They established
that the crack tip deformation ®eld is irrotational such that the strains and stresses are more
singular than curvatures (strain gradients) and higher-order stresses, respectively. The
corresponding power p for displacements in this stress-dominated (stresses are more singular
than higher-order stresses) crack tip ®eld is p � 1=�n� 1�, which is the same as the HRR ®eld
[30,31] in classical plasticity (even though the two asymptotic ®elds are di�erent). Moreover,
besides the stress-dominated crack tip ®eld, Huang et al. [18] established that there is another
mode I crack tip ®eld in which the higher-order stresses are more singular than stresses, i.e.,
the higher-order-stress-dominated crack tip ®eld. This ®eld is clearly rotational since the
rotation gradients of deformation become the dominating singular terms. The corresponding
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power p for displacements in the higher-order-stress-dominated crack tip ®eld is
p � �n� 2�=�n� 1�.
For the power p � 1=�n� 1� and material lengths l1 � 0, l2 � l

2 and l3 �
�����
5
24

q
l, our numerical

shooting method gives a single solution that is identical to the analytic stress-dominated crack
tip ®eld of Huang et al. [18] and Xia and Hutchinson [20]. For the power p � �n� 2�=�n� 1�,
our numerical shooting method gives another solution that is identical to the analytic higher-
order-stress-dominated crack tip ®eld obtained by Huang et al. [18]. The agreement between
analytical and numerical studies provides a validation of the numerical method given in the
Appendix A.

3.2. Phenomenological strain gradient plasticity �l1� l
16 ±

l
8 , l2� l

2 , l3�
�����
5
24

q
l)

The phenomenological strain gradient plasticity theory [4] includes both stretch gradients
and rotation gradients of deformation. Because of the stretch gradients, strain gradients and
higher-order stresses in the asymptotic crack tip ®eld are more singular than strains and
stresses, respectively. Therefore, the dominant singular term in the e�ective strain is given by

Fig. 1. Angular distributions of normalized e�ective strain E�S0E0r=J �n=�n�1�=E0 for two mode I crack tip ®elds in

phenomenological strain gradient plasticity; S0 is the tensile yield stress, E0 is the yield strain
�� S0=Young 0s modulus), r is the distance to the crack tip, J is the J-integral, n = 5 is the plastic work hardening
exponent, and the combination of material lengths is l1� l=16, l2� l=2, l3�

����������
5=24
p

l.
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Eq. (30), and the power p of the displacements in the crack tip ®eld is given by Eq. (44), i.e.,
p � �n� 2�=�n� 1�.
For each material length l1 between l

16 and l
8, the numerical shooting method gives two

solutions, i.e., there are two di�erent mode I crack tip ®elds for the same material, which is quite
puzzling. We examine the limit l1 � 0 in order to understand the structure of mode I crack tip
®eld in strain gradient plasticity. As l1 decreases and approaches zero, numerical solutions
show that the di�erence between two crack tip ®elds shrinks and both ®elds approach Huang
et al. [18] analytic higher-order-stress-dominated crack tip ®eld in rotation-gradient-based
strain gradient plasticity. Similar to an eigen problem with two identical eigenvalues, the
second independent solution at the limit l1 � 0 turns out to be the stress-dominated crack tip
®eld [18,20], i.e., there are also two independent solutions at the limit l1 � 0.
The crack faces should have an opening displacement in mode I fracture. This requires

uy �y � p� < 0, which uniquely determines the sign of the solution in an eigenvalue problem.
The angular distributions of the e�ective strain for the two crack tip ®elds are shown in Fig.

1 for material lengths l1 � l
16, l2 � l

2 and l3 �
�����
5
24

q
l. It is observed that the e�ective strain for

Fig. 2. Angular distributions of normalized reduced stress tractions Trr�S0E0r=J �1=�n�1�=�S0l � and
Tyr�S0E0r=J �1=�n�1�=�S0l � for two mode I crack tip ®elds in phenomenological strain gradient plasticity; Tr and Ty

are respectively the tractions in the radial and circumferential directions, on a ray through the crack tip �y �
constant), the unit normal of the ray is taken as ey; S0 is the tensile yield stress, E0 is the yield strain �� S0/Young's
modulus), r is the distance to the crack tip, J is the J-integral, n � 5 is the plastic work hardening exponent, and the
combination of material lengths is l1� l=16, l2� l=2, l3�

����������
5=24
p

l.
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one crack tip ®eld (solid line) is nearly independent of the polar angle y. The numerical
solution has veri®ed that the rotation gradients of deformation for this ®eld are two orders of
magnitude smaller than the stretch gradients such that this crack tip ®eld is nearly irrotational.
The other curve (dotted line) in Fig. 1, however, shows a clear dependence on the polar angle
y. This ®eld is rotational near a mode I crack tip in strain gradient plasticity because the
magnitude of the rotational gradients of deformations is even larger than that of the stretch
gradients. Accordingly, the two crack tip ®elds are denoted by ``irrotational ®eld'' and
``rotational ®eld'' in Fig. 1. The two crack tip ®elds have quite di�erent angular distributions,
and for the same J-integral, the irrotational ®eld has a larger e�ective strain than the rotational
®eld.
The angular distributions of reduced stress tractions Tr and Ty in the irrotational and

rotational crack tip ®elds are shown in Fig. 2 for material lengths l1 � l
16, l2 � l

2 and l3 �
�����
5
24

q
l,

where Tr and Ty are respectively the tractions in the radial and circumferential directions, on a
ray through the crack tip �y = constant). The unit normal of the ray is taken as ey, which is
the unit vector in the circumferential direction. In polar coordinates �r, y�, these tractions are
given by

Fig. 3. Angular distributions of normalized e�ective strain E�S0E0r=J �n=�n�1�=E0 for two mode I crack tip ®eld in

phenomenological strain gradient plasticity; S0 is the tensile yield stress, E0 is the yield strain �S0 �/Young's
modulus), r is the distance to the crack tip, J is the J-integral, n � 5 is the plastic work hardening exponent, and the
combination of material lengths is l1 � l=8, l2 � l=2, l3 �

����������
5=24
p

l.
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Tr � ÿ2@t
0
yrr

@r
ÿ 1

r

@t 0yyr
@y
ÿ 2t 0yrr ÿ t 0yyy

r
� @t

0
yyy

@r
, �48�

Ty � ÿ2@t
0
ryy

@r
ÿ 1

r

@t 0yyy
@y
ÿ 2t 0ryy � t 0yyr

r
�H: �49�

The stress tractions in the irrotational and rotational crack tip ®elds are quite di�erent. For
example, the shear stress traction Tr in the rotational ®eld is nearly zero, while its counterpart
in the irrotational ®eld is signi®cant and is of the same order as the normal stress traction Ty.
One important observation from Fig. 2 is that, for both irrotational and rotational ®elds, the
normal traction component Ty at y � 0 is compressive. �Tr and Ty are evaluated on the plane y
= constant with the unit normal n � ey, thus a negative Ty implies a compressive normal
traction.) This result is counterintuitive, suggesting that the asymptotic ®eld lies outside the
domain of physical validity. This is indeed the case as has been found from a full ®eld
numerical solution to the problem. Look ahead to this solution in Fig. 5, which will be
introduced more completely in the next section, one sees that for the case of Poisson's ratio

Fig. 4. Angular distributions of normalized reduced stress tractions Trr�S0E0r=J �1=�n�1�=�S0l � and

Tyr�S0E0r=J �1=�n�1�=�S0l � for two mode I crack tip ®elds in phenomenological strain gradient plasticity; Tr and Ty

are respectively the tractions in the radial and circumferential directions, on a ray through the crack tip
�y=constant), the unit normal of the ray is taken as ey; S0 is the tensile yield stress, E0 is the yield strain (= S0/
Young's modulus), r is the distance to the crack tip, J is the J-integral, n � 5 is the plastic work hardening

exponent, and the combination of material lengths is l1 � l=8, l2 � l=2, l3 �
�����������
5=24l
p

.

J.Y. Chen et al. / Engineering Fracture Mechanics 64 (1999) 625±648 639



n � 0:48 and n � 0:49, the normal traction ahead of the tip becomes compressive only for
r=l < 0:05. The tensile traction increases monotonically as the tip is approached until r=l10:15.
The strain gradient plasticity theory is not expected to be valid at deformation scales which are
much less than l. Thus, while the asymptotic ®eld may have a tiny range of mathematical
validity (i.e., r=l� 0:05), it has no range of physical validity.
Fig. 3 shows the angular distributions of the e�ective strain for the two crack tip ®elds and

another combination of material lengths l1 � l
8, l2 � l

2 and l3 �
�����
5
24

q
l. Similar to Fig. 1, the

e�ective strain for one crack tip ®eld (solid line) depends very weakly on the polar angle y, and
the corresponding ®eld is named the nearly irrotational ®eld. The other curve (dotted one) is
denoted by the rotational ®eld because of its clear dependence on the polar angle y. The
numerical solutions have veri®ed that the rotation gradients of deformation are two orders of
magnitude smaller than the stretch gradients in the nearly irrotational ®eld, but become larger
in the rotational ®eld. Although the e�ective strains in the irrotational and rotational crack tip
®elds are quite di�erent in Fig. 3, they are almost identical to the corresponding curves for l1 �
l
16 in Fig. 1, i.e., the e�ective strains are essentially independent of the material length l1 in
phenomenological strain gradient plasticity �l1 � l

16 ±
l
8�.

The angular distributions of the reduced stress tractions Tr and Ty are shown in Fig. 4 for
both irrotational and rotational crack tip ®elds and the material lengths l1 � l

8, l2 � l
2 and

l3 �
�����
5
24

q
l. It is once again observed that the normal traction component Ty at y � 0 is

compressive. This is consistent with that in Fig. 2, and is contradictory again to the ``correct''
tensile stress at y � 0 in a mode I crack tip ®eld. This con®rms the conclusion that the mode I
asymptotic crack tip ®eld has no domain of physical validity in phenomenological strain
gradient plasticity.

3.3. Dislocation models for strain gradient plasticity �l1 � l2 � l3 � l
2)

The phenomenological strain gradient plasticity theory [4] with material lengths l1� 1
160

l
8 , l2� l

2 and l3 �
�����
5
24

q
l gives two solutions for the mode I crack tip ®elds. However, for material

lengths l1 � l2 � l3 � l=2, the numerical shooting method gives only a single solution for the
mode I crack tip ®eld (Fig. 7). We have veri®ed that it is the material length l1 scaling the
stretch gradients that governs whether the crack tip ®eld has one or two solutions. The mode I
crack tip ®eld for l1 � l2 � l3 � l=2 is rotational since its angular distribution of the e�ective
strain depends strongly on the polar angle y. The corresponding normal traction component Ty

at y � 0 is also compressive, consistent with those in Figs. 2 and 4. This once again contradicts
the tensile normal stress expected for a mode I crack tip ®eld.

We have also studied the mode II crack tip ®elds in phenomenological strain gradient
plasticity for all combinations of material lengths in Eqs. (45)±(47) (see [32] for details). The
same conclusion has also been reached for mode II that the asymptotic crack tip ®elds have no
domain of physical validity in phenomenological strain gradient plasticity. The asymptotic
crack tip ®elds have the domain of mathematical validity of a tiny fraction of material length l,
and strain gradient plasticity is not expected to be valid in this domain.
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4. Finite element analysis for strain gradient plasticity

The ®nite element method for rotation-gradient-based strain gradient plasticity was
developed by Xia and Hutchinson [20]. Several new elements were developed for the higher
order theory, and were used to study fracture [20,22,23] and micro-indentation [29]. Begley and
Hutchinson [28] generalized these elements to account for stretch gradients of deformation in
the study of micro-indentation experiments. Since the crack tip deformation is nearly
incompressible and stretch gradients are large, Wei and Hutchinson [33] developed a new ®nite
element method using an element especially suited to the higher order theory. Details of this
new ®nite element method will be published elsewhere. This element has been validated for the
limit of plastic work hardening exponent n � 1, for which Shi et al. [34] have obtained the full-
®eld solution analytically using the Wiener±Hopf method of analytic continuation. The
numerical solution based on this new element agrees remarkably well with Shi et al. [34]
analytic solution not only near the crack tip, but also throughout the entire ®eld. This
agreement shows that the new element developed by Wei and Hutchinson [33] can indeed
capture the e�ects of both stretch and rotation gradients of deformation near a crack tip.

Fig. 5. Normalized normal traction Ty=sK along y � 0 versus the normalized distance r=l to a mode I crack tip in
phenomenological strain gradient plasticity; the unit normal is taken as ey � �0,1�; sK � KI=

�������
2pl
p

, KI is the remotely

applied mode I stress intensity factor; l is the material length; n � 5 is the plastic work hardening exponent; the
combination of material lengths is l1 � l=16, l2 � l=2, l3 �

�����������
5=24l
p

; the ratio of material length l to the plastic zone
size Rp is l=Rp � 0:2; solutions are presented for Poisson's ratios n=0.3, 0.48 and 0.49.
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We have used this new element to analyze the full ®eld solution in phenomenological strain
gradient plasticity [4] for the plastic work hardening exponent n � 5. The classical elastic KI

®eld is imposed as the remote boundary condition. Wei and Hutchinson [35] have identi®ed a
measure of remote loading in strain gradient plasticity as the ratio of intrinsic material length
to the plastic zone size, l=Rp, where the plastic zone size Rp can be estimated as

Rp � K 2
I

3pS2
0

, �50�

where KI is the remotely applied stress intensity factor, and S0 is the tensile yield stress. Figs.
5±7 show the normal stress traction Ty at y � 0 versus the distance r to a mode I crack tip,
where the unit normal is n � ey � �0, 1�, and the normal stress traction Ty is normalized by

sK � KI�������
2pl
p : �51�

The material lengths in Figs. 5 and 6 are l1 � l
16 and l1 � l

8, respectively, with l2 � l
2 and l3 �

Fig. 6. Normalized normal traction Ty=sK along y � 0 versus the normalized distance r=l to a mode I crack tip in
phenomenological strain gradient plasticity; the unit normal is taken as ey � �0,1�; sK � KI=

�������
2pl
p

, KI is the remotely

applied mode I stress intensity factor; l is the material length; n � 5 is the plastic work hardening exponent; the
combination of material lengths is l1 � l=8, l2 � l=2, l3 �

�����������
5=24l
p

; the ratio of material length l to the plastic zone
size Rp is l=Rp � 0:2; solutions are presented for Poisson's ratios n � 0:3, 0.48 and 0.49.
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�����
5
24

q
l as in Eq. (46), while Fig. 7 corresponds to l1 � l2 � l3 � l

2 as in Eq. (47). The ratio of
intrinsic material length l to plastic zone size Rp is l=Rp � 0:2. Three Poisson's ratios, n � 0:30,
0:48 and 0.49, are taken in each ®gure, where the latter two are close to the limit for
incompressible solids. For n � 0:49, it is observed that Ty in Figs. 5±7 switch from a tensile
stress to a compressive stress at a distance r10:05l as the crack tip is approached. Therefore,
within a distance of 0.05l to a mode I crack tip, the normal stress traction has the ``incorrect''
sign. However, well outside this domain, the normal stress traction ahead of the crack tip not
only has the correct sign but also is signi®cantly elevated due to strain gradient hardening.
Similar observations are made for Poisson's ratio n � 0:48 in Figs. 5±7, but the curves for
Poisson's ratio n � 0:3 are quite di�erent; normal stress tractions remain to be tensile at the
distance r10:05l to the crack tip, and the curves continue to increase as the crack tip is
approached. This seems to suggest that the incompressibility of solids may play a signi®cant
role in the asymptotic crack tip ®eld. Further investigations would be necessary to resolve this.
However, since the e�ect of incompressibility is limited to a domain outside the physical
relevance of the constitutive theory, the justi®cation for doing this would be questionable.

Fig. 7. Normalized normal traction Ty=sK along y � 0 versus the normalized distance r=l to a mode I crack tip in
phenomenological strain gradient plasticity; the unit normal is taken as ey � �0, 1�; sK � KI=

�������
2pl
p

, KI is the remotely
applied mode I stress intensity factor; l is the material length; n = 5 is the plastic work hardening exponent; the

combination of material lengths is l1 � l2 � l3 � l=2; the ratio of material length l to the plastic zone size Rp is
l=Rp � 0:2; solutions are presented for Poisson's ratios n � 0:3, 0.48 and 0.49.
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5. Discussion and conclusions

The asymptotic crack tip ®elds are obtained for mode I cracks in solids characterized by
phenomenological strain gradient plasticity proposed by Fleck and Hutchinson [4]. In addition,
the full-®eld solutions are also obtained by a ®nite element method using elements especially
suited to the higher order theory. The following conclusions are established from he present
analysis.

1. The asymptotic crack tip ®eld provides a numerically accurate representation of the full-®eld
solution only within a distance from the crack tip that is a tiny fraction of the constitutive
length parameter l for strain gradient plasticity (l0microns). The strain gradient plasticity
theory is not expected to be valid in this domain.

2. The normal traction across the extended crack line ahead of the tip predicted by the
asymptotic analysis is compressive. Therefore, the asymptotic ®eld has no domain of
physical validity.

3. The stress tractions are signi®cantly elevated ahead of the crack tip due to strain gradient
e�ects. The elevation occurs at distances from the crack tip which are well outside the tiny
domain of validity of the asymptotic crack tip ®eld, i.e., it occurs in a region where strain
gradient plasticity theories are expected to be applicable.

There may be di�culties in understanding a compressive stress traction near a mode I crack tip
in phenomenological strain gradient plasticity as well as its consequence of no domain of
physical validity of the asymptotic crack tip ®eld. It may be helpful to draw a loose analogy to
the asymptotic ®eld around an interface crack tip between two dissimilar elastic materials. It is
well known that crack faces have contact near an interface crack tip (e.g., [36]). Even though
this renders the asymptotic crack tip ®eld inappropriate within a small distance from the tip,
the ®elds hold well outside this contact zone. Similarly, even though the asymptotic crack tip
®eld in phenomenological strain gradient plasticity has no domain of physical validity, strain
gradient e�ects can signi®cantly elevate the stress tractions ahead of a crack tip in a region
where the strain gradient plasticity theories are expected to be applicable.
The loss of physical validity of the crack tip ®elds very near the tip does not necessarily

invalidate the use of J as the measure of the crack loading intensity for stationary cracks.
Again, the elastic bimaterial interface crack problem provides a useful analog. As long as there
exists an annular region surrounding the tip wherein the strain gradient theory has physical
validity, the J-integral characterizes the intensity passed down to the tip, even though the full
solution very near the tip is not known. Recent e�orts in simulation of fracture initiation and
crack growth make use of an embedded cohesive zone characterized by a work of separation
and a separation strength. If the length of the cohesive zone is not very small compared to the
constitutive length parameter, the issue of the behavior of the asymptotic solution is moot.
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Appendix A. The numerical method

Eqs. (39) are the sixth-order ordinary di�erential equations (®fth order with respect to ~f and
®rst order with respect to ~H). Three boundary conditions are given in Eqs. (41) on the crack
face �y � p�, while the other three are the symmetry conditions (42) for mode I at y � 0.
Therefore, a numerical shooting method [37] is used to solve the ordinary di�erential
equations.
It is convenient to write the sixth-order ordinary di�erential equations for ~f and ~H as six

®rst-order equations. We introduce six functions as

y1 � ~Zrrr�y� � ÿ~Zryy�y� � ÿ~Zyry�y�, �A1�

y2 � ~Zrry�y�, �A2�

y3 � ~Zyyr�y�, �A3�

y4 � ~Zyyy�y� � ÿ~Zyrr�y� � ÿ~Zryr�y�, �A4�

y5 � d

dy
~Zyyr�y�, �A5�

y6 � ~H�y�, �A6�
where ~Zabg�y� are the angular functions of strain gradients Zabg. The functions yi (i = 1, 5) are
related to ~f, so the elimination of ~f yields the following four relations,

dy1
dy
� y2 ÿ py4, �A7�

dy2
dy
� ÿ�p� 1�y1, �A8�

dy3
dy
� y5, �A9�

dy4
dy
� 2y1 ÿ �pÿ 1�y3: �A10�

The equilibrium equations (39) give two additional equations for yi (i = 1, 6). Therefore, we
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have obtained a complete set of six ®rst-order equations. The traction-free boundary conditions
(41) on the crack face �y � p� can be written in terms of yi (i = 1, 6).
In mode I fracture, the symmetry conditions (42) at y � 0 requires

y2 � y4 � y5 � 0 at y � 0: �A11�
A numerical shooting method iteratively assumes the initial value of other three variables, i.e.
y1�y � 0�, y3�y � 0� and y6�y � 0�, until the traction-free boundary conditions (40) on the crack
face are met. However, since this is an eigenvalue problem, we can impose a normalization
condition�

y1�y � 0��2��y3�y � 0��2��y6�y � 0��2� 1, �A12�
which can be equivalently written as

y1�y � 0� � sin a sin b, y3�y � 0� � sin a cos b, y6�y � 0� � cos a, �A13�
where a is a shooting parameter between 0 and 908, while b is another shooting parameter
between 0 and 3608. Since the power has been determined in Eq. (44) from the J-integral, two
parameters a and b are determined iteratively to meet three traction-free boundary conditions
(40) on the crack face �y � p�. Our numerical results give the solutions of a and b in mode I as

a � 86:568, b � 358:618 or a � 88:618, b � 314:308 for l1 � l

16
, l2 � l

2
, l3 �

������
5

24

r
l �A14�

a � 86:018, b � 358:768 or a � 86:918, b � 312:128 for l1 � l

8
, l2 � l

2
, l3 �

������
5

24

r
l, �A15�

a � 80:688, b � 267:828 for l1 � l2 � l3 � l

2
: �A16�
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