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Abstract

Multilayer thermal barrier coatings (TBCs) on superalloy substrates are comprised of an intermetallic bond coat, a

thermally grown oxide (TGO) layer, and a porous zirconia top coat that provides thermal protection. The TGO attains

a thickness of 1±10 lm prior to failure, while the bond coat and zirconia layer are each about 50±100 lm thick. The

preferred method for manufacturing TBCs comprises electron beam deposition. This method produces a thin ``fully

dense'' zirconia layer 1 lm or 2 lm thick between the TGO and the thick ``top coat''. Edge-delamination and buckling-

delamination are the expected failure mechanisms. Each is addressed. Both occur at the interface between the bond coat

and the TGO. Since low in-plane elastic moduli of the porous zirconia layer promote the latter, but suppress the former,

there exists a range of moduli wherein both types of failure can be avoided. Two distinct sizes govern buckling-de-

laminations. Small scale delaminations arise when the TBC top coat has a very low modulus. They have a characteristic

size that scales with the thickness of the TGO plus the fully dense zirconia layer: typically tens of microns. In this

domain, the dense TGO/ZrO2 bi-layer buckles by pushing into the thick, more compliant zirconia top layer. The larger

scale delaminations occur when the top coat is sti�. They involve not only the bi-layer, but also the zirconia top layer;

buckling away from the substrate as a tri-layer. In this case, the total thickness of the TBC determines the extent of the

delamination, typically several 100 lm. Ó 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermal barrier coatings (TBCs) consisting of
stabilized zirconia are now employed in most tur-
bine engines, permitting gas temperatures to be
raised substantially above those for uncoated sys-
tems. A detailed description can be found in a
recent National Research Council Report (Hillery,
1996). High temperatures are enabled by the low
thermal conductivity of the zirconia TBC, coupled

with active cooling of the underlying metal. TBC
systems are multilayered. They are designed to
inhibit oxidation of the substrate by means of an
intermetallic bond coat, as well as provide thermal
protection through the TBC itself. The coatings
must be able to withstand the mismatch strains
generated each time the engine is thermally cycled.
TBC durability relies on the integrity of the in-
terfaces: that located between layers as well as that
with the substrate. Delamination and spalling are
the most common failure modes (DeMasi-Marcin
et al., 1989; Lee and Sisson, 1994; Christensen
et al., 1996; Sergo and Clarke, 1998; Wang and
Evans, 1998; He et al., 1998; Wang and Evans,
1999).
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The layered structure of a representative TBC is
shown in Fig. 1. A Ni-based bond coat containing
Al, Cr, Co and Y is applied to the superalloy
substrate prior to deposition of the zirconia. Upon
exposure at operational temperatures, a thermally
grown oxide layer (TGO) forms between the bond
layer and the zirconia. The TGO (usually Al2O3)
provides the oxidation protection. It is typically
in the range 1±10 lm when the TBC spalls. Ad-
vanced TBCs are made by electron beam deposi-
tion (Hillery, 1996). Coatings made by this
method have a dense layer of zirconia just above
the TGO, with thickness one or two microns.
Above this dense layer is a relatively thick porous
zirconia layer (50±100 lm), the so-called ``top
coat'', which provides the thermal insulation. The
columnar grains in this layer have gaps between
them that provide in-plane moduli over an order
of magnitude smaller than those found for dense
ZrO2 (Johnson et al., 1995). 1 Low moduli are
essential to the survival of the TBC as will be
explained shortly. Deposition of the zirconia and
formation of the TGO both occur at high tem-
perature (�1100°C). Accordingly, because the
coe�cients of thermal expansion of the ceramic
layers (a1; a2; a3) are considerably smaller than
that of the alloy substrate (as), they are subject to
in-plane compressive strains in each cooling cycle
(stresses on the order of a GPa or more in the
TGO and the fully dense zirconia layer (Chris-
tensen et al., 1997).

Delamination at the interface between the TGO
and the bond coat, with subsequent spalling, is the

chief failure mechanisms for electron beam de-
posited TBCs (DeMasi-Marcin et al., 1989; Sergo
and Clarke, 1998). The failure initiates as an in-
terface separation, which grows by thermome-
chanical fatigue, accompanied by thickening of the
TGO. When the separations become large enough,
either large scale buckling or edge delamination
are activated. Buckles and delaminations subse-
quently lead to spalling, wherein the interface
crack de¯ects through the TGO and the TBC up to
the free surface (Wang and Evans, 1998; Sergo and
Clarke, 1998). The failure is driven primarily by
the high compressive stresses in the TGO (Chris-
tensen et al., 1996).

Edge-delamination is probable when the in-
plane moduli of the thick top coat are moderately
high, caused by the large elastic strain energy
which develops during cooling. For example, a
fully dense 100 lm zirconia top coat would de-
velop a compressive stress of approximately 1 GPa
and an elastic energy per unit area of 250 J mÿ2.
This energy density far exceeds the toughness of
the interface between the TGO and the bond coat
(Wang and Evans, 1998; Sergo and Clarke, 1998),
making it virtually certain that the TBC would
delaminate (starting either at an edge or from a
region of high substrate curvature). On the other
hand, high in-plane moduli of the top coat make
the TBC less susceptible to buckling at small initial
debonds or interface ¯aws, and therefore can have
a bene®cial in¯uence in suppressing buckling-de-
lamination. Conditions for buckling-delamination
of a multilayer coating will be derived in this pa-
per. Quantitative models for the two competing de-
lamination mechanisms will be employed to estimate
the range of in-plane moduli where both mechanisms
can be suppressed.

A synopsis of relevant results from the literature
for delamination of single layer ®lms will be given
in Section 2, serving as background to the present
study. Two size domains characterise buckling-
delamination of multilayers. One of these refers to
large scale buckles (LSB), wherein the buckle
length appreciably exceeds the overall multilayer
thickness. The analysis of this domain, presented
in Section 3, is applicable to any multilayer. The
second domain, addressed in Section 4, operates
when the top layer has low in-plane moduli, as is

Fig. 1. Layered structure of TBCs considered in this paper.

1 The low modulus re¯ects the alignment and morphology of

the porosity.
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the case for many TBCs (Johnson et al., 1995).
Now, small scale buckles (SSB) can form, because
they can push into the compliant top layer. This
buckle size scales with the bi-layer thickness (the
TGO plus the dense zirconia layer) rather than
with the overall thickness of the TBC.

2. Delamination of single layer ®lms

As background for understanding the delami-
nation of multilayer coatings, a brief review of
relevant results for single layer ®lms is provided,
drawn largely from (Hutchinson and Suo, 1992).
This discussion is restricted to considerations of
energy release rates relative to interface tough-
nesses. It neglects the e�ect of frictional stresses
that arise when the crack is strictly mode II
(Thouless et al., 1992). This omission is signi®cant
because, when friction operates, the fracture be-
havior is substantially modi®ed, as evident from
the analogous problem of debonding and fric-
tional sliding at ®ber/matrix interfaces in com-
posites (Hutchinson and Jensen, 1990). Signi®cant
friction diminishes the ability of mode II cracks to
propagate, sometimes considerably. Accordingly,
mode II dominated processes, such as edge-de-
lamination, are less probable than the following
analysis would imply. Explicit e�ects of friction
will be addressed in further studies.

For the following discussion, the substrate is
assumed to be ¯at and very thick compared to the
®lm, thickness t. Denote the Young's modulus and
Poisson's ratio of the ®lm by E and m, and the pre-
stress in the ®lm by r0, which is assumed to be a
uniform equi-biaxial state and taken to positive in
compression. Let Ci�w� be the mode-dependent
toughness of the interface between the ®lm and the
substrate (measured in units of J mÿ2) where the
mode mixity is given in terms of the interface crack
stress intensity factors by w � tanÿ1�KII=KI�. The
modulus and Poisson's ratio of the substrate are Es

and ms, respectively.

2.1. Edge-delamination

If an interface crack propagates from an edge
(Fig. 2(a)), the energy release rate G approaches a

steady-state, becoming independent of the crack
length once it has reached several layer thick-
nesses. The steady-state interface crack experi-
ences pure mode II at its tip. With the caveat that
interface friction is absent so that the crack re-
leases the elastic energy in the layer, the steady-
state energy release rate subject to a constraint of
plane strain in the direction parallel to the crack
front is

G0 � 1ÿ m2

2E
r2

0t: �2:1�
If initial interface edge ¯aws several ®lm thick-

nesses in extent are present, then edge-delamina-
tion must be expected whenever the combination
of pre-stress and ®lm thickness are such that G0

exceeds the mode II interface toughness Ci�w�
( wj j � 90�). Conversely, if G0 < Ci�w�, insu�cient
energy is available in the ®lm for an edge-delami-
nation to spread from an edge ¯aw.

2.2. Buckle-delamination for straight-sided blisters

The straight-sided delamination blister shown
in Fig. 2(b) propagates as an interface crack at its
curved front once it has become fully developed.
The precise conditions for the existence of straight-
sided blisters, as opposed to the more common
``telephone cord'' morphology wherein the prop-
agating end snakes back and forth, have not yet
been discovered (Hutchinson and Suo, 1992; Gioia
and Ortiz, 1997). Nevertheless, the straight-sided
blister is expected to provide accurate estimates of
the size of the initial area of debonded interface
required to initiate a buckle delamination as well
as the associated energy release rate. Two results
will be quoted. The ®rst is the energy release rate at

Fig. 2. Delamination modes for compressed ®lms. (a) Edge-

delamination; (b) buckling-delaminations: the straight-sided

blister.
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the interface crack edge along the straight sides
well behind the propagating curved front. The
second is the energy release rate along the curved
front.

A wide plate of debonded ®lm, width 2b and
thickness t, clamped along its straight edges un-
dergoes buckling when the compressive stress in
the ®lm attains

rc � p2

12

E
�1ÿ m2�

t
b

� �2

: �2:2�

For compressive ®lm stresses, r0, in excess of rc

the ®lm buckles away from the substrate lowering
the strain energy stored in the ®lm and producing
stress intensities at the interface crack tips. The
energy release rate along the straight crack sides of
the blister is

Gside � G0 1

�
ÿ rc

r0

�
1

�
� 3

rc

r0

�
; �2:3�

where G0 is the same energy density de®ned in
Eq. (2.1). This relation is plotted in Fig. 3(a). Note
that r0=rc increases due either to an increase of or
an increase in b, which decreases rc. The interface
crack tip at the edge of the buckled blister is under
mixed mode loading. The strong dependence of w
on r0=rc for the right-hand tip is shown in
Fig. 3(b). The results plotted are for the case of no
elastic mismatch between the ®lm and the sub-
strate. There is some dependence of w on the ®rst
Dundurs' elastic mismatch parameter,

aD � E=�1ÿ m2� ÿ Es=�1ÿ m2
s �

E=�1ÿ m2� � Es=�1ÿ m2
s �
; �2:4�

but little dependence on the second mismatch pa-
rameter, bD (Hutchinson and Suo, 1992). As r0=rc

increases, the energy release rate asymptotes to G0

after peaking at about 30% above this limit. The
mixity is predominately mode I at the onset of
buckling but becomes purely mode II when r0=rc

exceeds about 5. A widening delamination expe-
riences an increase in the proportion of mode II to
mode I, arresting when there is a balance between
Gside and the interface toughness, Ci�w�. For metal/
ceramic interfaces, the toughness, Ci�w�, is signif-
icantly larger in near-mode II than in mode I.
Consequently, the widening delamination en-
counters an e�ectively tougher interface causing it

to arrest at a characteristic width. Moreover, there
are additional e�ects of friction in pure mode II.

The energy release rate averaged over the front
can be obtained by an integration of Eq. (2.3) with
respect to crack width because this gives the energy
released per unit of front advance in steady-state
(see Hutchinson and Suo (1992) for the deriva-
tion):

Gfront � G0 1

�
ÿ rc

r0

�2

� Gside 1

�
ÿ rc

r0

�
1

�
� 3

rc

r0

�ÿ1

: �2:5�

This result is included in Fig. 3(a), where it can
be seen that the energy release rate at the curved
front is always less than that along the sides, as
also evident from Eq. (2.5). The variation of the
mode mixity at the front is shown in Fig. 3(b).

Fig. 3. (a) Energy release rate along the sides and front of the

straight-sided blister in a single layer ®lm; (b) mode mixity

along the sides and front of a straight-sided blister for the case

of no elastic mismatch (aD� 0). The mixity along the front is an

approximation based on results from [2] for a circular blister

with m� 1/3.
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(This is an approximate estimate obtained using
the results in Hutchinson and Suo (1992), wherein
w is taken to be that for a circular blister of the
same radius b, with G� Gfront.) It di�ers signi®-
cantly from the variation at the sides in that the
curve front has a signi®cantly lower proportion of
mode II to mode I. Thus, despite the smaller energy
release rate, the crack propagates at the front be-
cause it experiences a lower e�ective interface
toughness, which more than o�sets the energy re-
lease rate de®cit.

2.3. Competition between edge-delamination and
buckle-delamination for a single layer ®lm

The energy density quantity G0 de®ned in
Eq. (2.1) is central to both delamination mecha-
nisms. The competition between mechanisms is
governed by phenomena that occur before steady-
state is attained. For edge-delamination, initial
interface edge ¯aws on the order of just several ®lm
thicknesses give rise to steady-state with energy
release rate equal to G0. However, the relevant in-
terface toughness is that for mode II. Conversely,
relatively large initial debonded patches are needed
at the interface to initiate a buckle-driven delami-
nation. A straight-sided blister begins to buckle up
from the substrate when r0=rc� 1. By Eq. (2.2),
the associated half-width b is given by

b
t
� 0:907

���������������������
E

�1ÿ m2�r0

s
: �2:6�

For a typical pre-stress level, the half-width is at
least ten times the ®lm thickness. If debonded
interface patches of this size or greater exist,
buckle-driven delamination may initiate. The en-
ergy release rate scales with G0, as detailed in
Fig. 3(a), and the interface toughness will lie
somewhere between that for mode I and mode II,
depending on r0=rc.

The consequences are as follows. Initiation of
buckle-delaminations requires signi®cantly larger
interface ¯aws than is the case for edge-delami-
nations. On the other hand, the e�ective interface
toughness governing propagation of a buckle-de-
lamination can be signi®cantly lower than that
to propagate an edge-delamination due to the

mode-dependence of Ci. Whether one mechanism
predominates over the other depends on details,
particularly edge re®nements (e.g., tapering or
overlapping at the ®lm edge), and the mode de-
pendence of the interface toughness. The fact that
buckle-driven delaminations are so commonly
observed as the failure mode in highly compressed
®lms re¯ects both the mode dependence of the
interface toughness as well as the friction operat-
ing in mode II.

3. Multilayer ®lms: large delaminations

In this section the results for delamination of
the single layer ®lm are generalized for a ®lm with
multiple layers. Similar results have been presented
elsewhere within the context of ply delamination
of laminates (Nilsson et al., 1993). For long in-
terface cracks, the steady state energy release rate,
G0, is the same for edge- and buckle-delamina-
tions. The following derivation for buckle-driven
delaminations gives G0, as well as elucidating other
important aspects of buckling in multilayer sys-
tems.

As in the case of the single layer, the multilayer
is represented as a clamped plate, width 2b. This is
an accurate representation as long as the buckle
width is large compared to the total multilayer
thickness, as implied by the terminology, ``large''.
Each layer is assumed to be isotropic with thick-
ness ti, Young's modulus Ei, and Poisson's ratio mi.
The pre-stress in each layer, r�i�0 , is uniform and is
taken positive in compression.

With the coordinates of Fig. 4, let y � c give the
location of the neutral axis of the multilayer for
bending about the z-axis (see Appendix A). With
the pre-buckling stress state as reference, let DM be
the change in bending moment about the neutral
axis and DN the change in in-plane stress resultant
de®ned by

DM � ÿ
ZyJ�1

y1

Drxx�y ÿ c� dy and

DN �
ZyJ�1

y1

Drxx dy; �3:1�
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where Drxx is the change in stress from the un-
buckled, pre-stressed state and J is the number of
layers. With j as the curvature and De as the
change in stretching strain at the neutral axis
(relative to the pre-stressed state), the moment-
curvature and stress resultant-strain relations for
the changes due to buckling are

DM � Bj and DN � SDe; �3:2�
where the formulas for the bending sti�ness B
and the stretching sti�ness S are given in
Appendix A.

Let the compressive pre-stress resultant be:

N0 �
XJ

i�1

r�i�0 ti: �3:3�

The critical value of this resultant at which
buckling initiates, �N0�c � Nc, is

Nc � p
b

� �2

B; �3:3�

which reduces to Eq. (2.2) for the case of a single
®lm. The result for the energy release rate gener-
alizing (2.3) is

Gside � 1

2S
N0� ÿ Nc� N0� � 3Nc�: �3:4�

The average energy release rate at the curved
front of the straight-sided blister under steady-
state propagation is

Gfront � N 2
0

2S
1

�
ÿ Nc

N0

�2

: �3:5�

A numerical example will be used in Section 5
to illustrate application of these formulas to the
tri-layer TBC. Note that variations in compressive
pre-stress from layer to layer do not e�ect the re-
sults in Eqs. (3.3)±(3.5), except to the extent that
they in¯uence the resultant N0.

The limiting energy release rate for N0 � Nc

from both Eqs. (3.4) and (3.5) is

G0 � N 2
0

2S
: �3:6�

As noted above, this is also the energy release
rate for edge-delamination of the multilayer, dis-
cussed further in Section 6.

4. Multilayer ®lms: small delaminations

A TBC with a thick zirconia top coat having
low in-plane moduli provides the speci®c moti-
vation for the analysis in this section. We in-
vestigate the possibility of delamination failure at
the interface between the bond coat and the
TGO with the thin bi-layer plate (TGO and fully
dense zirconia) buckling into the compliant zir-
conia top coat. The limit when the relevant in-
plane moduli of the top coat become very small
is that for the bi-layer plate. The width of the
buckle scales with the bi-layer thickness, not
with the total TBC thickness. Such delamina-
tions are referred to as ``small''. The main issue
is the level of the in-plane moduli of the top coat
necessary to suppress these ``small'' buckle-de-
laminations.

The cross-section of the straight-sided buckle
delamination is shown in Fig. 5(a). The bond coat
is taken as part of the substrate and is not specif-
ically modeled. Layers #1 and #2 (the TGO and
the thin layer of fully dense zirconia, respectively)
are combined as a thin bi-layer plate in the manner
of the previous section with (J � 2). The case
wherein the fully dense zirconia is absent can be
obtained as the limit for t2 � 0. The thick top layer
(#3) is analyzed separately, as will be described,
and then coupled to the bi-layer plate using the
traction-displacement response of layer #3 in the
buckled region (Fig. 5(b)).

Fig. 4. Geometry of a ``large'' delamination of a tri-layer

coating. The delamination is su�ciently large that the three

layers can be regarded as a thin plate in the delaminated region.
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Layers #1 and #2 are taken to be isotropic and
pre-stressed with the same notation used in the
previous section. Now, the bending and stretching
sti�nesses, B and S, are those of the bi-layer plate
and are given by expressions in Appendix A (with
J � 2). The compressive pre-stress resultant of the
bi-layer is

N0 � r�1�0 t1 � r�2�0 t2: �4:1�
In the absence of the top layer, #3, the pre-

stress resultant of the bi-layer at the onset of
buckling is (3.3) and the energy release rates are
given by Eqs. (3.4) and (3.5).

The thick top coat (#3) is highly anisotropic
due to the porosity between the columnar grains
(Johnson et al., 1995). This microstructure also
gives rise to low shear moduli governing de¯ec-
tions normal to the plane of the layer. In situ
measurements indicate that the (incremental)
moduli increase as the temperature imposed on
the TBC drops and as the top coat experiences
more and more in-plane compression (Johnson
et al., 1995). Such behavior would be consistent
with pores and micro-cracks closing as the coat-
ing is forced to contract. No attempt will be
made in this study to model this nonlinear be-
havior. Here the moduli are taken to be stress-
independent and transversely isotropic, with the
symmetry axis lying perpendicular to the layer.
Speci®cally, with reference to the coordinate axes
in Fig. 5(b), the stress-strain relation in layer #3
is taken as

e11 � 1

E�3�1

r11 ÿ m�3�12

E�3�1

r22 ÿ m�3�13

E�3�1

r33;

e22 � ÿ m�3�12

E�3�1

r11 � 1

E�3�2

r22 ÿ m�3�12

E�3�1

r33;

e33 � ÿ m�3�13

E�3�1

r11 ÿ m�3�12

E�3�1

r22 � 1

E�3�1

r33;

e12 � 1

2l�3�12

r12;

e13 � 1

2l�3�13

r13 l�3�13

 
� E�3�1

2�1� m�3�13 �

!
;

e23 � 1

2l�3�12

r23: �4:2�

A compressive pre-buckling stress in layer #3,
r�3�0 , will also be taken into account.

4.1. Solution for layer #3

For plane strain deformations (e33 � 0) in the
plane of �x1; x2�, Eq. (4.2) can be inverted to give

r11 � c11e11 � c12e22; r22 � c12e11 � c22e22;

r12 � 2c44e12; �4:3�
where, for the speci®c cases of interest in this study
wherein E�3�2 � E�3�1 , the moduli cij are obtained
from Eq. (4.2) in Appendix A. The outcome is

c11 � E�3�1 =�1ÿ m�3�
2

13 �; c22 � E�3�2 ; c12 � 0;

c44 � l�3�12 � kc11=2; �4:4�

where k is an independent parameter introduced to
scale l�3�12 with E�3�1 . For the porous columnar grain
structure, k is expected to be between 1/2 and 1.
The equations governing small strain (but non-
linear strain-displacement and equilibrium behav-
ior) for layer #3 (Fig. 5(b)) are linearized about
the uniform pre-buckling stress state. The formu-
lation, which is exact within an incremental plane
strain framework, is detailed in Appendix A, along
with an outline of the solution method. The layer
is in®nite in extent in the x1 direction, has zero
tractions along the top surface at x2 � t3, and is
clamped with zero displacements (relative to the
uniform pre-buckling state) along its bottom

Fig. 5. (a) Geometry for a ``small'' delamination wherein the bi-

layer plate buckles into the thick compliant top layer. (b) The

problem for determining the restoring stress exerted by the top

layer on the bi-layer plate.
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surface outside the buckling region, i.e., on x2 � 0
for x1j j > b.

In principle, it is possible to couple layer #3 to
the bi-layer plate using integral equations to en-
force continuity of displacements and tractions
between the two regions along x2 � 0 for x1j j < b.
We have used an approximate method to achieve
the coupling. The approximation makes use of an
assumed buckling mode shape in an energy for-
mulation of the buckling problem. The mode
shape assumed is that of the bi-layer in the limit
wherein it is unconstrained by layer #3. With d as
the amplitude of the buckling de¯ection, the
buckling displacement perpendicular to the com-
mon interface between layer #3 and the plate is
taken as

u2 � �d=2� 1� � cos�px1=b��: �4:5�
The displacement parallel to the common in-

terface, u1, is of order d2, and the energy contri-
bution in layer #3 arising from this displacement
component is very small compared to that from u2

and will be neglected. The elastic energy change in
layer #3 from the reference pre-stressed state,
U �3�, is computed exactly for displacements im-
posed on x2 � 0 for x1j j < b, where u2 is given by
Eq. (4.5) and u1� 0. The steps of the computation
are outlined in Appendix A. The result is written
as

U �3� � 1

2
E�3�1 d2k

b
t3

;
r�3�0

E�3�1

;
E�3�2

E�3�1

; k; m�3�13

 !
; �4:6�

where k is a dimensionless function of the pa-
rameters listed.

It will be seen that the relevant widths for the
small delaminations of the TBC fall well within the
range 1=3 < b=t3 < 3. The normalized pre-stress in
layer #3 only in¯uences k when b=t3 becomes
considerably larger than 3, as will be illustrated
later. For small delaminations, the pre-stress in
layer #3 can be neglected. It has been found that
the out-of-plane modulus, E�3�2 , has virtually no
in¯uence on k in the range relevant to the small
blisters, even when E�3�2 =E�3�1 changes by several
orders of magnitude (Fig. 6(a)). An asymptotic
analysis of the problem for large E�3�2 =E�3�1 with
zero pre-stress is carried out in Appendix A. The
result is

k � p
2

k
2

� �3=2
1

1ÿ m�3�
2

13

H

���
2

k

r
t3

b

 !
; �4:7�

where the expression for H is given in Appendix A
and plotted in Fig. 6(b). For 1=3 < b=t3 < 3,
Eq. (4.7) provides k accurately for E�3�1 =E�3�2 < 0:1,
fully encompassing the range of interest.

4.2. The solution for the small buckle-delaminations

The approximate coupled solution (cf. Appen-
dix A) gives the critical value of the compressive
pre-buckling stress resultant (4.1) in the bi-layer
plate coinciding with the onset of buckling as

Nc � p
b

� �2

B� 4k
p2

E�3�1 b: �4:8�
For N0 > Nc the associated energy release rate

of the interface crack lying at the interface between
layer #1 and the substrate (i.e., between the TGO
and the bond layer) is

Fig. 6. (a) Curves of k as a function of b=t3. (b) The function

H�z� for evaluating k from the asymptotic formula (4.7).
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Gside � 1

2S
N0 ÿ Nc� � N0 � 3Nc ÿ 16k

p2
E�3�1 b

� �
: �4:9�

Here, B and S are the bending and stretching
sti�nesses for the bi-layer plate (J � 2 in Appen-
dix A). When k � 0, these formulas reduce to the
results obtained for a bi-layer plate in Section 3 in
the absence of the thick top layer. The expression
for the average steady-state energy release rate on
the curved front of the straight-sided delamination
cannot be expressed as simply as before. However,
for a given value of N0 and half-width b, it can be
evaluated numerically using

Gfront � 1

b

Zb
b0

Gside db; �4:10�

where b0 is the half-width associated with the onset
of buckling at N0, i.e., b0 is obtained from Eq. (4.8)
with Nc replaced by N0.

5. Buckle-delamination of TBCs: examples

The number of parameters characterizing a
TBC system is too large to present the delamina-
tion results comprehensively in graphical form.
Instead, results for representative TBCs will be
used to illustrate the main features of the phe-
nomenon. The formulas in Sections 3 and 4 are
readily programmed to generate results for any set
of parameters. Numerical results will be generated
for the following TBC systems.

Layer #1 (Al2O3):

t1 � 1 lm; E�1� � 400 GPa; m�1� � 0:2;

a�1� � 8� 10ÿ6=
�
C;

Layer #2 (dense zirconia):

t2 � 2 lm; E�2� � 200 GPa; m�2� � 0:2;

a�2� � 11� 10ÿ6=�C;

Layer #3 (porous zirconia):

t3 � 50 lm; E�3�2 � 150 GPa; m�3�12 � 0;

m�3�13 � 0:2; k � 1; a�3� � 11� 10ÿ6=
�
C;

E�3�1 variable: �5:1�

Additional results are presented for t1 � 5 lm
and for t3 � 100 lm in order to illustrate impor-
tant trends. The e�ect of the in-plane modulus
of layer #3, E�3�1 , will be studied by varying the
ratio, E�3�1 =E�3�2 . The out-of-plane modulus, E�3�2 ,
has been reduced slightly below the fully dense
value for zirconia to re¯ect the e�ect of the po-
rosity. Note that the shear modulus in layer #3
relevant to the plane strain deformation is
l�3�12 � E�3�1 =2. The substrate is considered to be a
representative Ni superalloy with as � 14�
10ÿ6=

�
C and very thick relative to the TBC.

5.1. Small and large buckle-delaminations

For the TBC system having properties speci®ed
in Eq. (5.1), we ®rst consider the temperature drop
necessary to bring an initial straight-sided ¯aw of
width 2b to the onset of buckling. Speci®cally, for
the purpose of illustration, assume that the stresses
in all three layers are zero at T � 1000�C, and
assume the coe�cients of thermal expansion for
the layers and for the substrate are temperature-
independent with the values listed above. For a
temperature drop, DT , measured from 1000�C, the
compressive pre-buckling stress in each of the
layers is given by

r�i�0 �
E�i�Da�i�DT
�1ÿ m�i�� ; �5:2�

where Da�i� � as ÿ a�i�, and for layer #3 E�i� and
m�i� are the in-plane quantities, E�3�1 and m�3�13 . Fig. 7
presents the temperature drop required to initiate
buckling as a function of the half-width of the
interface ¯aw, b. Two sets of predictions are
shown, one for E�3�1 � 0.01 GPa and the other for
E�3�1 � 0.05 GPa. The solid-line curves are obtained
using Eq. (4.8) with full accounting for the de-
pendence of k on r�3�0 =E�3�1 . The dashed-line curves
are obtained using the tri-layer plate result (3.3):
Note that its accuracy deteriorates for smaller
¯aws and large in-plane moduli. The smallest
¯aws that buckle for DT � 1000�C have a half-
width of about 40 lm, but only if the top coat
has a very low in-plane modulus. Larger ¯aws
require less temperature drop to initiate buckling.
In passing, we mention that a TBC with a fully
dense 50 lm top coat would only buckle for
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DT � 1000�C if the half-width of the ¯aw exceeded
about 800 lm.

5.2. Energy release rates: the role of the in-plane
modulus of layer #3

For a temperature drop DT � 1000�C, the
compressive pre-stresses in layers #1 and #2
(based on Eq. (5.1)) are

r�1�0 � 3:0 GPa and r�2�0 � 0:75 GPa: �5:3�
For the small values of E�3�1 =E�3�2 considered in

the example which follows, the pre-stress in layer
#3 has no in¯uence either on the elastic energy
stored in the TBC or on buckling. The value of the
pre-stress resultant (4.1) for a 1 lm thick TGO is
N0 � 4:5 kNmÿ1 and the limiting value of
Eqs. (3.4) and (3.5) for N0 � Nc is

G0 � N 2
0 =�2S� � 12:15 J mÿ2: �5:4�

This steady-state level is increased to 56 J mÿ2

when the TGO thickens to 5 lm.
Curves of the energy release rate computed

from Eqs. (4.9) and (4.10) are plotted in Fig. 8 as a
function of the half-width b for various values of
the moduli ratio E�3�1 =E�3�2 . For values of this ratio

less than about 10ÿ4, the in-plane modulus of layer
#3 has no in¯uence and the energy release rate is
the same as it would be in the absence of the thick
top layer. Consequently, buckles with half-widths
greater than about 50 lm have energy release rates
on the order of G0. However, when E�3�1 =E�3�2 ex-
ceeds about 10ÿ3, the top layer constrains the
amplitude of the buckle and signi®cantly lowers
its energy release rate. For E�3�1 =E�3�2 � 3� 10ÿ3,
buckles with a half-width less than 300 lm are
completely suppressed. Accordingly, a 50 lm top
layer having in-plane moduli E�3�1 =E�3�2 > 3� 10ÿ3 is
su�cient to avert small buckle-delaminations. This
is the range found in practice for TBCs (Johnson
et al., 1995).

The mode mixity, w, associated with the energy
release rate along the side of the blister is shown in
Fig. 9. As the width of the buckle increases, crack
tip conditions rapidly approach mode II. Mode
mixity along the curved front has not been deter-
mined, but it will have a more substantial mode I
component. As already noted, spreading of the

Fig. 8. Energy release rates for the straight-sided blister in a

TBC speci®ed by Eq. (5.1) for various values of in-plane

modulus of the top coat at a temperature drop of 1000�C. (a)

Along the sides; (b) along the front.

Fig. 7. The temperature drop required to initiate buckling of a

straight-sided blister of half-width b. The properties of the tri-

layer TBC are speci®ed in Eq. (5.1). Results are shown to for

two values of the in-plane modulus of the top coat. The solid

line curves are based on the accurate analysis using Eq. (4.8);

the dashed-line curves are based on the tri-layer plate approx-

imation (3.3) for large delaminations.
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buckle-delaminations will be a�ected by the mode-
dependence of the interface toughness and the
friction.

Energy release rates are plotted in Fig. 10 for an
example identical in all respects to the former ex-

cept that now the thickness of the top coat is
t3 � 100 lm. At a given moduli ratio, E�3�1 =E�3�2 ,
the thicker top coat is more e�ective at suppress-
ing buckling and lowering the energy release rate.

6. Edge-delamination versus buckle-delamination

Except when E�3�1 =E�3�2 is small, the top coat
contributes to the energy available for delamina-
tion, G0. At the same time, however, it makes it
less likely that small delaminations will buckle. It
has already been noted that G0 de®ned in Eq. (3.6)
represents the limiting energy release rate for the
buckle-delaminations as they grow. For the TBC,
G0 is also the steady-state energy release rate for
edge-delamination along the interface between the
TGO and the bond coat, absent frictional inter-
action along the interface crack faces. The crack is
closed and the delaminated ®lm remains ¯at (until
its length reaches the point where the unrelaxed
component of stress parallel to the edge produces
edge-buckles (Thouless et al., 1994)). The edge-
delamination crack is subject to pure mode II
conditions.

The energy density G0 is a central quantity in
assessing the likelihood of both edge- and buckle-
delaminations. If the interface toughness, Ci�w�,
exceeds G0, delaminations will not occur. Recall
that the relevant toughness for buckle-delamina-
tions will be much less than that for edge-delami-
nations due to mode mixity and frictional e�ects.
A plot of G0 for edge-delaminations from Eq. (3.6)
as a function of E�3�1 =E�3�2 is given in Fig. 11(a)
for the examples discussed in Section 5 for DT �
1000�C. At E�3�1 =E�3�2 less than about 10ÿ3, the en-
ergy release rate (G0 � 12:5 J mÿ2), is comprised
almost entirely of the elastic energy in layers #1 &
#2, with most of energy in layer #1. Sharp
increases in G0 occur once E�3�1 =E�3�2 exceeds a
critical level (depending on t3), corresponding to
storage of signi®cant elastic energy in the top
coat. In practice, TBCs have moduli in the range
�E�3�1 =E�3�2 > 10ÿ2� wherein the top coat contributes
signi®cantly to the energy release rate.

The bene®cial e�ect of larger E�3�1 =E�3�2 in sup-
pressing the buckling of small initial ¯aws is il-
lustrated in Fig. 11(b). Here, the smallest ¯aw

Fig. 10. Energy release rates for the straight-sided blister in a

TBC which is identical to that in Fig. 8 except that the top layer

thickness is t3 � 100 lm rather than t3 � 50 lm.

Fig. 9. Mode mixity associated with the interface crack along

the sides of the blister for the example in Fig. 8.
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half-width, b0, which will buckle is plotted against
E�3�1 =E�3�2 , (DT � 1000�C). The half-width, b0,
corresponds to the size of the blister at the onset
of buckling; it is given by Eq. (4.8) with
N0 replacing Nc. At values of E�3�1 =E�3�2 less than
10ÿ4 the top coat exerts e�ectively no constraint
on buckling of the bi-layer. At higher values of
E�3�1 =E�3�2 , the top coat constrains buckling and
those delaminations susceptible to buckling are
larger. Note that these buckles still lie within the
regime wherein the bi-layer plate buckles into the
compliant top coat; they are not the large buckles
of Section 3 until the half width is larger than
about 300 lm.

The countervailing trends in Fig. 11 can be
brought together to highlight fail-safe conditions
wherein initial delaminations will neither spread
nor buckle. First, consider the condition such that

edge-delaminations will not spread. Combinations
of t3 and E�3�1 =E�3�2 corresponding to G0 � CIIi,
where CIIi is the mode II interface toughness, are
plotted as dotted lines on Fig. 12(a) and 12(b). A
top coat with a combination of thickness and in-
plane modulus lying to the left of each curve (for
the relevant CIIi) will not experience steady-state
edge-delamination. Otherwise it will spontane-
ously delaminate (unless it is arrested by friction).
Next, combinations of t3 and E�3�1 =E�3�2 that avert
buckling of pre-existing delaminations of half-
width b0 have been plotted as solid lines on
Fig. 12(a) and 12(b). Such combinations lie to the
right of each curve for the given initial ¯aw size,
which corresponds to the onset of buckling.
Combinations of t3 and E�3�1 =E�3�2 which exclude
both edge-delamination and buckling clearly ex-
ist, depending on the initial ¯aw size and the in-

Fig. 12. Combinations of top coat thickness and modulus ratio

such that neither buckling nor edge-delamination will occur for

the TBC speci®ed in Eq. (5.1). An acceptable combination,

�t3;E
�3�
1 =E�3�2 �, must lie between the solid line curve for the initial

¯aw size and the dashed line curve for the mode II interface

toughness. (a) TGO 1 lm thick, and (b) TGO 5 lm thick. Note

that even without a top coat, spontaneous delamination would

occur if, in case (a) CIIi < 12:5 J mÿ2, absent friction at the

debonded interface, and, in case (b) if CIIi < 56 J mÿ2.

Fig. 11. (a) Energy release rate quantity G0 as a function of

E�3�1 =E�3�2 . (b) Half-width b0 of the smallest straight-sided blister

which will buckle as a function of E�3�1 =E�3�2 . Both ®gures apply

to the TBC speci®ed in Eq. (5.1).
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terface toughness. Note that for a 1 lm TGO
(Fig. 12(a)) CIIi must exceed 12:5 J mÿ2 to avert
spontaneous edge delamination. Larger CIIi pro-
vide the possibility that the fail-safe domain
identi®ed on the ®gure can be realized. Fig. 12(b)
presents a second illustration of the fail-safe
combinations: in this case for a TBC system
which is identical except that the thickness of the
TGO layer (#1) is now 5 lm. The greater thick-
ness of the TGO layer requires higher interface
toughness to resist spontaneous edge-delamina-
tion (CIIi > 56 J mÿ2), but the TBC is somewhat
less susceptible to buckling in the presence of
small initial delamination ¯aws. Note that for
typical TBC moduli �E�3�1 =E�3�2 � 10ÿ1�, there is a
wide fail safe range provided that CIIi exceeds
56 J mÿ2.

Erosion of the interface toughness or growth of
initial delaminations by sub-critical mechanisms
such as stress corrosion (Sergo and Clarke, 1998)
or fatigue (Wang and Evans, 1998) will narrow,
and perhaps even eliminate, the window of top
coat properties capable of suppressing both
buckling and edge-delamination.

7. Summary

The primary focus of the paper has been on
the competition between edge- and buckle-de-
lamination of the TBC at the TGO/bond coat
interface, as in¯uenced by the in-plane modulus
of the top coat. Both forms of delamination scale
with the available elastic energy per unit area
stored in the tri-layer, G0, given by Eq. (3.6).
Suppression of edge-delamination requires that
the e�ective mode II interface toughness exceed
G0. Buckling-delamination takes place as interface
cracking under combined mode I and mode II
and is therefore likely to experience lower inter-
face toughness. The relatively thick top coat acts
to completely suppress buckling whenever the
initial interface ¯aws are smaller than a critical
size. Detailed conditions on the in-plane modulus
of the top coat for simultaneously suppressing
both edge-delamination and buckling have been
given.
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Appendix A

A.1. Bending and stretching sti�nesses of a multi-
layered plate

The location, y � c, of the neutral axis for pure
bending about the z-axis of a plate of J layers is
given by (cf. Fig. 4)

c
XJ

i�1

�Eiti � 1

2

XJ

i�1

�Ei y2
i�1

ÿ ÿ y2
i

�
; �A:1�

where �Ei � Ei=�1ÿ m2
i � and yi�1 and yi are the lo-

cations of the top and bottom faces of layer #i.
The bending and stretching sti�nesses introduced
in Eq. (3.2) are given by

S �
XJ

i�1

�Eiti and

B � 1

3

XJ

i�1

�Ei yi�1�
h

ÿ c�3 ÿ yi� ÿ c�3
i
: �A:2�

A.2. The Determination of k for layer #3 introduced
in Eq. (4.6)

In the notation of Eq. (4.3) for plane strain
deformations in the �x1; x2� plane, the Navier
equations for the pre-stressed layer #3 are

�c11 ÿ r0�u1;11 � c44u1;22 � �c12 � c44�u2;12 � 0;

�c12 � c44�u1;12 � c22u2;22 � �c44 ÿ r0�u2;11 � 0;

�A:3�
where r0 � r�3�0 is the compressive pre-stress in the
x1-direction and ua�x1; x2� are the displacements
measured from the pre-buckling state. The
Eq. (A.3) have been obtained by linearizing the
nonlinear equilibrium equations about the pre-
buckling state for material (4.3). The top of the
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layer at x2 � t3 is traction-free requiring that the
stress changes Dr22 � 0 and Dr12 � 0 vanish. On
x2 � 0,

u1 � u2 � 0 for x1j j > b;

u1 � 0; u2 � �d=2��1� cos�px1=b��
for x1j j < b: �A:4�
The desired quantity k de®ned in Eq. (4.6) is

obtained in terms of the normal stress component
on x2 � 0 for x1j j < b by

k � ÿ�2E�3�1 d�ÿ1

Zb
ÿb

1� � cos�px1=b��

� Dr22�x1; 0� dx1: �A:5�
To lowest order, the condition u1 � 0 along the

interface where layer #3 joins the bi-layer plate is
consistent with the in-plane displacement of the
plate vanishing in the buckling problem. This
provides the elastic energy change in layer #3 to
order d2, where d is the buckling amplitude intro-
duced in Eq. (4.5). This condition is not imposed
on the plate itself.

The linear boundary value problem speci®ed by
Eqs. (A.3) and (A.4) is solved using a method
which has been employed on similar problems by
Sneddon (1951) and Delale and Erdogan (1979). A
Fourier transform of the governing equations and
boundary conditions it taken with respect to the
x1-coordinate leading to a set of ordinary di�er-
ential equations and boundary conditions in the
transformed variables in the x2-coordinate. These
can then be solved in closed form, and inverse
transform expressions can be written for the so-
lution quantities. In particular, the quantity
needed to evaluate k in Eq. (A.5), Dr22�x1; 0�, can
be obtained in the form

Dr22�x1; 0� � E�3�1 �d=b�
Z1

0

K�g�cos�gx1=b� dg;

�A:6�
where K�g� is an explicit, but complicated, func-
tion of the moduli ratios, and of r0=E�3�1 and t3=b.
Numerical integration is used in the evaluation of
both Eqs. (A.6) and (A.5).

The Poisson's ratio quantity m�3�12 in Eq. (4.2)
can be taken to be zero, to very good approxi-
mation, in the case of interest where E�3�2 =E�3�1 �
1 and the magnitude of the stress component r22

is not signi®cantly larger than the magnitudes of
the other components. The argument is as fol-
lows. Considering nonzero stress components r11

and r22, write e11 and e22 as

e11 � 1

E1

r11 ÿ m21

E2

r22; and

e22 � ÿ m12

E1

r11 � 1

E2

r22; �A:7�

where by reciprocity m21=E2 � m12=E1. De®ned this
way, both Poisson ratios will necessarily be less
than 1, which is all that is required for the present
argument. If E2=E1 � 1, the reciprocal relation
then implies m12 � 0. Thus, in the computation of
results for layer #3, we have taken m�3�12 � 0 in
Eq. (4.2). The resulting coe�cients in Eqs. (4.3)
and (A.3) are then given by Eq. (4.4).

The asymptotic solution (4.7) for k under
conditions E�3�2 =E�3�1 � 1 and r0=E�3�1 � 0 is
obtained by noting that, in the limit of large
E�3�2 =E�3�1 , Eq. (A.3) becomes

u1;11 � �k=2��u1;22 � u2;12� � 0; u2:22 � 0: �A:8�
If Dr22 is comparable in magnitude to Dr11 and

Dr12, then e22 will become zero as E�3�2 =E�3�1 be-
comes large, implying with Eq. (A.8) that
u2 � f �x1�. Thus, by Eq. (A.4),

u2 � f �x1�

� �d=2� 1� cos�px1=b�� �; x1j j < b;
0; x1j j > b:

�
�A:9�

Now, the ®rst equation of (A.8) becomes

u1;11 � �k=2�u1;22 � 0: �A:10�
The remaining boundary conditions reduce to

u1 � 0 on x2 � 0; and

u1;2 � ÿdf �x1�=dx1 on x2 � t3: �A:11�
This asymptotic boundary value problem can

be solved in closed form using the same transform
method outlined for the full problem. The result
for k in Eq. (A.5) is given by Eq. (4.7) where
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H�z� � p
2

zÿ 1

2

Z1
0

sinh �gz�
gcosh �gz�

sin�p� g�
p� g

�

ÿ sin�pÿ g�
pÿ g

�2

dg: �A:12�

The condition on the pre-stress for the
applicability of the asymptotic formula (A.5) is
r0=E�3�1 � �t3=b�2.

A.3. The coupled problem for the bi-layer plate and
the compliant top layer

Buckling of the straight-sided blister well be-
hind the curved end is considered wherein the
de¯ections and stresses are independent of the
coordinate x3 parallel to the edges. The notation
introduced in Section 4 is used. Relations (3.2)
hold for the bi-layer plate where B and S are
evaluated from Eqs. (A.1) and (A.2) for J � 2, and
N0 is given by Eq. (4.1). The plate is taken to be
clamped along x � �b. Von Karman nonlinear
strain±displacement relations are used to describe
the plate. The additional strain of the neutral
bending axis De and the curvature j are related to
the in-plane and normal displacements (u�x�;w�x�)
of the neutral bending axis from the pre-stressed
state by

j � w00; De � u0 � 1

2
w02; �A:13�

where the prime denotes di�erentiation with re-
spect to x � x1. Let p�x� denote the normal re-
storing stress exerted by layer #3 on the plate, and
neglect the tangential restoring component, with
justi®cation to be given later. The equilibrium
equations associated with Eq. (A.13) through the
principle of virtual work are

DN 0 � 0; DM 00 � �N0 ÿ DN�w00 � p: �A:14�
The ®rst implies DN is independent of x. Then,

Eq. (3.2), the second equation of (A.13) and the
condition that u vanishes at x � �b gives

DN
S
� 1

4b

Zb
ÿb

w02 dx: �A:15�

The second equation of Eq. (A.14) with
Eq. (3.2) and the ®rst equation of (A.13) be-
comes

Bw0000 � �N0 ÿ DN�w00 � p: �A:16�
Multiply Eq. (A.16) by w, and integrate both

sides of the equation from ÿb to b. Integration by
parts, with the aid of the fact that w and w0 vanish
at the ends of the interval, results inZb
ÿb

Bw002
� ÿ �N0 ÿ DN�w02 ÿ pw

�
dx � 0: �A:17�

The solution to Eqs. (A.15) and (A.16) with
p� 0 is w � �d=2��1� cos�px=b�� with d related to
N0 through (A.15), as will be detailed below.

The plate is coupled to the compliant top layer
by identifying p with Dr22�x1; 0� in (A.6). Speci®-
cally, assuming an approximate solution in the
form w � �d=2��1� cos�px=b��, Eqs. (A.15) and
(A.17) become

DN
S
� 1

16

pd
b

� �2

;

N0 ÿ DN ;� p
b

� �2

B� 4kE�3�1 b
p2

; �A:18�

where the dependence of k on the moduli ratios,
t3=b and r0=E�3�1 have already been documented.
This is the exact solution to the plate problem
posed in the limit when the top layer is absent. The
condition for the onset of buckling, Eq. (4.8), is
obtained as the limit from Eq. (A.18) when d is
small. The moment change in the bi-layer plate at
its right end can be computed from DM � Bw00 and
is found to be

DM � p2

2

Bd
b2
: �A:19�

The energy release rate for the interface crack
tip of the buckled blister can be determined ap-
proximately in two ways, each of which is outlined
below. In the ®rst approach, it is noted that the
right end of the bi-layer plate experiences the
loading combination �DN ;DM�. On the scale of
the bi-layer thickness, one can regard this as a
composite beam attached to a substrate (cf.
Hutchinson and Suo, 1992). The crack tip stress
intensities are due to �DN ;DM� because there is no
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intensity for the unbuckled plate under the pre-
stress N0. The energy release rate is

G � DM2

2B
� DN 2

2S
: �A:20�

Noting that DN � N0 ÿ Nc, one can algebrai-
cally reduce (A.20) using Eqs. (A.18) and (A.19) to
obtain the expression for G given by Eq. (4.9).

One can also use this approach to obtain an
approximation for the mode mixity. For an beam
of one isotropic material attached to a substrate of
another isotropic material, the mode mixity is
given by

tanw �
�����
12
p � �tDN=DM� tanx

ÿ �����
12
p

tanx� �tDN=DM� ; �A:21�

where t is the beam thickness and x is a function
of elastic mismatch. For elastic mismatches which
are not very large x di�ers from its value for the
homogeneous case (51:2�) by no more than about
5�. Apply Eq. (A.21) to the bi-layer beam by
taking the thickness to be that of an uniform
beam with the same bending and stretching sti�-
ness, i.e., t � �������������

12B=S
p

, and, thus, tDN=DM ��������������������������������������������
3�N0 ÿ Nc�=�B�p=b�2�

q
from Eq. (A.19). The

elastic mismatch has been ignored (x � 51:2�) in
plotting the mode mixity in Fig. 9.

The second approach to computing the energy
release rate involves taking the derivative with re-
spect to b of the elastic energy change of the sys-
tem relative to the pre-stressed state. It can be
shown by direct calculation that the di�erence in
the elastic energy in the plate and top layer be-
tween the buckled and unbuckled states is exactly
DU � ÿbDN 2=S for the model posed. This ac-
counts for the elastic energy change in the top
layer. A direct calculation of the energy release
rate from G � ÿ1=2dDU=db gives

G � 1

2S
N0� ÿ Nc�

� N0 � 3Nc ÿ 8k
p2

E�3�1 b 3ÿ z
H

dH
dz

� �� �
;

�A:22�
where asymptotic expression (4.7) for k has been
used and z � ��������

2=k
p �t3=b�. This result di�ers

slightly from that in Eq. (4.9). However, because

�z=H�dH=dz approaches 1 for values of z larger
than about 1 (cf. Fig. 6(b)), Eq. (A.22) reduces to
Eq. (4.9) for z > 1 and the di�erence at smaller z is
small. The examples in the body of the paper were
computed using Eq. (4.9).
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