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Abstract

Coatings subject to residual compression eventually fail by buckle-driven delamination. The phenomenon is most
vivid in thermal barrier coatings (TBCs) used in gas turbines. The failure evolution commences with the formation of a
large number of small cracks at geometric imperfections near the interface. These cracks spread upon thermal exposure,
particularly upon thermal cycling, because of the formation of a thermally grown oxide (TGO) beneath the TBC, which
introduces normal and shear stress near the interface. Experimental observations indicate that some of these cracks
coalesce to form large-scale delaminations susceptible to buckling. The mechanics governing crack coalescence and
the consequent failure are addressed in the present analysis.

A model is introduced that simulates stresses induced in the TBC by spatial variations in TGO growth. Energy
release rates for cracks evolving in this stress field are determined. Two related scenarios are considered, which differ
in the way the TGO shape evolves. In both, contact between the crack faces and the consequent wedging action is
responsible for ultimate coalescence. The wedging force induces a mode I stress intensity that becomes infinite as the
cracks coalesce. The consequence is that, for some TGO shapes, the energy release rate is always non-zero, with a
minimum at a characteristic crack length. This minimum establishes a criterion for crack coalescence and failure.

Based on these insights, finite element simulations have been used to predict cyclic crack growth rates in a TBC
system that correlate well with experimental observations.
 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multi-layer thermal barrier systems (Fig. 1) fail
by the propagation and coalescence of micro-
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cracks within the outer layer of yttria stabilized zir-
conia (YSZ) [1–19]. The micro-cracks are mot-
ivated by localized tensile stresses in the thermal
barrier that arise because of the strain misfit
between the thermally grown oxide (TGO) and the
other layers [4,6,8,9,11,12]. While the specifics are
system dependent, there are commonalities (Fig.
1). The micro-cracks initiate at multiple sites,
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Fig. 1. A schematic of a crack configuration that arises in ther-
mal barrier systems (see Fig. 2).
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Fig. 2. A scanning electron image of a cross section of TBC
system similar to Fig. 1 that has experienced 75% of its cyclic
durability [9]. Note the undulations in the TGO and the cracks
in the TBC just above the interface with the TGO.

either at or above the interface with the TGO
[4,5,7,9,11,13]. They extend laterally from these
sites as the system cycles. Eventually, a few adjac-
ent micro-cracks coalesce into a crack large
enough to exhibit large-scale buckling and spall-
ation [4]. An example is illustrated in Figs. 1 and
2 [9]. In systems consisting of a Pt–aluminide bond
coat and a columnar thermal barrier coating (TBC)
made by electron beam physical vapor deposition
(EB-PVD), the TGO exhibits a displacement insta-
bility directed into the bond coat. This displace-
ment induces tensile stresses in the TBC above the
instabilities (Figs. 1 and 2) [4–6,8–11], which
cause cracks. Eventually, some of the cracks
coalesce to cause failure.

In all cases, in the absence of cracks the TBC
experiences an oscillating stress field with tension
above the imperfections and compression outside.
Accordingly, cracks that form have an energy

release rate, G, that varies with micro-crack half-
length, a, relative to imperfection wavelength, L.
The objective is to determine the evolution of the
energy release rate. Above the imperfection, where
the stress is tensile, there is a rapid rise in G to a
maximum [15]. This is followed by a decrease as
the micro-crack front spreads into a region of com-
pression and reverse shear. As neighboring cracks
converge and coalesce, G attains a minimum, Gmin.
As the system cycles, the thickness distribution of
the TGO evolves and Gmin increases. This increase
is promoted by a wedging force that arises where
the crack faces are in contact. The cracks coalesce
and cause failure when Gmin reaches the fracture
toughness of the TBC, Itbc, at the appropriate mode
mixity. The challenge is to gain a fundamental
understanding of Gmin sufficient to ascertain its
dependence on the stresses and dimensions. The
intent of the present study is to establish basic
mechanics principles governing crack coalescence
and to apply these to problems of the type indi-
cated in Fig. 1.

The problems reside within the broad mechanics
category of cracks extending within oscillating
residual stress fields [15,20,21]. The special feature
is that the cracks are parallel to a free surface and
consequently no net force acts across the putative
crack plane. This unusual situation requires a care-
ful analysis of the crack tip intensities because the
minimum energy release rates as the cracks
approach coalescence are small relative to the
peak. Contact between portions of the crack faces,
which arises as the cracks spread, plays an essen-
tial role. It promotes mode I behavior in a situation
wherein, otherwise, the energy release rate would
vanish as the cracks coalesce. The mechanics prob-
lem for generating the pre-cracking stresses is as
follows. Matter is inserted along a plane parallel
to the surface with a thickness distribution that
enables the ensuing residual stress to vary in a per-
iodic manner (Fig. 3). This approach for creating
stress closely duplicates that experienced by ther-
mal barrier systems, which may be attributed to
the periodic displacements caused by growth of the
TGO [4].
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Fig. 3. The model used to examine the growth and coalesc-
ence of cracks represented in Fig. 1. The sinusoidal wedge
simulates the spatially varying displacements associated with
the TGO.

2. The stress field

The reduced plane strain problem is depicted in
Fig. 3. A thin slab of material (effectively, the
TGO) is wedged into the interface between the film
(TBC with thickness h), and the substrate. The
wedge has periodic thickness, with wavelength L.
At the interface, y = 0, the displacement uy induced
by the wedge is discontinuous according to:

[uy]+
� � uy(y � 0 � )�uy(y � 0�) � U0 (1)

�U1 cos
2πx
L

,

where U1 is a positive number representing the
sinusoidal amplitude of the wedge. The uniform
component, U0, has no influence on the resulting
stresses and plays no role in the present model
since it displaces the TBC upward by a rigid body
displacement. It is included to emphasize that the
TGO thickens everywhere along its length. Only
the oscillatory mass insertion contributes to the

stresses, giving rise to a tensile stress syy in the
TBC at x = 0. Constrained lateral growth of the
TGO produces lateral in-plane stress in the TGO
which, in turn, gives rise to oscillating normal and
shear stresses on the TGO/TBC interface when
undulations arise [21]. The lateral growth stress is
not considered in the present paper since the it is
limited by plastic deformation of the TGO and thus
the oscillatory interface stresses it produces will
usually be small compared to the stresses due to
wedging. The aim of this paper is to isolate the
cracking mechanism of oscillatory stresses in com-
bination with wedging contact. A more complete
analysis would include the influence of the lateral
growth stress in the TGO, but this would not
change the essence of the mechanism. Across the
interface, the tractions and the other displacement
component ux are continuous:

[syy]+
� � [sxy]+

� � [ux]+
� � 0. (2)

Attention is limited to a homogeneous, isotropic
model to obtain representative analytical results:
E = Etbc = Es and n = ntbc = ns. The analysis can
readily be extended to cases with elastic mismatch
but the number of parameters multiplies rapidly.
The traction boundary conditions are:

syy � sxy � 0 at y � h, (3a)

and

syy � sxy � 0 when y→��. (3b)

From Eq. (1), the airy stress functions for the
TBC (y�0) and the substrate (y�0) can be taken
as:

�f � f(y) cos
2πx
L

(y�0),

� � g(y) cos
2πx
L

(y�0).

(4)

The stresses are related to the second derivatives
of the airy stress functions:
y�0: sxx � ∂2f /∂y2, syy � ∂2f /∂x2, sxy � �∂2f /∂x∂y,

y�0: sxx � ∂2� /∂y2, syy � ∂2� /∂x2, sxy � �∂2� /∂x∂y.
(5)

Compatibility of the strains requires that [22]

��4f � 0, y�0,

�4� � 0, y�0.
(6)
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The stress functions f and � can be solved from
the bi-harmonic differential equation (6) with
boundary conditions (1)–(3). The stress compo-
nents within the TBC at a distance b (y = b�h
with b�h) beneath the surface, caused by the
wedge are:








 syy �

EU1π exp��
2π(b � h)

L �
2L3(1�n2)

[L2(e4πb/L�1)�2πL(b � b e4πb/L � h�h e4πb/L)�8π2bh]cos
2πx
L

,

sxy �

EU1π2 exp��
2π(b � h)

L �
L3(1�n2)

[Lh(e4πb/L�1) � b(L�L e4πb/L � 4πh)]sin
2πx
L

.

(7)

If the TBC is very thick (h→�), the stresses are:

�syy �
EU1π

2L2(1�n2)
e�2πy/L(L � 2πy) cos

2πx
L

,

sxy �
EU1π2

L2(1�n2)
e�2πy/Ly sin

2πx
L

.

(8)

Eqs. (7) and (8) describe the stresses in TBC
caused by the undulation and growth of the TGO.
The normal and shear stresses are cosine and sinus-
oidal functions, respectively, multiplied by positive
coefficients related to the geometric and elastic
parameters.

The normal stress syy is always the largest at the
interface and decreases exponentially away from
the interface. The shear stress sxy is zero at the
interface and reaches maximum inside the TBC, at
location b∗/L, given by the implicit relation:

h
L

�
1

2π�(e4πb∗/L�1) � 2π
b∗

L
(e4πb∗/L (9)

� 1)��(e4πb∗/L�1) � 4π
b∗

L ��1

.

For thick films, h→�, the maximum is located at,
y∗ /L = 1 /2π. The presence of this maximum is
important because it dictates the location where the
mode II stress intensity factor reaches its largest
value, discussed subsequently.

If the undulation wavelength of the wedge is
L/2, with [uy] +

� � �U2 cos(4πx /L), then the stress
field within an infinitely thick TBC layer is:

�syy �
EU2π

L2(1�n2)
e�4πy/L(L � 4πy) cos

4πx
L

,

sxy �
EU2π2

L2(1�n2)
e�4πy/L4y sin

4πx
L

.

(10)

In the scenario discussed below, the evolution of
the TGO shape with thermal cycling will be seen to
be critical. The shape will be assumed to be
roughly sinusoidal with wavelength L, in the early
stages. As thermal cycling proceeds the undu-
lations are observed to develop a dominant pro-
trusion into the bond coat with a much smaller lobe
pushing into the TBC, whereupon, the component
of wavelength L/2 becomes increasingly promi-
nent. At any stage, the TGO undulation is approxi-
mated by:

[uy]+
� � �U1�cos

2πx
L

� 	 cos
4πx
L �, (11a)

where

	 � U2 /U1. (11b)

	 is a shape factor that gradually increases with
TGO growth. A family of TGO shapes, dependent
on 	, is plotted in Fig. 4. From Eqs. (8) and (10),
when the TBC is thick (h /L→�), the stress field
caused by [11] takes the form

Fig. 4. A family of TGO shapes expressed by a shape factor
for the TGO defined as, 	 � U2 /U1.
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�s � syy �
EU1π

L(1�n2)�
1 cos
2πx
L

� 
2	 cos
4πx
L �,

t � sxy �
EU1π2

L(1�n2)��1 sin
2πx
L

� �2	 sin
4πx
L �,

(12)

where the dimensionless coefficients 
, � depend
on y/L according to

�
1 � e�2πy/L
L � 2πy

2L
; 
2 � e�4πy/L

L � 4πy
L

,

�1 � e�2πy/L
y
L

; �2 � e�4πy/L
4y
L

.

(13)

3. Stress intensity factors and energy release
rates

In order to simulate cracking and delamination
of the TBC, the preceding stress field (12) must be
coupled with crack patterns. Two basic situations
are explored: (a) a single (isolated) crack extending
from above one of the undulations; and (b) a series
of identical converging cracks that coalesce to
form a dominant crack much larger than the wave-
length. For the isolated crack, there is symmetry
about x = 0. For the periodic array the stresses are
symmetric about the vertical plane through each
crack midpoint and the midpoint of each ligament
between the cracks. Linear elastic mechanics dic-
tates that the normalized mode I and mode II stress
intensity factors be expressed as functions of crack
length, a/L, and crack location, y/L, as:

�
KIL(1�n2)

EU1�πa
� fI�a

L
,
y
L

,	�,

KIIL(1�n2)

EU1�πa
� fII�a

L
,
y
L

,	�.

(14)

The corresponding energy release rate is, G =
(1�n2)(K2

I + K2
II) /E. Note that the stress intensity

factors also depend on the normalized TBC thick-
ness, h/L. The crack faces are assumed frictionless,
such that contact produces only normal pressure
acting on the faces. Friction is introduced
implicitly at the end of the analysis when the
energy release rate is equated to the (mode II)
toughness of the TBC.

Planes of crack extension parallel to the inter-
face are of practical interest (Fig. 2). While the
crack is subject to mixed mode, it will become
apparent that the sign of KII is such that the crack
always attempts to divert toward the TGO [29]. As
it approaches, it encounters dense material having
higher toughness [4]. Accordingly, the crack con-
tinues to extend parallel to the interface, within the
TBC (Fig. 2). In some instances, the toughness
gradient is such that the crack can penetrate the
dense layer, extend through the TGO to the bond
coat, and continue along this interface.

4. An isolated crack in a thick TBC

Even though the finding is that the isolated crack
is not able to break through the regions of com-
pression on either sides of the crack, the situation
will be briefly reviewed for completeness. The
stress intensity factors KI and KII can be calculated
by applying the tractions [12] to the faces of the
crack, with due account for modification of the
normal traction if contact occurs. When the TBC
thickness is infinite, KI is strictly a function of s,
independent of t, and KII is function only of t.
Assuming no contact occurs, the intensity factors
can be obtained by integrating the relevant Green’ s
function [23] giving

�KIL(1�n2)

EU1�πa
�

1
a	a

�a

a � s

a�s �
1 cos
2πs
L

� 
2	 cos
4πs
L � ds,

KIIL(1�n2)

EU1�πa
�

π
a	a

�a

a � s

a�s ��1 sin
2πs
L

� �2	 sin
4πs
L � ds.

(15)

The mode II intensity factor is not altered by con-
tact, but the mode I factor is significantly affected
by contact, as will be discussed in Section 5.

Results obtained by numerical integration are
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shown in Fig. 5(a)for the case, 	 = 0. The first of
Eq. (15) reveals that the normalized mode I stress
intensity KIL(1�n2) /EU1√πa decreases with
increasing crack length, reaching zero at a /L =
0.38. It becomes negative thereafter, indicating that
the crack faces are closed near the tip and experi-
ence compression. When the crack tip is closed and
contact is taken into account, the mode I solution
in Eq. (15) is no longer valid. However, as long
as the frictional forces between the faces are
ignored, the results presented for KII in Eq. (15)
are still applicable, since the normal traction at the
contact has no effect on KII for the infinitely thick
layer. The normalized mode II stress intensity
initially increases, reaches a maximum, vanishes
at a /L = 0.61 and changes sign for longer cracks.

Using a procedure similar to that discussed in
Section 5 for the periodic cracks, a solution for the
mode I stress intensity factor has been computed
accounting for crack face contact. Then, G =
(1�n2)(K2

I + K2
II) /E is computed as a function of
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Fig. 5. (a) Normalized mode I and II stress intensity factors plotted as a function of crack length a/L for an isolated crack located
above one of the undulations with 	 = 0. The TBC thickness is infinite and the elastic properties are homogeneous. Contact between
the crack faces is ignored. (b) Normalized mode I and II stress intensity factors, plotted as a function of crack length a/L for a
periodic array of cracks with 	 = 0. The TBC thickness is infinite and the elastic properties are homogeneous. The TGO undulation
wavelength is L. Contact between the crack faces does not occur.

crack length for all realistic shape factors. It is
found that there is always a value of a/L at which
G becomes zero. That is, while an isolated crack
may initiate and grow in the TBC in a region of
tension above an undulation, inevitably the crack
becomes trapped within the regions of compression
lying on either side of the initiation site.

5. A periodic array of collinear cracks

For a periodic array of collinear cracks subjected
to normal traction s (cf. Eq. (12)) on the crack
faces, the mode I stress intensity factor can be
obtained by integrating Green’ s function [23] to
obtain the following closed form expression, which
is valid when crack face contact is ignored:

KIL(1�n2)

EU1�πa
� 
πL

2a
cos

πa
L 
sin

2πa
L �
1 (16)
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� 
2	�1�3 sin2
πa
L ��.

The corresponding Green’ s function for mode II
does not appear to exist in the literature. However,
the problem can be solved in closed form by using
complex variable methods (as outlined in Appen-
dix A) giving

KIIL(1�n2)

EU1�πa
� π
πL

2a
sin
2πa
L ��1 sin

πa
L

(17)

� �2	��
1
4

sin
πa
L

�
3
4

sin
3πa
L ��.

This solution is valid when contact of the crack
faces occurs, as long as there is no friction.

Plots of the normalized stress intensity factors
for periodic collinear cracks are given in Fig. 5(b)
for the case where 	 = 0, as determined from Eqs.
(16) and (17). For this shape factor, no contact
occurs, and both KI and KII are non-negative for
all crack lengths. However, they both vanish when
the cracks converge at a /L = 1 /2. Note that KI

approaches zero as (a /L�1/2)3/2, while KII is rela-
tively larger near a /L = 1 /2, approaching zero in
proportion to (a /L�1 /2)1/2. Thus, the cracks will
arrest with a small remaining ligament at a crack
length where G = (1�n2)(K2

I + K2
II) /E falls below

the toughness �tbc at the relevant mode mixity.
Moreover, if crack face contact is ignored, KI and
KII each become zero for any 	 as the cracks con-
verge, as can be seen from Eqs. (16) and (17).
Indeed, if crack face contact is ignored, any equi-
librated stress distribution having the same period
as the cracks will lead to zero KI and KII as the
cracks converge. Consequently, ligaments between
the cracks persist regardless of the TGO thick-
ness variation.

The key to crack coalescence is crack face con-
tact, which occurs when 	 is sufficiently large.
Two scenarios have practical relevance.

(i) Scenario I: The TGO grows such that both U1

and U2 increase in proportion, with fixed shape
factor 	 
 0. The advancing tip must pass
through a zone of pure mode II, with the tip
closed, until contact wedges the tip open and

mode I conditions resume in final ligament fail-
ure.

(ii) Scenario II: The initial stages of the TGO
growth occur under conditions dominated by
U1, with 	�0. The cracks advance according
to the results in Eqs. (16) and (17) (Fig. 5)
until they arrest, prior to coalescence, where
they are subject to dominant mode II, but with
the tip still slightly open. Further growth of the
TGO is envisaged to cause both U1 and 	 to
increase, until contact occurs behind the tip,
whereupon the ensuing wedging drives the
now dominantly mode I cracks across the
remaining ligaments.

Both scenarios require a reformulated solution
to account for contact, which occurs if Eq. (16)
indicates negative KI. In accordance with Eq. (16),
KI becomes negative for a crack half-length, a0 /
L, governed by the magnitude of a mode I shape
coefficient, as � (
2 /
1)	, such that

a0

L
�

1
2
, as �

1
2
,

a0

L
�

1
π

sin�1
1
3

�
1

3as
, as 


1
2

(18)

as plotted in Fig. 6(a). Note that as combines the
dependence on the crack position y /L above the
interface and the undulation shape. Contact is asso-
ciated with as 
 1/2. scenario I pertains if as

 1 /2 in the early stages of the cracking process,
while scenario II governs if most of the crack
advance occurs with as � 1 /2. In both scenarios,
the condition as 
 1/2 must be met at some stage
in the cracking process.

5.1. Solution procedure for mode I contact

If as 
 1/2 and a 
 a0, two possibilities define
the scope of the analysis.

(i) The mode I stress intensity, satisfies KI = 0,
with crack face contact occurring over a zone
that extends up to the tip.

(ii) The mode I stress intensity, satisfies KI = 0,
with a contact zone forming behind the tip,
whereupon the compressive force at the con-
tact wedges open the tip.
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Fig. 6. (a) Transition values of the crack lengths a0 and a1

where the crack tip first closes and reopens, respectively. (b)
Transition values of the crack length a2 where the mode II stress
intensity factor vanishes.

In either case, the contact area and contact pressure
must be solved. A distributed force method is
adopted. The crack surface (0�x�a) is equally
divided into N�1 elements with N nodes. The
coordinate of node j is xj = (j�1)a / (N�1). For
1�i, j�N, let Mji be the crack opening displace-
ment at node j caused by a pair of normal unit
concentrated loads of opposite signs acting on the
crack faces at node i. From the solution of the
crack opening profile of collinear cracks [23],

Mji � �4(1�n2)
πE

tanh�1
1�(cos(πa /L) / cos(πxi /L))2

1�(cos(πa /L) / cos(πxj /L))2; j�i,

4(1�n2)
πE

coth�1
 1�(cos(πa /L) /cos(πxi /L))2

1�(cos(πa /L) / (cos(πxj /L))2; i � j�N.

(19)

Mji is logarithmically singular when i = j, and,
therefore, Mii is taken to be the average of the dis-
placement field over a region of width that is small
compared to the element width and centered on
node i. An arbitrary distribution of normal traction
on the faces can be simplified by a series of con-
centrated loads Fi (i = 1 � N) acting on the nodes.
The resulting displacement field is then charac-
terized by

dj � �N
i � 1

MjiFi (j � 1 � N). (20)

Denote the first and last node of the contact area
by m and n, respectively. The crack tip is open if
n � N. Inside the contact area (m�k�n), the trac-
tion Fk (which is a combination of the sinusoidal
wedge stress load (s in Eq. (12)) and contact
pressure) is unknown, but the displacement satis-
fies dk = 0. Outside the contact area, the crack face
openings dl are unknown (but positive), whereas
the traction is obtained from s in Eq. (12). The
total number of unknown forces and opening dis-
placements is N, which is equal to the number of
equations. The iteration procedure is as follows.

(a) Make an initial guess of m and n.
(b) Solve Eq. (20) to obtain the Fk in the contact

zone and dl outside that zone.
(c) The solution of the problem is found when (i)

the contact forces Fk are positive within the
contact zone, and (ii) the crack faces are open
(dl 
 0) outside the contact zone. Otherwise,
adjust m and n, and go to (b) to start another
iteration.

When the iteration has converged, if n � N, KI is
obtained by superposition of the stress intensities
caused by the individual Fk. Numerical results have
been computed using 500 elements. Numerical
experiments to solve a similar contact problem for
an isolated crack where an analytical solution [23]
was available demonstrated that this force method
is highly accurate.

5.2. Fixed shape factor: scenario I

The problem just described provides a solution
for KIL(1�n2) / (EU1√πa) when as 
 1/2, as a
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function of a /L and as (when as � 1 /2, Eq. (16)
applies). The normalized half-crack length, a1 /L,
at which the tip reopens is a function of as, and
its dependence is plotted in Fig. 6(a) along with
the half-crack length, a0, at which the tip first
closes. At a = a0, KII is positive. The crack half-
length, a2, at which KII becomes zero is important
in determining the condition for crack coalescence
in scenario I. It depends on a mode II shape coef-
ficient, at � (�2 /�1)	, such that, by Eq. (17):

a2

L
�

1
2

, at � 1,

a2

L
�

1
π

sin�1
2
3

�
1

3at
, at 
 1

(21)

plotted in Fig. 6(b).
As the crack length increases above a0, (i) per-

tains and the tip is closed. But at length, a1, the tip
reopens and (ii) holds. If the tip reopens before KII

reaches zero, a0 � a1 � a2, the energy release rate
G remains positive at all crack lengths, including
at coalescence. Then, there is a minimum energy
release rate, Gmin, that occurs at a = a1. If Gmin is
larger than the relevant toughness, the collinear
cracks propagate across the ligaments to coalesc-
ence.

However, if KII reaches zero while the crack tip
is still closed (a0 � a2 � a1), then, G = 0 at a =
a2, and the crack necessarily arrests at a � a2.
Therefore, the crack length at which the crack tip
reopens, a1, is critical. The combinations (y /L,	)
that enable coalescence (a0 � a1 � a2) reside
within the shaded domain of Fig. 7. Outside that
domain, Gmin = 0, and an intact ligament always
remains (unless an external load is imposed).

Two illustrations showing the evolution of KI

and KII with crack length a /L are plotted in Fig.
8. In Fig. 8(a), where a0 � a1 � a2, the combi-
nation y /L = 0.15 and 	 = 0.6 resides in the shaded
domain of Fig. 7. For this case, a0 /L = 0.36, a1 /
L = 0.44 and a2 /L = 0.5. Note that, for a 
 a1, KI

increases sharply as coalescence is approached,
and that Gmin obtains at a = a1, when the crack
reopens. In fact, KI→� as the ligament length l
= L�a→0 because material has been selectively
inserted in the regions of contact, wedging open
the crack tips. The associated mathematical state-
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Fig. 7. Mechanism domains in crack location (y/L)/undulation
shape (	) space. The shaded domain represents the regime a0

� a1 � a2 wherein the energy release rate is finite for all crack
lengths in scenario I.

ment is that, at small l, the load sustained by each
ligament scales as � 1 / ln(L / l), such that KI � 1
/√l ln(L / l). Accordingly, KI→� as l→0. In the
counter-example (Fig. 8(b)), with a0 � a2 � a1

both KI and KII are zero at a = a2.
Since the minimum is attained at a = a1 (Fig.

8(a)), where KI = 0, the energy release rate
becomes, Gmin = (1�n2)K2

II /E, with KII evaluated
using Eq. (17). Normalized values, Gmin(1�n2)L /
(EU2

1), are non-zero only in the range of (y /L,	)
shown in Fig. 9, consistent with the condition, a0

� a1 � a2 (Fig. 7). For 0.15�y /L�0.2 and
0.5�	�1, Gmin(1�n2)L / (EU2

1) falls in the range
0.0005–0.002. Specifically, Gmin(1�n2)L / (EU2

1) =
0.0013 for 	 = 0.6 when y /L = 0.15, correspond-
ing to the location of the plane in the uncracked
TBC on which the shear stress is the greatest.

Inserting some typical numbers for an EB-PVD
system [9] assesses the utility of these results. A
more complete assessment is provided below, by
means of a full, cyclic simulation conducted using
a finite element methodology. Experiments and
cyclic models indicate that the TGO displacement
increases on a cycle-by-cycle basis [8,15,20,28].
After many cycles, representative of those experi-
enced in practice, the displacements are of order,
U1�5 µm (Fig. 2), while the wavelength of the
undulations is, L�30 µm (Fig. 2). The TBC is
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Fig. 8. (a) Stress intensity factors for a case with a0 � a1 �
a2 such that the energy release rate is finite for all crack lengths.
The minimum Gmin occurs for a = a1. (b) Stress intensity factors
for a case with a0 � a2 � a1 such that the energy release rate
is zero at a = a2 during contact.

anisotropic, with in-plane and out-of-plane modu-
lus both lower than the modulus of the bond coat
and the substrate [4]. For this assessment, an aver-
age value for the overall system has been selected
(E�100 GPa). With this choice, the minimum
energy release rate (for 	 = 0.6 when y /L
0.15
is Gmin�80 J /m2, similar to the mode II toughness
of the TBC [4,26,28]. This consistency lends cre-
dence to the basic mechanics concepts.

For displacements in the range, U1�5 µm, if
there were no cracks, the stresses induced in the
TBC would be huge (several GPa). Hence the
inevitability of TBC cracking as well as the large
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Fig. 9. Normalized minimum energy release rate for scenario
I. This value is attained when the crack first reopens at a =
a1 for conditions wherein a0 � a1 � a2.

crack opening displacements immediately above
the initial imperfections (Fig. 2).

5.3. Variable shape factor: scenario II

Here it is imagined that the periodic cracks form
and extend under conditions dominated by the U1

component of TGO growth, such that the TBC
remains attached by relatively small ligaments.
With further growth of the TGO, it is surmised that
the U2 component becomes more prominent, such
that 	 increases until contact and wedging occur
behind the crack tip. In this scenario, the tip is
never fully closed. Results for the normalized
energy release rate for cracks with a /L�0.45 are
shown in Fig. 10, for y /L = 0.15 and various 	.
The dashed lines apply to cases wherein as � 1 /
2, such that no contact occurs, whereupon Eqs.
(16) and (17) are valid. Such cracks necessarily
arrest prior to coalescence as already discussed.
When 	�0.6, (the solid curves in Fig. 10), contact
occurs causing an abrupt increase in energy release
rate with further crack advance. The wedging
action produces crack tip conditions that are domi-
nantly mode I. The cracks become unstable and
dynamically coalesce once the combination of U1

and U2 cause G to attain the relevant TBC tough-
ness.

In this scenario, cracks are susceptible to
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coalescence at U1 significantly smaller than in the
previous scenario, with a consequent reduction in
the TBC durability. The realization emerges in the
full-scale numerical simulations described in the
following section.

6. Application to TBC failure

When the TBC thickness is finite, the normal
and shear stress components cannot be decoupled
and there is no analog of the preceding analysis.
Instead, finite element analysis has been used,
inspired by the basic mechanics concepts outlined
above. The details are described elsewhere [28].
The basic idea is that a system with an initial
imperfection is subjected to temperature cycling to
simulate operating condition. In the calculations,
growth of the TGO is imposed during the high
temperature segment of the cycle. Plastic defor-
mation of the bond coat occurs upon cooling and
reheating, and the TGO deforms plastically at the
high temperature [12]. The consequence of these
deformations, which occur during each cycle, is a
shape distortion of the TGO, that increases on a
cycle-by-cycle basis [8,12]. This distortion induces
stresses and cracking in the TBC, analogous to the
wedge displacements used in the present model.

In the FEM simulation the thickness of the TGO
expands uniformly, as observed for actual systems,
and the lateral growth of the TGO is accommo-
dated by the shape distortion. The shape distortion
produces oscillatory stress in the TBC of the same
character as those modeled by the wedging dis-
placements used in the present study. This under-
lies the rationale for using the wedging displace-
ments of the present model.

A typical outcome is visualized from the finite
element mesh [25,28] presented (for 	 
 0) at a
stage in the crack growth where its length exceeds,
a1 (Fig. 11). Note how the TGO has displaced
upward outside the imperfection and that the con-
tact at that location has, indeed, wedged open the
crack as it progresses toward coalescence. Energy
release rates for this problem are presented in Fig.
12. Note the existence of the minimum prior to
coalescence and of a functional dependence on
crack length similar to that ascertained from Fig.
8(a). It is also apparent that, after the first few
cycles, the normalized energy release rate is essen-
tially invariant with additional cycling. Changes in
the absolute value are attributed almost exclusively
to the cyclic increase in U1. An example of the
trend in absolute values (Fig. 13) traces the
increase in the minimum energy release rate with

TGO

TBC

BC

symmetry axis

Fig. 11. A finite element mesh from a cyclic simulation show-
ing the undulation of the TGO and the extent of cracking just
prior to coalescence [28]. Note the domain of contact at the
imperfection periphery, behind the crack tip, and the uplift of
the TBC caused by the contact.
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the number of thermal cycles. Where this minimum
crosses the mode II toughness of the TBC, �tbc,
gives the number of cycles to failure, as indicated
on the figure. These predictions are consistent with
experimental measurements [9].

Several connections between the simulations
and the analytic results are elaborated for clarifi-
cation. In the simulations and in actual experi-
ments, the undulation shape factor, 	, changes. At
the outset, 	�0, dictated by the initial shape of
the imperfection. This small value leads to the larg-
est mode I stress intensity factor for short cracks
in the TBC (a � a0), encouraging nucleation and
initial propagation. If this shape were to be retained
throughout, the crack would arrest prior to coalesc-
ence (Figs. 5 or 10). However, as cycling proceeds,
the upward displacement induced at the outer per-
iphery of the imperfection (Fig. 11), causes 	 to
increase, indicative of scenario II above. Conse-
quently, coalescence becomes possible and will
occur when Gmin→�tbc, as depicted in Fig. 13. This
evolution in the undulation shape factor is a key
mechanics principle underlying the occurrence of
crack coalescence and failure in TBC systems.

7. Conclusion

Coatings subject to residual compression, such
as TBCs, eventually fail by buckle-driven delami-
nation [4]. Failure coincides with the coalescence
of small cracks that form at geometric imperfec-
tions. The mechanics governing crack coalescence
and failure are addressed in the present analysis.
A model is introduced that simulates stresses
induced in the TBC by imposing spatially varying
displacements motivated by TGO growth and ther-
mal cycling. Energy release rates for cracks evolv-
ing in this stress field are determined. Two differ-
ent failure scenarios are explored.

(i) In the first, the TGO shape factor 	 is non-
zero and invariant. The TBC crack transits
from mixed mode to pure mode II as it pen-
etrates the zones of prior compression induced
in the TBC. With further TGO growth, the
crack emerges from this zone and the tip is
reopened by wedging force acting across a zone
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of contact behind the tip. The ensuing mode I
stress intensity becomes infinite as the cracks
coalesce: enabling (for a range of 	) a non-
zero energy release rate at all crack lengths,
with a minimum occurring at a characteristic
crack length, a1. Equating this minimum to the
mode II toughness of the TGO gives a criterion
for crack coalescence and failure.

(ii) In the second, the initial TGO shape factor
(	�0) is such that a large energy release rate
develops at initiation. The cracks readily
extend, but must arrest with a relatively small
intact ligament. The subsequent TGO growth
evolves in a manner that causes the shape fac-
tor 	 to increase, resulting in the formation of
a contact zone behind the existing crack tip.
Further development of the contact upon TGO
growth imposes a force that wedges open the
tip, increasing G up to the toughness of the
TBC, causing coalescence. This scenario
enables coalescence at smaller levels of nor-
mal displacement, U1, and is expected to pre-
vail in actual TBC systems.

Full-scale simulations inspired by these basic
mechanics concepts have affirmed that the second
scenario applies to thermal barrier systems of the
type depicted in Fig. 2 and, moreover, that the pre-
dicted cycles to failure correlate well with experi-
mental observations.

The coalescence of cracks on a plane subject to
periodic traction has other intriguing aspects, yet
to be explored. The present study has been limited
to strictly two-dimensional crack growth. Conceiv-
ably, the straight crack fronts might be unstable to
perturbations of shape in their plane, giving rise to
a three-dimensional coalescence pattern.

Appendix A. The mode II solution for
periodic cracks

Green’s function for concentrated loads applied to
the crack faces of the periodic cracks with the sym-
metry required for the mode II problem of interest
in this paper has not been found in the literature.
The solutions for the problem for the infinitely
thick TBC (h = �) can be obtained using the com-

plex variable method of plane elasticity. In this
Appendix, the cracks are taken to lie on the plane
y = 0. With reference to the periodic cell of Fig.
3, the boundary conditions for collinear cracks sub-
ject to sinusoidal shear loading require syy = 0
everywhere along the plane of the cracks, ux = 0
on the ligaments between the cracks, and sxy =
t0(x) on the crack faces. Specific results will
presented for t0 = t∗1 sin(2πx /L) and t0 = t∗2
sin(4πx /L) where t∗1 = π2EU1�1 / [L(1�n2)] and
t∗2 = π2EU1�2 / [L(1�n2)], but the general result
applies to any distribution that is self-equilibrated

in the sense that 	L / 2

0

t0(x) dx = 0.

Solutions to plane elasticity are can be rep-
resented by functions j and y, which are analytical
functions of the complex variable, z = x+iy [24]:

�sxx � syy � 2(j� � j�),

syy�sxx � 2isxy � 2(zj� � y�),

2m(ux � iuy) � �j�zj��y,

(A1)

where m = E / (2(1 + n)) and � = E / (3(1�2n)). The
condition that syy vanishes along the real axis pro-
vides y = �zj��j. Following a procedure similar
to that laid out by Koiter [27] for mode I problems,
one can show that the solution is

j�(z) � iw(z) /c(z), (A2)

where

c(z) � 
cos
2πa
L

�cos
2πz
L

, (A3)

w(z) � ��
k � 1

1
4π	�k

l(x)
x�z

dx, (A4)

l(x) �
t0(x)

2i 
cos
2πx
L

�cos
2πa
L

. (A5)

In Eq. (A4), �k is a contour surrounding the kth
crack. Contour integration of Eq. (A4) for the two
sinusoidal components of the shear stress distri-
bution noted above leads to
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c(z) sin

2πz
L

�
t∗1

2�2
�cos

3πz
L

(A6)
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The mode II stress intensity factor is

KII � lim
r→0
sxy�2πr � lim

r→0
�2�2πr Im[j�] (A8)

such that for the two components

KII � t∗1 sin
πa
L 


L
2

sin
2πa
L

, (A9)

KII � t∗2
L
2
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2πa
L ��

1
4
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L

(A10)
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