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Abstract

A two-dimensional model of a ®lm bonded to an elastic substrate is proposed for
simulating crack propagation paths in thin elastic ®lms. Speci®c examples are presented for

®lms subject to equi-biaxial residual tensile stress. Single and multiple crack geometries are
considered with a view to elucidating some of the crack patterns which are observed to
develop. Tendencies for propagating cracks to remain straight or curve are explored as a
consequence of crack interaction. The existence of spiral paths is demonstrated. 7 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Films and coatings bonded to substrates often develop in-plane tensile stresses
large enough to cause cracking. A ®lm deposited at a high temperature and then
cooled will develop biaxial in-plane tensile stresses if the thermal expansion
coe�cient of the ®lm exceeds that of the substrate. This is usually the case for
metal or polymer ®lms deposited on ceramic substrates, and it is often the
situation for glazes on pottery. Tensile stresses develop in coatings such as paints
and lacquers due to solvent evaporation producing a tendency for the coating to
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shrink were it is not bonded to the substrate. In much the same way, tensile
stresses develop in a constrained layer of mud as drying takes place.

Glaze cracks, mud cracks, crack formations such as the Devils Postpile and the
Giant's Causeway, and other crack patterns have long held a fascination for
mankind. Nevertheless, in most instances, the understanding underlying the
evolution of such crack patterns is qualitative at best. In this paper, the focus will
be on cracking behavior in biaxially stressed thin elastic ®lms and coatings that
are well bonded to thick elastic substrates. A two-dimensional model for the ®lm-
substrate system is proposed which permits an analytical investigation of a wide
variety of ®lm cracking phenomena. A number of solutions based on the model
will be presented in this paper with the intent of providing the mechanics
underlying crack path and pattern evolution. These include several interaction
e�ects, such as conditions establishing crack spacing and the behavior of one
crack advancing toward another. Insight is also provided into the tendency for
cracks to kink or curve due to the presence of a neighboring crack. One intriguing
theoretical prediction is the existence of spiral crack paths under conditions where
the ®lm is subject to equi-biaxial tension. Spiral paths in ®lms do not appear to be
commonly observed, but a good example is contained in an early paper by Argon
(1959). Dillard et al. (1994) have reported many examples of spiral cracks in thin
brittle adhesive layers bonding together glass plates. Observations of other
unusual crack paths and patterns in thin ®lms and coatings can be found in
articles by Chen and Chen (1995) and Garino (1990).

Crack propagation in a ®lm bonded to a substrate is a three-dimensional
process. As depicted in Fig. 1, a crack initiates at a ¯aw and spreads by
channeling. One of the few fully three-dimensional studies of ®lm cracking is that
of Nakamura and Kamath (1992) who analyze an isolated ®nite length through-
®lm crack, including its approach to steady-state propagation wherein conditions
at the crack edge become independent of the length of the crack. Remarkably,
their results show that a crack whose length is only slightly greater than several
®lm thicknesses is already close to steady state, for the case of a ®lm on a rigid
substrate. The energy release rate G of a steady-state channeling crack in Fig. 1
can be obtained from a two-dimensional plane strain analysis, even though the
process itself is three-dimensional. By considering the energy di�erence between
sections of the ®lm/substrate system far ahead and far behind the crack edge, one
can rigorously obtain results for the energy release rate averaged over the crack
edge in terms of plane strain solutions for cracked ®lms. Solutions for steady-state
channeling in ®lms have been presented by Beuth (1992), and further relevant
mechanics and results are summarized in the review article by Hutchinson and
Suo (1992).

Beuth's (1992) result for the energy release rate averaged over the advancing
front of a semi-in®nite isolated crack is

G � p
2

�1ÿ n2�hs02
E

g�a, b� �1�
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where h is the ®lm thickness, E and n are the Young's modulus and Poisson's
ratio of the ®lm, respectively. The Dundur's parameters, a and b, characterizing
the elastic mismatch between the ®lm and the substrate are

a �
�Eÿ �Es

�E� �Es

and b � 1

2

m�1ÿ 2ns � ÿ ms�1ÿ 2n�
m�1ÿ ns � � ms�1ÿ n� �2�

where Es and ns are the elastic constants of the substrate, respectively, m �
E=�2�1� n�� denotes a shear modulus, and �E � E=�1ÿ n2� is a plane strain tensile
modulus. Eq. (1) applies for cracks extending down to the ®lm/substrate interface
with s0 as the uniform prestress in the ®lm acting normal to the crack line. The
prestress has no shear component acting parallel to the crack, and thus mode-I
conditions hold on the crack edge. The function g�a, b� is presented in Fig. 1.

With Gc as the mode-I fracture toughness of the ®lm measured in units of
energy per unit area, the condition for propagation of an isolated crack across a
brittle ®lm is

G � Gc �3�
This condition provides a robust condition to design against extensive ®lm
cracking because short cracks and crack-like ¯aws will have energy release rates
which fall below the steady-state rate (1). When only small ¯aws are present, ®lm
cracks will not begin to spread until the prestress and/or ®lm thickness exceeds the

Fig. 1. Steady-state channeling crack in a thin ®lm. The function g�a, b� and the normalized length

de®ning the in-plane resistance of the substrate, l=h, for b � 0 (the dependence on b is weak).

Z.C. Xia, J.W. Hutchinson / J. Mech. Phys. Solids 48 (2000) 1107±1131 1109



steady-state requirement (3). On the other hand, the Nakamura±Kamath study
shows that any crack-like ¯aws must be small compared to the ®lm thickness if
crack spreading is likely to be postponed to stress/thickness levels signi®cantly
above the steady-state requirement (3). Film cracking is frequently in¯uenced by
environmental factors, producing some degree of time-dependence of crack
growth. Humidity a�ects the propagation of cracks in glasses, and curing and
drying are inherently time-dependent.

The steady-state energy release rate (1) is modi®ed by various e�ects. If the
substrate is very sti� compared to the ®lm, the channeling crack may not reach
the interface with the substrate. This possibility and the determination of the
depth attained by the crack is discussed by Beuth (1992). Conversely, depending
on the elastic mismatch and the toughness of the substrate relative to the ®lm, the
crack may penetrate into the substrate (Ye et al., 1992). Another commonly
observed phenomenon is ®lm debonding accompanying the channeling crack (Ye
et al., 1992) which can occur if the interface toughness is su�ciently low
compared to that of the ®lm and substrate. There exists a range of the interface
toughness, relative to the ®lm toughness, such that the debonded region left
behind by the advancing crack front has a well de®ned width on either side of the
®lm crack. Plastic yielding in the substrate induced by the ®lm crack also results
in a modi®cation of G (Hu and Evans, 1989; Beuth and Klingbeil, 1996).

Each of the above mentioned e�ects can in¯uence ®lm crack interaction and the
paths that cracks follow. There are instances, for example, in which a propagating
®lm crack induces a interface debond on one side of the crack but not the other.
This produces a strong asymmetry with respect to the crack tip, causing the crack
to follow a curved trajectory. Such auxiliary e�ects will not be considered in this
paper. Attention will be limited to ®lm cracks unaccompanied by substrate
cracking, interface debonding or substrate yielding.

2. The model

2.1. Formulation

A uniform, isotropic elastic ®lm bonded to an isotropic substrate is modeled as
a sheet of thickness h attached to an elastic foundation. Prior to cracking, the ®lm
is uniformly stressed such that sab � s0ab: A plane stress approximation is used to
describe the in-plane deformation of the ®lm in the presence of cracks, with
ua�x1, x2� as the in-plane displacements averaged through the thickness of the ®lm
and measured relative to the uniform prestressed state. The associated average in-
plane strains are. eab�1=2�ua;a�ub;b�: The average stresses in the ®lm are

sab � s0ab � Dsab �4a�

where Dsab is the average through the thickness of the stress changes due to
cracking. The average stress changes are related to the average strain changes by
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Dsab � E

1ÿ n2
��1ÿ n�eab � neggdab

� �4b�

where any e�ect of Ds33 has been neglected. Greek subscripts range from 1 to 2 in
the usual convention for plane stress.

Denote the in-plane components of the restoring force per unit area exerted on
the ®lm by the substrate by fa: Equilibrium requires that the stress averages
exactly satisfy hsab, b � fa � 0: The elastic restoring force per unit area exerted by
the substrate on the ®lm is modeled by fa � ÿkua where the spring constant k will
be identi®ed later. The associated Navier equations governing the displacements of
the ®lm are

1

2
�1ÿ n�ua, bb � 1

2
�1� n�ub, ba �

�1ÿ n2�k
Eh

ua �5�

A traction-free crack must satisfy sabnb � 0 at every point along the crack, where
nb is the unit normal to the crack line, such that the average traction changes
cancel the pre-tractions, i.e. Dsabnb � ÿs0abnb:

According to the model, an elastic substrate does not alter the character of the
dominant singular behavior at the tip of the crack in the ®lm. The stress changes
at the crack tip governed by Eq. (5) have the conventional mode I and II inverse
square root singularities of plane stress with amplitudes KI and KII de®ned in the
standard manner. The strain energy per area per unit thickness of ®lm is

W �W 0 � DW

where DW �
�
s0abeab �

1

2
sabeab

�
� 1

2

�
k

h

�
uaua

�6�

with W 0 as the elastic energy density stored in the ®lm prior to cracking. The
elastic energy per unit area in the model ®lm/substrate system is hW. Energy
contributions in the ®lm from through-thickness variations departing from the
average stresses and strains are neglected in Eq. (6). With the strain energy of the
system de®ned as the area integral of Eq. (6),

�
hW dA, the principle of minimum

potential energy for the model leads precisely to Eq. (5) as the associated Euler
equations. The energy release rate of the crack (energy release per unit of crack
advance per unit thickness of ®lm) is related to the stress intensity factors by the
classical plane stress relation G � �K 2

I � K 2
II�=E: A path-independent J-integral

exists for the model whose value coincides with G:

J �
�
C

�
Wn1 ÿ sabnbua,1

�
ds �7�

where C is any contour circling the tip in the counter-clockwise sense with na as
its outward unit normal and ds as its element of length. The x1-axis must be
aligned parallel to the crack line at the tip.

The fracture behavior of the ®lm is assumed to be isotropic with Gc as the
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mode-I toughness. In applying the model to predict a crack propagation path
under quasi-static conditions, the path is required to evolve such that pure mode-I
conditions �KII � 0� are maintained at the tip with G � Gc: A pre-existing ®lm
crack subject to increasing prestress may experience combined mode-I and -II
conditions at its tip. The crack will initiate growth by kinking in the direction for
which KII of the putative crack increment vanishes. Once growth has been
initiated, however, the path is expected to evolve smoothly such that KII � 0: The
emphasis in this paper in the ®rst instance is not on the prediction of detailed
paths, but rather on the production of a variety of crack solutions which will
supply qualitative insight into the way crack paths are expected to develop in thin
®lms. To this end, solutions to the model will be presented for a variety of crack
geometries in the form of the crack tip intensity measures, KI and KII: Most of the
results will be presented for ®lms subject to an equi-biaxial stress state, s0ab �
s0dab:

2.2. Solution for a semi-in®nite straight crack and calibration of model

Consider an isolated semi-in®nite straight crack coincident with the negative x1-
axis and subject to initial stresses with s012 � 0: Symmetry dictates that mode-I
conditions prevail at the tip. Far behind the tip, the displacement ®eld is
independent of x1. The solution to the Navier equations (5) is readily obtained as

u1 � 0 and u2 � s022

�������
h

�Ek

r
e
ÿ
�����������
k

�Eh
x 2

r
�8�

where �E � E=�1ÿ n2�: The associated stress changes far behind the tip are

Ds12 � 0, Ds11 � nDs22 and Ds22 � ÿs022e
ÿ
�����������
k

�Eh
x 2

r
�9�

The remote changes do not depend on s011: The energy release rate can be
obtained either by a simple energy argument, accounting for the energy change
due to a unit advance of the crack tip, or by a direct evaluation of J using a
contour remote from the tip. The result is

G �
�������
h

�Ek

r
s0

2

22 �10�

The model is calibrated with the exact solution for the semi-in®nite mode-I crack
given in Section 1. We choose the substrate spring constant k such that G in Eq.
(10) coincides with Eq. (1) with the result that k must satisfy:������

�E

kh

s
� p

2
g�a, b� �11�
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If the ®lm is very compliant relative to the substrate, the ®lm crack may not reach
the interface with the substrate, as discussed in Section 1. Beuth's (1992) results
may be used to adjust Eq. (11) to account for crack depths which are less than h,
but this is generally a small correction.

It is convenient to introduce the reference length l, characterizing the
exponential decay of the changes transverse to the crack in Eqs. (8) and (9):

l �
�������
�Eh

k

s
� p

2
g�a, b�h �12�

In the absence of any elastic mismatch between ®lm and the substrate �a � b � 0�,
l � 1:98h: From the plot in Fig. 1, it can be seen that l will greatly exceed the ®lm
thickness h when the ®lm is very sti� compared to the substrate �a11� and will be
of the order of h when the ®lm is very compliant relative to the substrate �a1ÿ
1�:

3. Integral equation formulations

The Navier equations (5) can be written in a dimensionless form such that h, E
and k are absorbed into the dimensionless displacements ua=l4ua and coordinates
xa=l4xa as

1

2
�1ÿ n�ua, bb � 1

2
�1� n�ub, ba � ua �13�

In this section and in Appendix A, dimensionless displacements and coordinates
will be used, and k will enter into the results only through l, which is absorbed
into the dimensionless variables. In the other sections, dimensional quantities will
be used. With these dimensionless quantities, eab � 1

2�ua;b � ua;b�, and the stresses
are still given by Eq. (4). Let f and c be two scalar functions of the coordinates,
and introduce the Helmholtz representation, ua � f;a � eabc,b, where eab is the
permutation tensor. The Navier equations (13) then can be rewritten as

ÿ
r2fÿ f

�
,a�eab

�
1

2
�1ÿ n�r2cÿ c

�
,b
� 0 �14�

with stress changes due to cracking as

Ds11 �
ÿ
E=�1ÿ n2�

��
f,11 � nf,22 � �1ÿ n�c,12

�
Ds22 �

ÿ
E=�1ÿ n2�

��
f,22 � nf,11 ÿ �1ÿ n�c,12

�
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Ds12 �
ÿ
E=�1ÿ n���f,12 ÿ

1

2

ÿ
c,11 ÿ c,22

�� �15�

Integral equation formulations will be used to construct solutions to the problems
considered in this paper which cannot be solved analytically. In conventional
crack problems in two-dimensional elasticity, integral equations are formulated
using dislocations as the kernel functions (e.g. Rice, 1968), leading to integrals
with Cauchy singularities. For the present model of ®lm cracking, a formulation
based on dislocation doublets is more natural than one based on dislocations.
Stresses due to a dislocation in the ®lm are ®nite at in®nity on each side of the
dislocation line due to interaction with the underlying substrate, while the stresses
produced by a dislocation doublet fall o� exponentially far from the doublet. The
doublet formulation has integrals with kernels whose singularities are of order
1=r2: This class of integral equations has been labeled `strongly singular', and
methods analogous to those for Cauchy equations have recently come available
for computing numerical solutions (Kaya and Erdogan, 1987; Willis and Nemat-
Nasser, 1991).

3.1. Doublet solution

To de®ne the dislocation doublets, introduce two dislocations of equal
magnitude but opposite sense on the x1-axis spaced a distance 2e apart. With the
amplitude of the dislocation on the right speci®ed by b, bring the dislocations
together such that d � lim

e40
�2eb�: (Here, b and d are dimensionless. The

dimensional quantities are scaled by l and l2, respectively.) The dominant
singularity of the doublet is una�ected by interaction with the substrate and
therefore the same as in plane stress. With �r, y� as polar coordinates centered at
the doublet and d � �d1, d2�, the dominant singularity is

Ds11 � E

4pr2
�
ÿ d1�sin 2y� sin 4y� � d2cos 4y

�

Ds22 � E

4pr2
�
ÿ d1�sin 2yÿ sin 4y� � d2�2cos 2yÿ cos 4y�

�

Ds12 � E

4pr2
�
ÿ d1cos 4y� d2�sin 4yÿ sin 2y�

�
�16�

The corresponding Helmholtz functions are

f � 1

8p

�
d1�1ÿ n�sin 2y� d2

ÿ
2�1� n�ln rÿ �1ÿ n�cos 2y

��

c � 1

4p
� ÿ d1cos 2yÿ d2sin 2y� �17�
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The full doublet solution satis®es Eq. (14) and must approach Eqs. (16) and (17)
as r40: The exact representation for the doublet was found after lengthy
manipulation; it is

f � 1

p

�
ÿ d1

o2
F�r�sin 2y� d2

4

�
ÿ �1� n�K0�r� � 4

o2
F�r�cos 2y

��

c � 1

p

�
d1F�or�cos 2y� d2F�or�sin 2y

� �18a�

where

F�r� � 1

r
K1�r� � 1

2
K0�r� ÿ 1

r2
and o �

������������
2

1ÿ n

r
�18b�

with K0 and K1 as Bessel functions of the second kind of order zero and one,
respectively. The associated stresses are written in a form to expose the singular
nature of the doublet solution

Ds11 � E

4p

8>>>><>>>>:
ÿd1

��
1

r2
� B1�r�

�
sin 2y�

�
1

r2
� B2�r�

�
sin 4y

�
�d2

�
�c1ln r� C1�r�� �

�
1

r2
� B2�r�

�
cos 4y

�
9>>>>=>>>>;

Ds22 � E

4p

8>>>><>>>>:
ÿd1

��
1

r2
� B1�r�

�
sin 2yÿ

�
1

r2
� B2�r�

�
sin 4y

�
�d2

�
�c2ln r� C2�r�� � 2

�
1

r2
� B1�r�

�
cos 2yÿ

�
1

r2
� B2�r�

�
cos 4y

�
9>>>>=>>>>;

Ds12 � E

4p

8>>>><>>>>:
ÿd1

�
�c3ln r� C3�r�� ÿ

�
1

r2
� B2�r�

�
cos 4y

�
�d2

�
ÿ
�
1

r2
� B1�r�

�
sin 2y�

�
1

r2
� B2�r�

�
sin 4y

�
9>>>>=>>>>; �19�

The ®ve functions Bi�r� and Ci�r� are regular functions of r at r � 0: These
functions, along with the three constants ci, are given in Appendix A. The rÿ2

singularity in the stresses is seen to coincide with Eq. (16), and the next most
singular terms are logarithmic. There are no contributions of order rÿ1: All the
other contributions are well behaved at the doublet origin. It should be
emphasized that Eq. (19) holds for a dislocation pair on the x1-axis. Results for
other orientations of the pair can be obtained by coordinate transformation.
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3.2. Formulation for a single straight crack

Consider a crack in the ®lm of length 2a (i.e. of dimensional length 2al�
extending from ÿa to a along the x1-axis. The prestress in the ®lm is s0ab � s0dab:
A distribution of doublets, d1 � 0 and d2 � d�Z� for jZj < a, along x1-axis
canceling the normal traction due to the prestress can be used to construct the
solution for the crack. The resulting integral equation for the d�Z� is

E

4p

�a
ÿa

"
1

�xÿ Z�2 � c2lnjxÿ Zj � A�xÿ Z�
#
d�Z� dZ � ÿs0 for jxj < a �20�

where A�r� � C2�r� � 2B1�r� ÿ B2�r� is analytic at r � 0: The representation (20) is
formal in that the term containing the kernel, �xÿ Z�ÿ2, is unbounded without
special de®nition. A ®nite contribution can be de®ned to give the equation precise
meaning (Kaya and Erdogan, 1987; Kaw, 1991; Willis and Nemat-Nasser, 1991).
The solution to Eq. (20) will be given in the next section.

3.3. An alternative formulation

When the crack is curved, terms of order rÿ1 arise in the kernel due to
coordinate transformations along with those of order rÿ2, and the existing
numerical methods are not applicable as they stand. Therefore, it has been
necessary to recast the equations by reducing the order of the singularity to a
Cauchy-type singularity. Consider a crack of length a, straight or curved, and let s
be the length measured from one end with ds as the line element. Let x be any
point in the plane o� the crack, and let Dsab�x� be the stress at that point due to
the distribution of doublets d�s� along the crack. Write Dsab�x� as

Dsab�x� �
�a
0

h
S0
ab

ÿ
x, x 0

� � d�s 0 � � S1
ab

ÿ
x, x 0

� � d�s 0 �i ds 0 �21�

where x 0 is the position vector to the crack at s 0: Further, take
P0

ab to represent
only the terms with singularity rÿ2 in Eq. (19) (i.e. the stresses in Eq. (16)) and letP1

ab represent the remaining terms. By virtue of the fact that Eq. (16) is the plane
stress dislocation doublet solution, the contribution from the integrand,� P0

ab �d ds, is precisely the same as is obtained from distributing dislocations b�s�
along the crack according to�a

0

h
S0

ab

ÿ
x, x 0

� � d�s 0 �i ds 0 �
�a
0

h
S0

ab

ÿ
x, x 0

� � b�s 0 �i ds 0 �22�

where b�s� � ÿdd=ds and S0
ab is the classical stress ®eld of a dislocation in plane

stress.
With d�s� � � as b�s 00 � ds 00, the second contribution in Eq. (21) is
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�a
0

h
S1
ab

ÿ
x, x 0

� � d�s 0 �i ds 0 �
�a
0

�
S1
ab

ÿ
x, x 0

� � �a
s

b�s 00 � ds 00
�

ds 0 �23�

Noting that the integration on the right-hand side of Eq. (23) is over a triangle in
the �s 0, s 00 � plane, interchange the order of integration to obtain�a

0

h
S1
ab

ÿ
x, x 0

� � d�s 0 �i ds 0 �
�a
0

�
S1
ab

ÿ
x, x 0

� � �a
s

b�s 00 � ds 00
�

ds 0 �24�

where

S1
ab

ÿ
x, x 00

� � �s}
0

S1
ab

ÿ
x, x 0

�
ds 0 �25�

It follows, therefore, the doublet representation (21) can be replaced by an integral
of a distribution of dislocations b�s� according to

sab�x� �
�a
0

h
S0
ab

ÿ
x, x 0

�� S1
ab

ÿ
x, x 0

�i � b�s 0 � ds 0 �26�

where S0
ab is the stress distribution (23) for a dislocation with singularity �xÿ

x 0 �ÿ1 and the contribution to the kernel from S1
ab�x, x 0 � is bounded as x4x 0:

Integral equations formed from Eq. (26) are of the classical Cauchy-type and
directly amenable to numerical solution by methods such as those detailed by
Erdogan and Gupta (1972). The relation of the stress intensity factors to the
dislocation distributions at the ends of the cracks is the same as in the classical
plane stress formulation.

4. Straight cracks

Solutions to a number of problems for straight ®lm cracks will be presented in
this section. With two exceptions, where analytical results have been obtained, the
solutions have been obtained numerically based on one of the two integral
equation formulations described in the previous section. The selection of problems
is intended to provide insight into interactions between ®lm cracks and their role
in establishing cracking patterns. The subsections consider: a single ®nite crack;
arrays of parallel semi-in®nite cracks; mixed mode interactions among parallel
cracks; and interactions between perpendicular cracks.

4.1. Single ®nite crack

The integral equation (20) employing the doublet distribution was solved
numerically using methods developed in the references cited earlier. The prestress
in the ®lm is equi-biaxial tension with s0ab � s0dab: Symmetry dictates the crack to
be in mode I �KII � 0�: The near tip ®eld is thus characterized by KI: Results will
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also be presented for the contribution from the next order in the hierarchy of
crack tip ®elds, the T-stress, s11 � T, which is ®nite at the tip. The dependence of
KI=s0

��
l
p

and T=s0 on the normalized crack half-length, a=l, is shown in Fig. 2.
The results have been computed for n � 0:3, as will be the case for all the
numerical results presented in the paper. For a=l � 1, the stress intensity factor is
already close to the asymptotic limit for a semi-in®nite crack

KI

s0
��
l
p �

����������������
�1ÿ n2�

p
�27�

which is obtained from Eqs. (10)±(12). Recall that l has been de®ned in Eq. (12)
such that this limiting result is exact. The trend shown in Fig. 2 is in accord with
the three-dimensional result of Nakamura and Kamath (1992) quoted in Section
1. One end of the crack ceases to be a�ected by the other end when the crack
length is larger than about 2l, i.e., about four times the ®lm thickness in the
absence of elastic match between the ®lm and substrate. The elastic mismatch
between the ®lm and the substrate makes its presence felt through l, which is
plotted as l=h in Fig. 1.

The T-stress is also plotted in Fig. 2. The prestress component s011 � s0 acting
parallel to the crack is accounted for in this result. (When the prestress is not
equi-biaxial, the e�ect of s011 on T is readily adjusted by superposition. This same
component has no e�ect on KI:) The interaction of the crack with the substrate
gives rise to a positive T-stress. The corresponding plane stress problem for a
sheet unattached to a substrate tension has T � 0: A positive T-stress has
implications for the con®gurational stability of the straight crack (Cotterell and
Rice, 1980), giving rise to the possibility that small perturbations may cause the
crack path to depart from its initial direction. A stability analysis for the full ®lm/

Fig. 2. Stress intensity factor and T-stress for a ®lm crack subject to equi-biaxial tension �n � 0:3�:
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substrate model has not been performed, and thus the role of T may not be the
same as for a free standing ®lm.

4.2. Parallel semi-in®nite cracks, including sequential cracking

Consider the in®nite array of equally spaced semi-in®nite ®lm cracks with
aligned tips shown in Fig. 3. Symmetry again dictates that each crack tip is in
mode I. The energy release rate of each crack tip is readily calculated by
imagining all the cracks to advance by an unit increment, thereby, equivalently,
transferring a unit increment of the ®lm far ahead of the tips to the remote wake.
The solution to Eq. (13) in the remote wake depends only on x2 and is easily
produced. The requisite energy accounting gives

G � ls0
2

�E
tanh

�
H

2l

�
or

KI

s0
��
l
p �

����������������
�1ÿ v2�

p ��������������������
tanh

�
H

2l

�s
�28�

This result approaches the result for an isolated semi-in®nite crack in Eq. (10) or
Eq. (27) when the crack spacing H exceeds approximately 3l: Elastic mismatch,
appearing through l, has a fairly strong in¯uence on the interaction. Cracks in a
®lm which is sti� relative to its substrate interact across greater distances than vise
versa.

Exact results for G for the array of equally spaced cracks channeling in steady-
state across the ®lm can be obtained from the plane strain solution for periodic

Fig. 3. Energy release rate at each crack tip for steady-state channeling of parallel ®lm cracks. The

upper curve applies to simultaneous advance of all the cracks, while the lower curve applies to the

sequential process where a new set of cracks propagates midway between a previously formed set of

cracks.
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edge cracks in the ®lm. Denote the solution for the energy release rate for the
two-dimensional plane strain problem for cracks of length a (where aRh� with
spacing H by Gps�a�: A simple energy argument (Hutchinson and Suo, 1992)
provides the connection between the two energy release rates as

G � 1

h

�h
0

Gps�a� da �29�

Solutions for Gps�a� are not available for periodic crack arrays in ®lms with elastic
properties which di�er from the substrate, but accurate numerical results are
available for homogeneous, isotropic elastic solids (Tada et al., 1985). Evaluation
of Eq. (29) using these accurate numerical results reveals that the approximate
estimate of G for the present model (28) for the case of no elastic mismatch is
accurate to within a few percent over the entire range of H=l:

The energy release rate for an idealized sequential cracking process which is
more in accord with the way ®lm cracks appear can also be obtained simply.
Consider the semi-in®nite mode-I cracks in Fig. 3 advancing midway between
previously formed in®nite cracks. Because the solution to Eq. (13) is far ahead
and far behind the current location of the crack tips is elementary, it is very
simple to do the energy accounting necessary to obtain the energy released by
each semi-in®nte crack. The results is

G � ls0
2

�E

�
2tanh

�
H

2l

�
ÿ tanh

�
H

l

��
�30�

Alternatively, following the procedure of Hutchinson and Suo (1992), denote the
result from Eq. (28) for aligned semi-in®nite cracks in Fig. 3 spaced a distance 2H
apart by G 0�2H �: The energy released by propagation of the ®rst set of cracks far
ahead of the current set of crack tips in Fig. 3 is G 0�2H �, per height 2H in the x2
direction, while that released far behind the tips is 2G 0�H � per height 2H. The
energy release rate per tip is therefore precisely G � 2G 0�H � ÿ G 0�2H �: Eq. (30)
follows immediately using Eq. (28). It is worth recording that the connection G �
2G 0�H � ÿ G 0�2H � is exact within the context of three-dimensional elasticity. Any
error in Eq. (30) follows from the fact that Eq. (28) is derived from the present
model which approximates the ®lm/substrate interaction for the periodic cracks.

The two results, (28) and (30), are compared in Fig. 3. The energy release for
cracks nucleated sequentially is signi®cantly less than the prediction for an array
of crack imagined to appear simultaneously. This di�erence has important
implications for the relation between crack spacing and residual stress. Delannay
and Warren (1991) and Thouless et al., 1992 carried out experiments to obtain the
evolution of average crack spacing in brittle ®lms under conditions where the
prestress was continuously increased. In both papers, the experiential data was
compared to a theoretical prediction for sequential cracking similar, but not
identical to Eq. (30). If Gc is the mode-I ®lm toughness and if 2H is the current
crack spacing, then Eq. (30) with G � Gc speci®es the stress s0 at which the next
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set of cracks will channel halfway between the current set according to the
idealized sequential processes.

4.3. Mixed mode interactions among parallel cracks

The problems posed in this subsection are intended to provide insight into
cracking trajectories when ®lm cracks are within interaction distance. The primary
emphasis is the mix of mode I and II at the tip, from which the direction of crack
advance can be inferred. The fracture properties of the ®lm are taken to be
isotropic. The solutions to the problems posed below were produced using the
method of Section 3.3. As in the previous two subsections, it is assumed that the
prestress in the ®lm is equi-biaxial tension. However, the component s011 has no
in¯uence on the stress intensity factors in these problems if the cracks are parallel
to the x1.

A pair of aligned ®lm cracks of length 2a lying side by side a distance 2H apart
is considered in Fig. 4. Stress intensity factors, KI and KII, of the right-hand tip of
the upper crack are shown. There is some interaction when H=l � 2, but, for
H=l � 5, KI is nearly identical to the result for the isolated crack in Fig. 2 and
KII � 0: The cracks become e�ectively semi-in®nite as far as the stress intensity
factors are concerned when a=l > 2: The mode-II stress intensity factor KII of the
upper, right-hand tip is negative. This implies that a putative crack advancing
from that tip would kink upward. Crack paths evolving from these two starter
cracks will spread apart rather than come together. In this sense, the two aligned
cracks `repel' each other.

Results illustrating the behavior expected for cracks propagating towards each
other can be inferred from the results displayed in Fig. 5. A semi-ini®nite crack
advancing to the right encounters two aligned semi-in®nite cracks advancing in
the opposite direction. The middle crack lies precisely half way between the two
outer cracks and is therefore in mode I. The outer cracks shield the middle crack
(Fig. 5(a)) when the tip of the middle crack passes between the outer cracks. The
stress intensity factors for the upper crack are shown in Fig. 5(b) and (c). The
energy release rate (not shown) of this crack also drops as the tips pass each
other. The mode-II stress intensity factor of the upper crack changes sign as the
tips pass each other. (For the upper crack with the tip pointing to the left, a
positive KII is de®ned such that it produces a positive shear stress component, s12,
directly to the left of the tip.) The trend of KII shown in Fig. 5(c) implies that the
outer cracks tend to veer away from the middle crack as the tips approach each
other, and then switch direction and veer toward the middle crack after the tips
have passed.

Crack paths in unsupported thin sheets and plates have been addressed using
elastic fracture mechanics by a number of authors. In particular, Melin (1983) has
shown that the behavior noted above for ®lm cracks approaching each other also
occurs in brittle free standing sheets. Broberg (1987) provides general discussion of
crack paths and a comprehensive list of references.
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4.4. Interaction between perpendicular cracks

Consider a semi-in®nite crack approaching an in®nite crack at a right angle as
shown in Fig. 6(a). The pre-stress in the ®lm is equi-biaxial tension s0: Symmetry
dictates the advancing crack to be mode I. When the tip of the advancing crack is
within 3l from the other crack, its stress intensity factor begins to drop below Eq.
(27), falling to a minimum at a distance of 0:3l: The intensity factor then increases
sharply as the remaining ligament is reduced to zero. The present model may not
be reliable in the range for x=l < 0:3: Three-dimensional e�ects are expected to
become important when size of the controlling region is of the order of the ®lm
thickness. The trend in Fig. 6(a) suggests that an advancing crack may arrest at a

Fig. 4. Mode I and II stress intensity factors for the upper right hand crack tip for two aligned parallel

cracks �n � 0:3�:
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Fig. 5. Stress intensity factors for parallel cracks approaching one another �n � 0:3�:
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distance on the order of l=2 from the crack it is approaching due to the drop in
stress intensity below the steady-state value.

The companion result for a ®lm crack emerging at a right angle from an in®nite
crack (or a free edge) is given in Fig. 6(b). In this case, the stress intensity factor
increases monotonically nearly attaining steady-state (28) when its tip has
advanced by about l.

5. Curved cracks

In this section, the possibility of the existence of curved crack trajectories will

Fig. 6. Stress intensity factor: (a) a crack tip approaching a perpendicularly aligned crack, and (b) a

crack tip emerging at right angles from a long crack �n � 0:3�:
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be explored, and it will be demonstrated that a crack propagating in a spiral path
is possible.

5.1. Circular arc cracks

Consider the ®lm crack in Fig. 7 in the shape of a circular arc of radius R with
subtended angle 2y: The prestress in the ®lm is equi-biaxial tension s0: The
integral equation formulation of Section 3.3 was used to generate the numerical
results for the stress intensity factors which are presented for the right hand tip.
For cracks having R=lr5, the curvature ceases to have any noticeable e�ect, and
near mode I conditions prevail at the tip. At crack radii less than this level, the
energy release rate falls below the rate for an isolated straight crack (27). The sign
of KII is such that the crack would kink or turn outward from the circular arc, i.e.

Fig. 7. Stress intensity factors for a circular ®lm crack �n � 0:3�:
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upwards in Fig. 7. This is the same trend predicted for a plane stress crack in a
sheet under equi-biaxial biaxial stressing. The plane stress results for a circular arc
in a biaxially stressed thin sheet (Tada et al., 1985) are approached by the present
solution when R=l becomes very small, providing a check on the present numerical
procedures. The curves in Fig. 7 for R=l � 0:1 are reasonably well approximated
by this limiting result. This small cracks are not expected to realistically
characterized by the present model because three-dimensional e�ects become
dominant.

The sign of KII of the circular arc crack is such it would evolve in such a way
that it would reduce its curvature and asymptote to a straight path once critical
conditions are met. When this observation is combined with the tendency of a tip
of a straight crack to be `attracted' to any crack it parallels (cf. Fig. 5), a clue for
starting conditions which might lead to a spiraling crack emerges. Consider the
two circular arc cracks having common center shown in Fig. 8. The inner crack is
su�ciently long (subtending a total angle of 1808) such that its ends do not
interact with each other or with the ends of the outer crack. It could equally well
be taken as a full circular crack. The radius of the outer crack is R + H, and its
length is also su�ciently great such that the intensity factors at one end have no
e�ect on those at the other end. When H is small enough, the tip of the outer
crack is expected to be attracted to the inner crack, on the grounds cited above.
However, as H increases, the sign of KII must change such that when H is large
enough the tip will de¯ect outward when propagation occurs. By continuity, there
must exist a spacing H such that KII � 0: At this spacing, the tip of the outer
crack will advance smoothly in a circular arc and maintain its distance h from the
inner crack, either until it senses the ends of the inner crack or it senses its own
ends had the inner crack been taken as a full circle.

The problem posed for the circular arc cracks in Fig. 8 has been solved using
the method of Section 3.3. For speci®ed values of R=l, the stress intensity factors
for the tips of the outer crack were computed as a function of H=l: The value of
H=l for which KII � 0 was determined. This value is plotted as a function of R=l
in Fig. 8(a) over the range of values for which the model is expected to have
physical validity. The corresponding value of KI is shown in Fig. 8(b). No
corresponding location exists with KII � 0 when the shorter crack lies inside the
longer crack. Then, the two trends cited in the previous paragraph each act so as
to attract the tip of the shorter crack towards the longer crack.

The results of Fig. 8(a) for the location of a mode-I tip are now employed to
make an approximate prediction for the path of a spiral crack. The fundamental
assumption is that the crack tip must maintain mode-I conditions at its tip �KII �
0� as it advances. Denote the result for spacing between the tip and the inner
crack in Fig. 8(a) by H=l � f�R=l�: In planar polar coordinates �r, y�, let r�y� be
the equation of the spiral where y increases monotonically. The path is
approximated by the following equation:

r�y�
l
ÿ r�yÿ 2p�

l
� f

�
r�yÿ 2p�

l

�
�31�
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where the tip is currently at �r�y�, y�: In applying the solution of Fig. 8(a), the
distance H has been identi®ed as r�y� ÿ r�yÿ 2p�, and the radius of curvature of
the loop of the crack path is directly opposite the tip is approximated as r�yÿ 2p�:
An initial spiral-like loop must pre-exist to initiate a full spiral. As an illustration,
assume an initial spiral crack has the form

r

l
� r0

l
� f

�
r0
l

�
y
2p

for 0RyR2p �32�

The starter loop (32) only satis®es (31) exactly at y � 2p: For yr2p, Eq. (32) is
used to generate the spiral. An example is shown in Fig. 9 for the starting
condition r0=l � 3: It is evident that the approximation (31) will be virtually

Fig. 8. Stando� H for KII � 0 and associated mode-I stress intensity factor for a circular arc crack

outside a circular crack �n � 0:3�:
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una�ected if the actual radius of curvature of the loop segment opposite the tip is
used in place of r�yÿ 2p�:

Arguments for the existence of spiral cracks have been made on the grounds
that they supply a very e�cient mechanism for relieving the elastic energy stored
in the ®lm. That argument is insu�cient, however, because it does not take into
account the fact that a crack in a brittle ®lm grows at its tip, advancing
continuously such that mode-I conditions are maintained. The present model
shows that spiral mode-I paths can exist in biaxially stresses ®lms if spiral-shaped
¯aws are present to get them started. An isolated spiral crack was photographed
by Argon (1959) in a surface layer under residual tension on a Pyrex glass plate.
We are indebted to Argon for calling this pattern to our attention as it provided
the initial motivation behind the present e�ort to seek a theoretical explanation
for spirals. Profuse spiral tunnel cracking has been observed by Dillard et al.
(1994) in brittle adhesive layers bonding together glass plates. An example is
displayed in Fig. 10, where the crack is photographed through one of the plates.
As the adhesive cures, biaxial tensile stress develops ®rst producing `mud cracks'
that subdivide the adhesive into polygonal regions. With further curing, spiral
cracks nucleate and form within the polygonal regions. Most of these cracks
appeared to nucleate at or near the polygonal boundary and then spiral inward.
These cracks are unlike the ®lm cracks contemplated in the present model in other
respects as well. While the `mud cracks' extend all the way through the adhesive
at right angles to the adhesive/glass interfaces, each spiral crack is con®ned near
one interface and propagates at an inclined angle to the interface. It is this
inclination which makes the crack opening appear so large.

Fig. 9. Spiral crack pattern satisfying KII � 0 as it evolves �n � 0:3�:
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Appendix A. Details of the doublet solution

The functions Bi�r� and Ci�r� in Section 3.1 are de®ned as follows.

C1�r� �
�

1ÿ n
4�1� n� ÿ

1� n
2�1ÿ n�

�
K0�r� � 1

1ÿ n2
K0�or� ÿ c1ln r �A1�

C2�r� � ÿ
�

1ÿ n
4�1� n� �

1� n
2�1ÿ n�

�
K0�r� ÿ 1

1ÿ n2
K0�or� ÿ c2ln r �A2�

C3�r� � 1

2

�
C1�r� ÿ c2�r�

� �A3�

B1�r� �
�
K1�r�
r
� 1

2
K0�r�

�
ÿ 1

r2
�A4�

Fig. 10. Spiral crack in brittle adhesive bonding two glass plates (Dillard et al., 1994).
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B2�r� � 2

1� n

�
�1ÿ n�A1�r�

r2
ÿ 2

A1�or�
r2

�
ÿ 1

r2
�A5�

where

A1�r� � 1

8

�
r2K0�r� � 8rK1�r� � 48F�r�

�
�A6�

and

c1 � n2 � 6nÿ 3

4�1ÿ n2 � , c2 � 3n2 � 2n� 7

4�1ÿ n2� , c3 � 1

2
�c1 ÿ c2 � �A7�
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