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Abstract

Cellular metals have ranges of thermomechanical properties that suggest their
implementation in ultralight structures, as well as for impact/blast amelioration systems, for

heat dissipation media and in acoustic isolation. The realization of these applications
requires that the properties of cellular metals be understood in terms of their manufacturing
constraints and that their thermostructural bene®ts over competing concepts be ®rmly
established. This overview examines the mechanical and thermal properties of this material

class, relative to other cellular and dense materials. It also provides design analyses for
prototypical systems which specify implementation opportunities relative to competing
concepts. # 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

2a: cell diameter
Ai: bending coe�cients (Table 2)
b: contact radius for hollow spheres
B: panel width
Bi: Biot number
2c: crack length
C: heat transfer parameter (19)
d: diameter of open cell ligaments
db: thickness of bu�er plate
dc: core thickness
df : face sheet thickness
D: thickness of foam
E: Young's modulus of cellular material
Ef : E for face sheets
Es: E for cell walls
G: shear modulus of cellular material
h0: local heat transfer coe�cient
he�: e�ective value of h0 for cellular medium
H: global heat transfer coe�cient
I: inertia
J: J-integral
Jc: fracture toughness
ks: thermal conductivity of cell wall material
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ke�: e�ective thermal conductivity for cellular medium
kf : thermal conductivity for ¯uid
Kc: fracture toughness of cellular metal
l: heat transfer length
L: length of loaded structure
m: weight per unit area
N: load per unit perimeter
P: load
Q: heat ¯ux
R0: radius of hollow sphere
Rs: radius of shell
s: sti�ness
S: sti�ness index
T: temperature of solid
Tf : ¯uid temperature
U: energy absorbed per unit volume (kJ/m3)
Ur: energy absorbed per unit mass (J/g)
v: ¯uid velocity
w: wall thickness for closed cell material
W: weight of structure
Wc: weight of core
Wf : weight of face sheets

Greek symbols

a: mechanical property coe�cient
a1: a for closed cell material sti�ness (1)
a2: a for open cell material sti�ness (2)
a3: a for closed cell material yield strength (3)
a4: a for open cell material yield strength (4)
b1: plastic stretch coe�cient (5)
b2: fracture toughness coe�cient (6)
w: Biot coe�cient (10)
d: displacement upon lateral loading of panel
Z: strain hardening parameter (Fig. 8c)
E: strain
Ec: tensile ductility
EY: yield strain of face sheets
ED: densi®cation strain
Es: yield strain of dense core material
f: imperfection exponent for buckling
g: knockdown factor for buckling
k: kinetic energy
p: load index
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pe: elastic load index
pp: plastic load index
r: relative density of cellular material
s: stress
s0: yield strength of cellular material
sp: plateau compression strength
sS: yield strength of cell wall material
sY: yield strength of face sheets
O: density of cell wall material
Of : density of face sheet material
Og: ¯uid density
Ob: density of bu�er plate
c: weight index

1. Introduction

Cellular metals have combinations of mechanical, thermal and acoustic
properties that provide opportunities for diverse thermostructural
implementations [1±9]. The technologies include ultralight structures [10, 11],
impact absorbers [2, 12], heat dissipation media and compact heat
exchangers [13, 14]. Successful implementation relies not just on their
thermomechanical properties, but on additional attributes: low manufacturing
cost, environmental durability and ®re retardancy [15]. Because of this diversity,
multifunctional representation/analysis is an essential element in the engineering
strategy [16]. This article integrates basic multifunctionality concepts and
complements a Cellular Metals Design Manual [2].

Cellular metals have been available for decades [17, 18], but new opportunities
are emerging for two reasons: (i) novel manufacturing approaches have
bene®cially a�ected performance and cost [3±9]; (ii) higher levels of basic
understanding about mechanical, thermal and acoustic properties have been
developed [2, 19±23] in conjunction with associated design strategies [2, 10, 11, 24].
These provide an integrated pathway between manufacturing and design.

The stress/strain response exhibited by low relative density cellular metals
(Fig. 1) establishes two aspects of their engineering utility: (i) their relatively high
sti�ness and yield strength achievable at low density [16] creates an opportunity
for ultralight structures, with integrally bonded dense face sheets;1 (ii) large
compressive strains achievable at nominally constant stress (before the material
compacts) impart a high energy absorption capacity at force levels relevant to
crash and blast amelioration systems [2, 16].

1 However, the materials are less sti� and strong than theoretically possible, and much less sti� than

honeycomb cores. These issues are brought out later.
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Open cell metals constitute a third opportunity. These materials have thermal
attributes that enable applications as heat dissipation media and as recuperation
elements [13, 14] (Fig. 2). The attributes include the high thermal conductivity of
the material comprising the borders, in combination with high internal surface
area and propitious ¯uid transport dynamics. These enable high heat transfer
rates that can be used e�ectively for either cooling or e�cient heat exchange.

Cellular metals incorporated within a structure to form sandwich skins can
realize systems that achieve mechanical performance and a�ordability goals at
lower weight than competing concepts [11, 24]. However, in many other cases,
conventional sti�ened designs are more weight e�cient. An essential step toward
implementation comprises structural analysis of prototypical systems. Such
analysis identi®es sandwich constructions having explicit weight advantages,
wherein the cellular core is used to increase the bending sti�ness [25]. Weight
advantages are found in structures controlled by bending or compression, but not

Fig. 1. Ideal and actual stress/strain curves for a closed cell Al alloy (Alporas)
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Fig. 2. A schematic of an open cell metal used as a heat dissipation medium, e.g. for cooling high

power electronics. Also shown is the trade-o� between pressure drop and heat ¯ux, with the preferred

material domain indicated.
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in those dominated by tension.2 Among such structural elements, some are

sti�ness limited, while others are strength limited.

The benchmarks for comparison with sandwich skin construction

comprise [10, 11, 24, 27]: (i) stringer-sti�ened panels or shells; (ii) honeycomb

panels; and (iii) hollow tubes. Through decades of development, all three have

been optimized and provide performance targets that are di�cult to supersede.

Often the bene®ts of cellular metal systems derive from an acceptable structural

performance combined with lower costs or greater durability than competing

concepts. For example, honeycomb panels comprising polymer composite face

sheets with Al honeycomb core are particularly weight e�cient: they can never be

superseded by cellular metal construction strictly on a performance basis.

However, such honeycombs have durability problems associated largely with

water intrusion and they are relatively expensive [28]. They are also highly

anisotropic and costly to con®gure as cores for curved structures. Cellular metal

construction can become competitive on a performance/durability/a�ordability

basis, particularly for shell structures and geometrically complex panels.

Elaboration on these and other considerations comprises one theme of this article.

Another attribute that enables cellular systems to compete favorably with

presently available alternatives is their shape ¯exibility. That is, several of the

manufacturing methods [3, 4] enable hollow thin-walled con®gurations with

arbitrary geometry to be ®lled with cellular metal. This process provides a light/

sti� system with broad-ranging geometric complexity that cannot be duplicated

using either honeycomb core or sti�eners. A further bene®t comprises an

appreciable increase in the natural frequency of vibration. This feature can be

used for noise suppression

Structures that absorb energy have two dominant properties [1, 2]: the energy

per unit mass, Ur (in J/g), and the stress at which this energy is absorbed, sp
(Fig. 1). High energy absorption is required at a predictable and uniform sp. The
latter ensures that the force transmitted remains below a critical level that upon

impact/blast might otherwise cause structural damage. The former governs the

foam thickness needed to absorb the kinetic energy. This crash/blast amelioration

function can be realized in three ways: (i) with foam; (ii) with thin-walled tubes;

or (iii) with sandwich tubes.

The metrics governing implementation depend on thermomechanical and

structural indices, which scale the performance. The coe�cients on these indices

establish limits for the properties of ideal materials, against which actual materials

can be benchmarked. These relations are examined in Section 2. Di�erences

between the ideal and actual performance of cellular metals are addressed in

Sections 3 and 4, which examine the mechanical and thermal properties,

respectively. Ultralight structures are explored in Section 5 and impact/blast

2 Note that in aircraft deign for example, more than half of the structure is limited by its bending or

compressive performance [26].
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amelioration systems in Section 6. Finally, manufacturing developments since the
last review [17] are summarized in Section 7.

2. Scaling relations

2.1. Generalities

Mechanical property scaling relations have been established by Gibson and
Ashby in their comprehensive text of Cellular Solids [1]. Results pertinent to
metals are emphasized here [2]. Distinctions are made between open and closed
cell materials which are inherently di�erent. Responses are fundamentally related
to bending and stretching deformations [1]. Cellular elements that allow bending
are subject to high local stresses that cause the system to be compliant and have
low yield strength. Conversely, when the cell walls stretch without bending, the
system is sti� and has high strength.

Various high performance cell morphologies that minimize bending
deformations have been conceptualized [14, 23, 30]. Three examples include:
periodic tetrakaidecahedra [19], close-packed-bonded spheres [23] and truss
structures [30]. Most commercially available materials have inferior mechanical
properties.

Ideally, plastic yielding and collapse would occur simultaneously [1] resulting in
a distinct yield strength coincident with a plateau ¯ow stress, designated sp. In
commercial materials, yielding and collapse are not coincident [22, 31]. Local
yielding initiates at cell nodes almost immediately upon loading, followed by rapid
strain hardening. Accordingly, the elastic domain is con®ned to very small strains
(<0.1%). At this stage, narrow deformation bands often form and extend across
the test con®guration (Fig. 3). Thereafter, a peak develops with subsequent
oscillation of the stress about a nominal plateau. The peak is governed by plastic
collapse, typically within one of the previously deformed deformation bands [31].
For expediency, the peak stress is de®ned as the yield strength, sp (Fig. 1).
Unloading measurements are preferred for determining the elastic properties
(Fig. 3).

2.2. Sti�ness

Closed cell structures establish upper limits on sti�ness. At the low relative
densities r of present interest, the Young's modulus, E, of such structures scales
as [1, 19, 20, 23, 29]:

E=Es � a1r �1a�
where Es is the modulus of the solid material comprising the cell walls. The
coe�cient a1 depends on the geometric arrangement of cells. Honeycombs are
anisotropic, with a111 for longitudinal loading. In the transverse direction, the
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Fig. 3. Strain maps obtained for a closed cell Al material (Alporas) subject to uniaxial compression.

Incremental strains DE between the levels indicated on the stress/strain curve are presented. The

maximum principal strain E22 is shown and the vectors indicate the displacements. Note that virtually

all of the strain occurs in the narrow deformation bands. Unloading is used to measure the modulus.
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sti�ness is considerably lower. It can be represented by [1]:

E=Es � a �1 r3 �1b�
where a *

1 is of order unity.
For isotropic closed cell metals, ideally a111/3. Numerical results [19, 20, 23, 29]

indicate magnitudes quite close to this: (i) for tetrakaidecahedra, a1=0.35, with a
weak dependence on the distribution of material between the borders and the
walls [19, 20] (Fig. 4); (ii) for thin-walled spheres, high sti�ness can also be

Fig. 4. Calculated e�ects of the distribution of material on: (a) the Young's modulus; and (b) the yield

strength of a periodic cell structure comprised of tetrakaidecahedra. Here ER and sR are reference

values that apply when F= 0 [19, 20].
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obtained (a1=0.35), but only with f.c.c. packing and when the contact radius is
relatively large b/R0=0.5. For simple cubic packing it is lower. It reaches,
a1=0.19 when b/R0=0.5, but only a1=0.04 when b/R0=0.1 (Fig. 5).

Open cell solids, unless specially con®gured, are susceptible to bending, causing
their sti�ness to be relatively low and subject to the scaling [1],

E=Es � a2r2 �2�

where a2 is about unity.
Commercially available closed cell metals have sti�ness lower than

Eq. (1) [16, 19±22]. The knockdown factors on are found to range from 2 to 50
(Fig. 6 and 7a). The knockdown e�ect arises because of morphological defects

Fig. 5. A simple-cubic packing of hollow spheres with a contact radius, b. The Young's modulus and

yield strength determined along [001] as a function of b/R0 are shown. In the calculations, the relative

density change as the contact radius increases. The consequent relative densities are indicated in

parenthesis against the results.
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that induce bending and buckling deformations. The nature of these defects is
elaborated in Section 3. Moreover, the totality of available data for closed cell Al
foams (Fig. 6) is more comprehensively represented by (2), rather than (1), with a2
ranging from 03 for the higher quality, low density material (<0.5 Mg/m3) to

01/2 for inferior materials. This phenomenological scaling has utility in the
analysis of minimum weight structures, as elaborated in Section 5.

Commercial open cell metals with regular cells have unloading modulus well-
represented by Eq. (2) (Fig. 7a) [16, 19]. In this case, some higher sti�ness
morphologies have been identi®ed [30, 32]. These include hollow border materials
made by depositing onto a reticulated polymer foam, subsequently eliminated by
pyrolysis. The greater sti�ness arises because the bending resistance of the hollow
borders exceeds that for their dense counterparts [32]. Various open truss
structures can also realize high sti�ness [30].

Elastic Poisson ratio measurements indicate a magnitude similar to dense metals
(n11/3) [1], such that their shear modulus G is related to their Young's modulus
by: G1 (3/8)E. The behavior becomes more complicated once yielding has
occurred.

Fig. 6. Sti�ness data for Al alloys abtained from CMS software [6].
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2.3. Plastic ¯ow

The inelastic properties of cellular metals have not been as extensively studied
as their sti�ness. Accordingly, the scaling relations remain to be substantiated.
Numerical simulations for various cell con®gurations (Fig. 4a) indicate a
negligibly small elastic region, because of localized yielding, followed by rapid
strain hardening (even when the base material is perfectly plastic) and then a
stress maximum s0.

3 The available theoretical results for closed cell systems
suggest a linear dependence on the density [1, 20, 23, 29]:

s0=ss � a3r �3�

where ss is the yield strength of the material comprising the cell borders. Results

Fig. 7. Comparison of ideal and actual compressive mechanical properties for cellular Al materials: (a)

Young's modulus; and (b) yield strength.

3 Here s0 and sp are taken to be equivalent, since experimentally, initial yielding is ill-de®ned.
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for the periodic tetrakaidecahedron (Fig. 4b), indicate that a310.3. But now, a3 is
signi®cantly reduced upon distributing more of the material from the walls within
the borders [19]. Results for bonded spheres with simple cubic packing [23] (Fig. 5)
reveal that a3 approaches 0.3 provided that the contact radius is relatively large,
(b/R0=0.5). The yielding of open cell materials is limited by the bending stresses
induced at the nodes, leading to the scaling [1]:

s0=ss � a4r3=2 �4�

where the coe�cient, a410.3.
Based on estimates of ss made using microhardness data, the knockdown factor

on a3 for commercial closed cell Al alloys is found to range from 4 to
100 [16, 20, 22, 31] (Fig. 7b). The morphological defects discussed in Section 3 are
responsible. A phenomenological representation based on Eq. (4) may again apply
and have utility for sandwich panel analysis. Commercial open cell materials
seemingly satisfy Eq. (4) with essentially no knockdown on a4 [16, 19] (Fig. 7b).

2.4. Fracture

The propagation of cracks through cellular metals is a di�use, stochastic
process because of the spatial variability in the morphologies and properties of the
cell walls [21, 33]. Small cracks, fully contained within a single wall of a closed cell
material are the most explicitly de®ned (Fig. 8a). They are analogous to cracks in
thin ductile sheets and propagate at a critical energy release rate, or J-integral [21]:

Jc=ssw � b1r �5�

where w is the cell wall thickness and b1 is a plastic stretch coe�cient for the wall
material. For one commercial Al alloy system, b1 was found to be in the range 1/2
to 1 [21], dictated by intermetallic particles which limit the plastic stretch.

Converting to stress intensity factors for cells subject to small scale yielding and
using Eq. (1) along with the relationship between w, the cell diameter, 2a, and r [1]
gives:

Kc=�Esssa�1=2 � b2r
3=2 �6�

where b2=
���������������
1:2a1b1

p
.

In practice, small cracks develop following fully plastic conditions in the cell
walls [21]. In this case, the cracks are subject to a J-integral [34]:

J=ssc � ZEr �7�

where Z is a function of the strain hardening coe�cient for the cell wall material,
N (Fig. 8c) and E is the applied tensile strain. Crack growth thus occurs at a
critical strain, Ec, when J in Eq. (7) reaches Jc in Eq. (5):

Ec � b1w=Zc �8�
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For example, a 1 mm crack in the cell wall would extend at a strain of 01%: of

order the measured tensile ductility [21].

Larger cracks become more di�use, resulting in intact cell walls in the wake [29].

The associated bridging tractions lead to resistance-curve behavior, with large

tearing modulus [21, 33] (Fig. 8b).

Fig. 8. Crack growth characteristics for an open cell material: (a) a small crack within a cell wall, (b) a

resistance curve for a large crack, (c) e�ect of strain hardening on the J-integral coe�cient in Eq. (7).
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3. Morphological defects

Most commercially available cellular metals, unlike some of their polymer
counterparts, do not achieve the properties anticipated by Eqs. (1)±(4). The
knockdown factor on these limits ranges from 2 to 100 [2, 19±22] (Fig. 7).
Elimination of this knockdown, while not always important [11, 24], can
sometimes be crucial to the realization of performance advantages, particularly in
strength-limited, lightweight structures (Section 5). Various hypotheses have been
made regarding the `defects' that diminish the properties [1±23, 35, 36]. These are
now being systematically explored by combining both experimental and theoretical
strategies, motivated by the potential to eliminate the most deleterious `defects'
through process control strategies.

3.1. Morphological rules

The degrading e�ects of large bending moments and of low relative density
suggest the following four `rules' about morphological defects.

(i) Closed cellular structures that have straight walls and borders with uniform
thickness should exhibit sti�nesses and strengths approaching the limiting values
expressed by Eqs. (1) and (3) [20, 23, 29]. Accordingly, the presence of any
features that depart from this rule might degrade the properties. In principle,
many such features are possible and, indeed, are found in cellular metal
structures [20±22]. They include: curved and wrinkled cell walls, thin or
missing walls and high relative density domains (or inclusions). The challenge
comprises the quantitative determination of the severity of these features.
Progress toward this objective is addressed below.

(ii) The cell size distribution is not a dominant factor. Closed cell materials having
essentially straight walls and equiaxed cells can have a relatively wide cell size
range but still exhibit properties similar to those for materials with periodic,
uniform cells [23, 29]. This `rule' provides a rationale for interpreting
observations of morphological defects. 4

(iii) Defects that degrade the elastic properties must normally be present with
relatively high volume fraction, f. (One caveat is that nonlinear elastic
phenomena, such as cell wall buckling, can lead to property degradation at
lower f.) Composite theory dictates a knockdown factor on sti�ness of order,
(1ÿ f)ÿ1, indicating the need to emphasize only high volume fraction defects.
Moreover, it highlights one of the problems in theoretical approaches for
quantifying sti�ness degrading defects. Namely, when introduced into cells
with periodic boundary conditions, defects are necessarily present with high

4 One proviso is that regions with small wall thickness to cell diameter (low local density) may be sus-

ceptible to premature yielding. Accordingly, it is important to address and understand local density

variations.
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spatial frequency. Only by creating a model comprising many cells can the
in¯uence of defects with lower spatial frequency be explored.

(iv) Yielding initiates within small domains of spatially correlated defects. These
correlated defects enable formation of a band of plastic deformation that
spreads across the material [22, 31]. An analogy would be compressive kink
bands in ®ber composites, which develop in accordance with stochastic
mechanisms [40]. The corollary of (iv) is that, unlike elastic properties, defects
present in small volume fractions are likely to in¯uence yielding.

3.2. Theoretical results

Performing theoretical work on morphological defects is challenging, especially
for closed cell materials. It is essential to use three-dimensional (3D) models to
include the membrane e�ect, but, it is restrictive to use periodic boundary
conditions, because the e�ect of morphological defects is greatly exaggerated.
Leaving out the possibility of a model that combines the 3D behavior with a
sparse population of defects, the approach has been to gain insight from cell
calculations. The eventual goal would be to introduce these results into an
averaging scheme, such as the self-consistent method, in order to simulate the
overall properties. Subject to these provisos, the following calculations have
provided insight.

Calculations with periodic boundary conditions have illustrated two e�ects:

(i) The distribution of material between the walls and the borders does not have
an appreciable e�ect on the sti�ness [20] (Fig. 4a). That is, upon thinning the
walls (uniformly) and relocating the material at the nodes, the sti�ness does
not diminish until the walls become thin relative to the cell diameter. This
insensitivity arises because bending e�ects are resisted by material placed at the
nodes, thereby counteracting the reduction in membrane sti�ness.

(ii) Cell wall curves and wiggles cause dramatic reductions in sti�ness and yield
strength [20, 23]. It remains to quantify their role in a non-periodic structure.
Calculations in 2D with nonperiodic cells [39] (Fig. 9) have indicated that
missing cell walls markedly diminish the yield strength. By inference, thin cell
walls would have a similar e�ect.

3.3. Experimental measurements

The deformations of cells have been monitored using two principal methods: (i)
surface deformations are followed by optical microscopy [22, 31] (Fig. 3); and (ii)
internal cell deformations are reconstructed by using X-ray computed tomography
(Fig. 10, circled cell at left) [22] (CT-scan). In the latter, the deformation of
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defective cells fully constrained by all of their neighbors can be systematically
monitored, enabling the principal morphological defects to be catalogued.

Strain mapping methods (Fig. 3) vividly demonstrate that yielding is
heterogeneous and occurs within bands about one cell diameter in width at
stresses of order one-third the plateau strength. Moreover, these bands intensify
and their number density increases as the stress elevates, until a peak is
reached [31]. At the peak, plastic collapse occurs in one of the deformation bands.
Each subsequent stress oscillation involves plastic collapse in successive bands.

X-ray results (Fig. 10) have been instrumental in establishing two salient aspects
of yielding within the deformation bands [22]. In accordance with `rules' (i) and
(ii), equiaxed cells resist yielding, almost regardless of their size. The corollary is
that large cells, if equiaxed, are not the source of the knock-down factor.
Consistent with `rules' (i) and (iv), elliptical cells with their long axis normal to the
loading direction are prevalent within deformation bands, regardless of size. Such
cells, in cross-section, typically have T-shaped nodes with large entrained angles

Fig. 9. E�ect of missing cell walls on the elastic modulus of a 2D cellular solid [39]. Note the types of

defect generated. In the calculations, the relative density changed as the area fraction of missing walls

increased. The range refers to the di�erences found among several simulations. ER is again the

reference value when there are no defects. The reduction in relative yield strength was calculated to be

almost identical.
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(Fig. 10, circled cell at left). Such nodes are subject to appreciable bending

moments. The inference is that cell ellipticity results in bending e�ects that reduce

the yield strength. A further, unsubstantiated inference is that elliptic cells, if

present with su�cient spatial frequency (iii), would also diminish the sti�ness.

Accordingly, the following assertions are made about morphological defects:

(a) large equiaxed cells are benign;

(b) cell ellipticity is detrimental, particularly for yielding;

(c) cell wall wiggles weaken the material.

However, weakening can be expected from several other defects. Full

quanti®cation of all defects and their consequent elimination through processing

remains a challenge.

Fig. 10. X-ray CAT scan images of cells before and after application of a compressive strain [22]. The

circled regions identify those cells located within the deformation band that buckle upon straining.

Note that the axial strain can be determined from the shortening of the top.
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4. Heat transfer media

4.1. Concepts

The thermal conductivity of cellular metals is quite large compared with their
polymer and ceramic counterparts [1]. Moreover, their thermal di�usivity is
comparable to that for dense metals [2, 16]. These materials are thus of little
interest for thermal insulation. Instead, advantage can be taken of their high
thermal di�usivity for use as heat exchange media [13, 14]. In order to calibrate
the heat transfer capabilities of cellular metals and, accordingly, extrapolate into
new domains, a basic model is needed. There are several options. One, consistent
with measurements, regards the cellular medium as a variant on a bank of
cylinders. That is, the spatial variations in the temperatures of the solid and ¯uid
have similar forms for the cellular metal medium and the cylinders, but the
coe�cients di�er. Accordingly, proportionality constants are needed to represent
the e�ective thermal conductivity, ke�, and the e�ective local heat transfer
coe�cient, he�.

A trend toward higher heat dissipation is established, as either the ligament
diameter d becomes smaller or the relative density r increases. This trend re¯ects
the higher internal surface area as d decreases and the greater heat conduction
cross-section as r increases. However, this e�ect is countermanded by an increased
drop in the pressure needed to force the ¯uid through the medium. This pressure
drop tends to increase as the surface area to volume ratio increases. Accordingly,
there is an optimum cell structure that depends explicitly on the application and
its speci®cations.

4.2. Heat transfer

Heat dissipation subject to a transversely ¯owing ¯uid (Fig. 2) is characterized
by a global heat transfer coe�cient, H. A model relates H to the features of the
medium, through the e�ective parameters that (once calibrated) enable the
thermal behavior to be predicted over a range of cellular material characteristics.
The bank of cylinders analogue gives [14, 37±39]:

H � 2keffrweff tanh�2weffD� �9�
where D is the cellular material thickness and

weff �
�����
Bi
p

eff=d �10�
with d being the diameter of the metal ligaments. The Biot number, Bi, is a
nondimensional measure of the combined e�ects of conduction along the cell
borders and heat transfer into the ¯uid [13, 37±39]. Its e�ective value is:

Bieff � heffd=keff �11�
The challenge is to characterize ke� and Bie� in such a manner that e�ects on H of
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the three material variables (k, d and r) can be predicted. The approach is as
follows:

(i) A functional form for Bi is chosen.

(ii) Infrared imaging is used to map the distribution of temperature in the cellular
metal [13] (Figs. 2 and 11). The same system is used with probes to determine
the ¯uid temperatures.

(iii) The bank of cylinders model is used to simulate the temperature
distributions [14].

Fig. 11. (a) A thermal image of the (x, z) plane taken of an open cell Al alloy foam in accordance with

the cooling scheme shown on Fig. 2 [9]. (b) A simulation performed for a Biot number that most

closely matches the experimental image [9].
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(iv) Mapping of the simulations onto the measured temperatures establishes the
coe�cients.

(v) Subject to coincidence between simulations and measurements, the model is
used to predict e�ects of the material variables on H and the heat ¯ux Q.

Heat transfer from the metal borders to the ¯uid, ¯owing at average velocity v, is
considered to scale in accordance with the bank-of-cylinders model [37, 38]:

Bi � C�kf=k�Pr0:36Ren �12�
where kf is the thermal conductivity of the ¯uid, Pr the Prandtl number, the
Reynolds number Re = vd/gf , with gf the kinematic viscosity, and n is a coe�cient
dependent on the magnitude of Re (typically, n = 0.4), the coe�cient C is about
unity.

When the ¯uid temperature Tf (x), is assumed independent of z, the metal
temperatures for the symmetric con®guration shown in Fig. 2 are given by [14]
(Tf<T):

T�z; x� � Tf�x� � �T1 ÿ Tf�x�� �sinh�2weff�Dÿ z�� � sinh�2weffz��
sinh 2weffD

�13�

where T(x, z) is the temperature of the metal, T1 is the (constant) temperature of
the heat source. The corresponding ¯uid temperature is [14]:

Tf�x� � �T1 ÿ T0�exp�ÿx=l� �14�
where T0 is the (constant) temperature of the incoming ¯uid and l a transfer
length. In the absence of a thermal resistance at the attachments, this length is:

l � rfcpvD
2Zkeff

���������
Bieff
p 1� r

1:5Z
tanh

2D

d

���������
Bieff

p� �� �ÿ1
�15�

where cp is the speci®c heat of the ¯uid and Z = 1ÿ 0.22r. Upon measuring the
metal temperature T(x, z), as well as the ¯uid temperature Tf (x), l can be
determined such that the only unknown is we�. If the metal temperatures can be
adequately simulated by a single choice for we�, the model would be deemed
adequate and predictions made.

The substrate attached to the cellular medium also contributes to the heat
transfer. In the absence of a signi®cant thermal constriction, this contribution may
be added to Hc, such that the overall heat transfer coe�cient, H0, is:

H01H� ZBieffkeff �16�
More typically, there are interface e�ects that reduce H0.

4.3. Heat ¯uxes

The heat Q ¯owing into the ¯uid through the cellular medium per unit width is
related to the heat transfer coe�cient by:
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Q � LH0DTlm �17�

where L is the length of the medium (Fig. 2). Here DTlm is the logarithmic mean
temperature. It is related to the temperature of the heat source T1, as well as ¯uid
temperature at the inlet, T0 and that at the outlet, Te by:

DTlm � Te ÿ T0

ln��T1 ÿ T0�=�T1 ÿ Te�� �18�

Usually, T1 and T0 are speci®ed by the application. Accordingly, Te must be
assessed from Eqs. (14) and (15) in order to determine Q.

4.4. Thermal calibrations

Experimentally, long ducts have been used subject to the ¯uid temperature
everywhere being appreciably lower than the metal temperature [13]. Images
obtained subject to these conditions (Fig. 11a) are mapped onto simulations based
on Eqs. (13) and (14) for various we� (Fig. 11b). Discrepancies arise because the
¯uid temperature is not independent of z, but the deviations appear to be small.
The calibration indicates an e�ective thermal conductivity, ke�10.28k, and an
e�ective local heat transfer coe�cient, he�10.34 h [13].

Both e�ective values have coe�cients smaller than unity because only about a
third of the metal ligaments contribute to conduction and heat transfer.

4.5. Pressure drop

The pressure drop Dp in the ¯uid along the cellular medium, length Lf , is given
by [13, 14, 39]:

Dp=Lf � FOgv
2=a �19a�

where F is a friction factor:

F � ReÿafP�r� �19b�

The exponent a and the function fP have been determined by experiment [13]
such that a = 0.4 and fP=4. In practice, the pressure drop must be small enough
to be compatible with the fans or pumps used to transmit the ¯uid through the
medium, discussed next.

4.6. Trade-o�

For any system there is a trade-o� between heat ¯ux and pressure drop. A cross
plot of these two quantities in accordance with the non-dimensional parameters
de®ned by the model (Table 1) illustrates this (Fig. 2). The solid lines indicate the
trend between heat dissipation and pressure drop as the relative density increases,
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at ®xed cell size. The dotted lines indicate the e�ect of cell size at ®xed density.
Each cross-over point represents a speci®c cellular material.

The preferred material domain is indicated in Fig. 2. It is preferred because
such materials achieve high heat dissipation at moderate pressure drop: that is, for
cell size in the mesorange and with relative densities of order, r10.2. The
particular material of choice can only be found by coupling Fig. 2 with the
operating characteristics (back pressure and ¯ow rate) of fans/blowers used to
circulate the ¯uid. Such analysis has revealed that the trade-o� between pressure
drop and heat dissipation achievable with cellular metals is more propitious than
that for conventional ®n-pin arrays [2], enabling the design of substantially more
compact heat sinks.

5. Minimum weight structures

5.1. Structural indices

Panels, shells and tubes subject to bending or compression have characteristics
determined by structural indices [10, 11, 24, 25, 40±43]. These are obtained by
deriving expressions for the stresses, displacements and weights in terms of the
loads, dimensions, elastic properties and core densities. The details depend on the
con®guration, the loading and the potential failure modes, as elaborated below.
There are a relatively small number of indices, based on weight, c, and load p.
These can be expressed either in nondimensional form (Table 2) or in convenient
dimensional forms. The associated material properties are summarized in Table 3.
For bending, it is convenient to de®ne an additional structural index: the sti�ness
index, S. It is related to the elastic load index, pe, (Table 2) by:

S � Pe�L=d� � �P=d�=BEs �20�
where P is the load, d the de¯ection, L the span and Es the Young's modulus for
the material comprising the cellular medium.

Table 1

Non-dimensional parameters governing the performance of cellular

metal heat dissipation media. af=thermal di�usivity of cooling ¯uid

Heat ¯ux QÄ=Q/k[T1ÿT0]

Prandtl number Pr= nf /af
Reynolds number RÄe = vL/nf
Cell wall thickness dÄ=d/L

Foam thickness DÄ=D/L

Nusselt number Nu= Bik/kf
Thermal conduction KÄ f=

���������
kf=k

p
Power dissipation pÄ=DpvDL 2/rfn 3

f
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When optimizations are conducted simultaneously for weight and core density,

explicit weight and de¯ection ratios result which, thereafter, greatly simplify

determination of the relationships between the structural indices [1, 43]. For

example, sti�ness-limited, laterally loaded panels containing a core with sti�ness

characterized by Eq. (20) exhibit minimum overall weight when the weight of the

face sheets is a quarter of that for the core (Table 4). At this minimum, the

contribution to the de¯ection by core shear is exactly twice that contributed by

stretching the face sheet. Other weight ratios are summarized in Table 4.

Table 2

Structural indices for foam core systemsa

Indices Column Panel Shell

Weight, c W/OL 3 W/OL 2B W/OR 2L

Load (elastic), pe P/EfL
2 P/EfLB P/EfLR

Load (plastic), pp P/syL
2 P/syLB P/syLB

aNotation: B= width; c= core thickness; df=face thickness; L = span length; W=weight;

P = load; a2=(E/Es)r
ÿ2.

Table 3

Material properties

Property Face Foamed core Solid unfoamed core

Density (kg/m3) Of rO O
Youngs's modulus (GPa) Ef E Es

Shear molulus Ð G Ð

Yield strength (MPa) sy s0 ss

Table 4

Relative core/face sheet weights at the minimum [2, 43]

Wc/Wf

Con®guration Constraint Fixed r Global

Panel Sti�ness 2 4

Strength 1 4

Tube Sti�ness 1 Ð

Strength 1/2 Ð
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5.2. Sti�ness-limited sandwich structures

Panels that experience lateral loads are often sti�ness limited. Sti�ness also
a�ects the natural vibration frequencies. That is, high sti�ness at low weight
increases the resonant frequencies, thereby facilitating their avoidance.

Choosing minimum weight con®gurations is relatively straightforward whenever
the design loads allow choices entirely within the elastic range. The basic concepts
can be found in several literature sources. The key results are reiterated to
establish the procedures, as well as to capture the most useful results. For all
bending problems, a series of non-dimensional coe�cients, designated Ai, relate
the de¯ections to the moments. These have been comprehensively summarized
elsewhere [1, 2, 50]. They are repeated for convenience (Table 5). They will be used
throughout the following deviations.

5.2.1. Method of analysis
An analysis based on sandwich beams is ®rst used to demonstrate the

procedure. The compliance in bending is:

Sÿ1 � �2=A1��L=df��L=c�2
� �1=A2��L=c��E=G� �21�

The ®rst term is the contribution from face sheet stretching and the second from
core shear. The corresponding weight index is:

c � 2df
L
� r

c

L
�22�

The free variables subject to optimization are df , c and r.
If the relative core density r is ®xed, the optimization proceeds in accordance

with the following ®ve steps:

(i) Express Eq. (21) in terms of the face thickness, df .
(ii) Substitute df into the weight function (22).
(iii) Minimize Eq. (22) with respect to the core thickness: dW/dc = 0, to obtain

the optimum core thickness, c*.

Table 5

Coe�cients for laterally loaded panels [2]

Loading A1 A2 A3 A4

Cantilever End 3 1 1 1

Uniform 8 2 2 1

Three point bending Central 48 4 4 2

Uniform 384/5 8 9 2

Ends build in Central 192 4 9 2

Uniform 384 8 12 2
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(iv) Specify the compliance, d/P, and span length, L. Substitute c* into Eq. (21) to
obtain the optimum face thickness, d *

f .
(v) The minimum weight is determined by inserting d *

f and c* into Eq. (21).

The key results of such an optimization have been summarized in Table 6 and
Fig. 12a.

5.2.2. Global minimum
A more complete optimization is possible if the density of the core is also

treated as a free variable. Paradoxically, in this case, the results are analytical,
because the displacements contributed by core shear are twice those from bending
and the core weight is four times that of the face sheets (Table 4). These ratios
give the relationship:

S � �A1=60��c=L�2C �23�
Here it is assumed that the core and face sheets are made from the same materials
(so that O= Of and Es=Ef ).

At the weight minimum, the core thickness is explicitly related to the sti�ness
by:

c

L
� 2

18a2A2S

A2
1

� �1=5
�24�

Substituting c/L into Eq. (23) gives the interrelationship:

C � 15S3=5

A1=5
1 �18a2A2�2=5

�25�

For plotting purposes, it is convenient to re-express Eq. (25) in the form

Y � 3:19X3=5 �26�
where Y � C

�����������������������
8A1=3a2A2

p
and X � S

������
A1

p
=�3a2A2=8�3=2. This result has also been

plotted in Fig. 12a.

Table 6

Formulae for laterally loaded, sti�ness-limited panels and beamsa

Condition Core thickness

(c*/L)

Minimum weight

(Y)

Core relative density

(r)
Face thickness

(d *
f /L)

Global minimum 2 18a2A2S
A2
1

h i1=5
3.19X 3/5 0.59X 2/5 A1

96a2A2

c
L

ÿ �3
Fixed rb 4�df=L�

r�1ÿ2x� 2
���
2
p

r3=2
���
x
p

3ÿ2x
1ÿ2x
h i

Ð 3a2A2

4A1
xR3

h i1=4
aO= Of , Es = Ef .

bx is related to the weight index X by:X � 16
���
2
p
�5=2�3=2

1ÿ 4�2
:Y= c

�����������������������
8A1=3�2A2

p
, X= S

������
A1

p
/3(3a2A2/8)

3/2.
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For each sti�ness, there is a corresponding relative density for the core:

r � 0:59X2=5 �27�
There is also an explicit face thickness,

Fig. 12. Minimum weight analysis for sti�ness-limited, laterally loaded panels. (a) A cross plot of the

minimum weight and sti�ness indices showing the global minimum, as well as minima for three ®xed

densities ( r = 0.05, 0.1 and 0.2). Note that, for the global minimum, the core density is given by

r = 0.59X 2/5. (b) A schematic illustrating the domains wherein yielding of either the face sheets or the

core prohibit use of elastic analysis. A more comprehensive analysis is needed to establish minimum

weights in these domains. The location of the domain boundaries is a�ected by the load indices Zf and

Zc. These must be speci®ed by the application before using the diagram. For this choice of load index

pp=10ÿ4) and yield strain (EY=Es=0.007), core yielding will arise in minimum weight panels designed

at sti�ness below A 0. The corresponding points for face yielding is A.
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df
L
� A1

96a2A2

c

L

� �
�28�

5.2.3. Failure limits
Application of these weight diagrams is limited by the occurrence of yielding,

either of the face sheets or in the core, and by face wrinkling [1, 11]. Face yielding
commences when the maximum tensile or compressive stress caused by bending
reaches the tensile yield strength, sY. For the globally optimal sandwich, this
result can be expressed in terms of X:

Zf � X4=5 �29�

where

Zf � 16A1

484=5a2A2A3

� �
Pp

Fig. 12(b). Continued.
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For a given transverse load, P, all globally optimized designs less sti� than that
associated with the equality in Eq. (29) exceed yield in the face sheets. The
behavior is illustrated on Fig. 12b, for one choice of pp, where the equality of
Eq. (29) is represented by a point, A. That is, con®gurations having lower sti�ness
than A cannot be realized at the weights given by Eq. (29). Weights in excess of
the global minimum would be needed to obtain sti�nesses in this range. Note that
logarithmic axes have been used (rather than linear, Fig. 12a) to highlight the
inadmissible range.

For the optimally designed sandwich, core yielding occurs when:

ZC � X1=5 �30�

where

ZC � P

BLtc

� � ����������
A1

a2A2

r
1

481=5A4

� �
with a similar interpretation to that for face yielding, indicated in Fig. 12b as
point A 0. Again lower sti�nesses cannot be realized at the global weight minimum,
this time because of core yielding.

Accordingly, structures that realize global weight minima are those requiring
high sti�ness. This happens because the face sheet thicknesses need to achieve
minimum weights increase substantially as the sti�ness index increases (relative to
core thickness and density). At lower sti�nesses, because of the thinner face sheets
(28) and lower core densities (27) yielding is likely to intervene. For yielding to be
avoided, the weight must be increased above the minimum by increasing either the
face sheet thickness or the core density.

5.3. Sti�ened panels

Competition for sandwich systems is comprised principally of wa�e-sti�ened
panels (Fig. 13). For comparison, it is convenient to re-express Eq. (25) in the
form:

W

BL2
� O

P=d
BEf

� �3=5
15

A1=5
1 �18a2A2�2=5

" #
�31�

For a wa�e panel subject to bending about one of the sti�ener directions, the
weight and sti�ness are related by:

W

BL2
� 72

5
O0

P=d
EoA1B

� �
L

ds

� �2

�32�

where the dimension ds is de®ned in Fig. 13, with Eo Young's modulus for the
material comprising the panel and Oo its density.
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Equating the weights of the sandwich and wa�e panels, Eqs. (31) and (32) give:

ds
L
�

������������������������������
24

25

Oo

O

� �
Ef

Eo

� �s
P=d
BEf

� �1=5
18a2A2

A2
1

� �1=5

�33�

Comparison of (33) with the optimized sandwich panel (Eqs. (20) and (24)) yields,
at equivalent weight:

ds
c
�

���
6
p

5

������������������������
Oo

O

� �
Ef

Eo

� �s
�34�

This result is sti�ness independent because Eqs. (33) and (24) have the identical

Fig. 13. A schematic comparing a wa�e-sti�ened panel with a sandwich panel both loaded in bending.
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functional dependence. Accordingly, a wa�e panel made from the same material
as a sandwich panel (O = Oo, Ef=Eo) has a slightly smaller overall thickness, at
the same weight and sti�ness. The choice, therefore, depends entirely on
manufacturing cost and durability.

5.4. Cylindrical shells

Strength-limited sandwich structures can be weight competitive with sti�ener
reinforced designs: the lowest weight designs in current usage [44, 45]. Shells are
a more likely candidate for sandwich construction than axially compressed
panels or columns. This preference arises because both hoop and axial stresses
are involved, enabling the isotropy of sandwich panels to be exploited. There are
two basic requirements for sandwich shells: (i) su�cient core shear sti�ness is
needed for adequate buckling strength; and (ii) the shear yield strength of the
metal foam must be large enough to maintain the buckling resistance of the
shell, particularly in the presence of imperfections. Numerical methods are
needed to determine minimum weights of both sandwich and reinforced systems.
Simple analytical estimates are not possible. Some prototypical results are
presented to illustrate the con®gurations wherein sandwich construction may be
preferred.

One con®guration comprises cylindrical sheets subject to axial loads (Fig. 14),
optimized with respect to df and c, subject to prescribed core density. They regard
the fully dense core material as identical to the face sheet material (Of = Os, and
Ef=Es), and use a core with sti�ness at the low end of the range found for
commercial materials. The face sheets are elastic±perfectly plastic with
compressive yield strength sY. Note that, at the optimum weight, and in the range
where the face sheets experience yield, the compressive stress in the face sheets
associated with elastic buckling is coincident with the yield strength in
compression, sY. The weight index has been determined at a representative yield
strain for Al alloys (EY=0.007). These results are independent of the length of the
cylinder. The buckling mode is axisymmetric.

For comparison the structural performance has been calculated for an
optimally designed, axially sti�ened cylindrical shell with hat-shaped sti�eners
located on the inside. These results apply to a shell segment located between
rings spaced a distance L apart, with L/Rs=1. A lower L/Rs would have a
lower weight index, and vice versa. Note that, over the range plotted, the shell
buckles elastically for the chosen yield strain. (Shells with sti�eners on the
outside of the cylinder have somewhat greater buckling strength and, thus, a
lower weight index, but outside sti�ening is often excluded for other reasons.)
This example illustrates that metal foam core sandwich shells can have a
competitive advantage over established structural methods of sti�ening, particularly
at relatively low structural indices.

To pursue the subject further, the sandwich shells are optimized with respect to
relative core density r, as well as df and c. Simultaneously, the consequence of
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using a core with superior sti�ness is addressed by assuming a core having
properties comparable to the best commercial materials. The results for the fully
optimized foam core sandwich shells are plotted in Fig. 15 with accompanying
plots for the optimal relative density of the core. For reference, the result for the
optimally designed cylindrical shell with axial hat-sti�eners is repeated from
Fig. 14. This comparison illustrates both the weight superiority of foam metal

Fig. 14. Minimum weight comparisons for strength-limited, axially compressed cylindrical sandwich

shells at ®xed density (with a2=1) having dimension L/Rs=1, compared with those for a shell with

inside sti�eners.
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core sandwich shells over conventional shell construction and the potential bene®t
to be gained by using a core material with the best available sti�ness. At the
lowest core densities, face wrinkling is expected to become the weight limiting
failure mechanism (see Fig. 18). While analysis of this mechanism would be
needed to establish speci®c weight bene®ts, optimized sandwich construction is
still expected to a�ord lower weights than hat-sti�ening.

Fig. 15. (a) Minimum weights of sandwich construction for two core sti�ness behaviors compared with

those for sti�ened shells. Here the minimization has been conducted on both weight and core density.

The sti�nesses were chosen to encompass those found experimentally (1ra2, r4, Fig. 6). (b) The

relative densities at the weight minimum represented by (a).
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5.5. Imperfection sensitivity

An important consideration for strength-limited thin walled construction
concerns the in¯uence of imperfections. In most cases, imperfections reduce the
buckling loads, sometimes considerably. In shells, imperfections cause out-of-plane
bending, which lowers the maximum support load due to two e�ects: (i) by
advancing nonlinear collapse; and (ii) by causing premature plastic yielding, which
reduces the local sti�ness of the shell and, in turn, hastens collapse. Since they

Fig. 16. Minimum weight calculations for strength-limited, axially compressed panels with ®xed core

density (r = 0.1).

A.G. Evans et al. / Progress in Materials Science 43 (1999) 171±221 205



always exist, practical designs take this imperfection sensitivity into account.

Generally, experimental results establish a knockdown factor on the theoretical

loads that may be used as the design limit with relative impunity. The in¯uence of

imperfections can also be addressed by numerical simulations.

Fig. 17. (a) Minimum weight results for strength-limited, axially compressed sandwich panels with

variable core density. The operative failure modes change as the load index changes, as indicated. (b)

The core densities corresponding to (a). Here l in the abscissa is the knockdown factors due to

imperfections.
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5.6. Other con®gurations

Corresponding diagrams for panels and columns are presented in

Fig. 16±18 [11]. The associated buckling modes are indicated in the insets. Results

for minimum weight sandwich panels at a ®xed cored density, r = 0.1 (Fig. 16)

are not especially promising. There is only a small domain of weight savings. This

domain arises when sandwich construction is used within the stringers, as well as

the panels, of a stringer-sti�ened con®guration. This construction has lowest

weight at small levels of load index.

Fig. 18. Minimum weight calculations for axially compressed strength limited square tubes with ®xed

core density (r= 0.1).
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Further minimization with core density leads to more pronounced weight
savings (Fig. 17). In this case, even ¯at sandwich panels can have lower weight
than stringer-sti�ened panels, especially at lower levels of load index. Note that
the failure modes governing the weight change as the load index changes and that

the minimum weights coincide with simultaneous occurrences of either two or
three modes. The challenge in taking advantage of the potential weight savings
arises in manufacturing and relates to the low relative densities required to realize
these performance levels (Fig. 17). Moreover, these low r need to be achieved

while maintaining acceptable morphological quality.

Fig. 19. Energy per unit mass against plateau stress for cellular Al alloys. Also shown is a comparison

of the energy absorption per unit mass for Al tubes.
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Results for columns (Fig. 18) indicate that thin walled sandwich tubes are
lighter than foam-®lled and conventional tubes, but the bene®cial load ranges are
small.

5.7. Synopsis

For those wishing to explore cellular metal core sandwich construction, the
following recommendations are made based on the above considerations.

(i) Determine the constraints that govern the structure and, in particular, whether
it is sti�ness or strength controlled.

(ii) If sti�ness is dominant, there is a relatively straightforward procedure for
determining minimum weights. This entails using the formulae summarized in
the tables. It is important to realize that there will always be lighter
con®gurations (especially optimized honeycomb or wa�e panels). Those
con®gurations should be explicitly identi®ed, whereupon a manufacturing cost
and durability comparison can be made that determines the viability of
sandwich construction. Other qualities of the cellular metal may bias the
choice. Moreover, it is important to calculate the domains wherein the weights
based on elasticity considerations cannot be realized, because of the incidence
of `inelastic' modes: face yielding, core yielding, face wrinkling. Some help in
assessing these limits has been provided. Future additions to the Manual [2]
will provide more general results.

(iii) When strength (particularly buckling) controls the design, the rules governing
sandwich construction are less well formulated. In general, numerical methods
are needed to compare and contrast this type of construction with sti�ened
systems. Some general guidelines are given in the Manual [2]; these facilitate
deliberations about loadings and con®gurations more likely to bene®t from
sandwich construction. Con®gurations unlikely to bene®t are also described.
It is recommended that, where bene®ts seem likely, detailed simulations and
testing should be used to assess the viability of sandwich construction.

6. Energy absorption

6.1. Nondimensional indices

A comprehensive treatment of energy absorption by foams is given in Gibson
and Ashby [1]. A few salient results are repeated here for completeness. The
densi®cation strain, Ed (Fig. 1), is dictated solely by the relative density, such
that [1, 43]:

Ed � 1ÿ rfv �35�
where fv is a measure of the relative void space retained when the cells have
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collapsed. It is about 1.4. The energy absorption per unit volume, U, is:

U=sp � Ed �36�
Accordingly, a plot of U against sp is dictated by the densi®cation strain, causing
all data for cellular Al alloys to reside along a diagonal band. The corresponding
result for the energy absorbed per unit mass, Up, is:

Up=sp � Ed=rO

� �1ÿ rfv�
rO

�37�

A plot Up against sp now has an additional dependence on density, but since sp
also depends on density, Eq. (3), the data for cellular Al alloys still reside within a
relatively narrow band (Fig. 19), with less than a factor 2 spread in energy
absorption among the better quality commercial materials. Speci®cally, upon
using Eq. (3) as representative of sp for closed cell materials, the realizable energy
absorption becomes

Up=ss � a3�1ÿ rfv�=O �38�
The energy absorption can only be appreciably increased by elevating the plateau
stress. Accordingly, when the allowable stress is speci®ed by the application, the
energy is largely predetermined by the inherent deformation characteristics of the
material. The only signi®cant materials issue concerns the ability to adjust the
stress in order to attain higher energy absorption. Higher levels of energy
absorption per unit mass could be accessed by eliminating the knockdown factor
on yield strength and achieving a more uniform plateau stress, but only at
correspondingly larger stress. Accordingly, for energy absorption purposes, there
is minimal motivation for manufacturing developments that enhance the
morphological quality beyond that achievable in the better commercially available
materials.

6.2. System comparison

Competition for cellular materials is provided by a bank of thin-walled
columns. In columnar con®gurations, the energy is absorbed through plastic
buckling of the walls. The collapse of tubes and their energy absorption have been
analyzed as follows. The force needed for axial crushing is [2, 46, 47]:

Pc � 4pR1=3
s d5=3t ss �39�

where dt is the tube thickness. The associated crushing stress, sp, is:

sp �Pc=pR2
s

� 21=3�2dt=Rs�5=3ss �40�
but the relative density of the tube is
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r � 2dt=Rs �41�
such that the crushing stress becomes

sp � 21=3r5=3ss �42�
The densi®cation strain for a tube is:

Ed ��1ÿ 2dt=Rs�
� �1ÿ r� �43�

The energy absorbed per unit volume is thus:

U=ss �spEd
� 21=2r5=3�1ÿ r� �44�

The corresponding energy per unit mass is

Ur=ss � 21=2r2=3�1ÿ r�=O �45�
Since Al tubes can be made with yield strength ss1200 MPa, these energy
absorptions can be superposed onto the cellular Al data for comparison purposes
(Fig. 19). The comparison suggests that Al alloy tubes are superior to cellular
alloys on a weight basis. However, two additional considerations enable the
cellular materials to be competitive in some cases:

(i) Numerical simulations of column crushing [12] indicate stress oscillations as
plastic buckling progresses, resulting in energy levels about two-thirds those
expected from Eq. (45).

(ii) Tubes absorb e�ciently only upon axial loading. They are much less e�ective
when impacted obliquely. Cellular media are isotropic and omnidirectional.
Accordingly, when impacts from a range of directions are expected, foams are
attractive.

6.3. Impact

Upon impact, kinetic energy k(0mv 2/2) from the object must be dissipated by
plastic work. The impact can be fully absorbed, without exceeding the stress sp, if
the foam thickness, D, satis®es:

D � k=UAI �46�
where AI is the area over which the impact is spread by interaction with the bu�er
plate. The minimum weight of cellular material, Wmin, needed to absorb the
impact is:

Wmin � k=Ur �47�
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Hence, the energy absorption metric Ur in Eq. (29) (Fig. 19), characterizes the
minimum weight.

6.4. Blast amelioration

Blast from explosions results in an impulse being imparted to the structure.
Momentum from the impulse, I, per unit area, is acquired by the bu�er plate,
which then compresses the cellular material [2, 33]. The requirement is that the
resulting kinetic energy in the bu�er be fully dissipated within the foam, while the
stress on the structure never exceeds that at the plastic front. Since cellular metals
have rate-insensitive yield strengths at the strain-rates relevant to typical
blasts [2, 33, 48], this stress is still the quasistatic value, sp. The foam thickness
needed to absorb the blast is thus:

D � I2=2ObdbU �48�

where Ob is the density of the bu�er plate and db its thickness. Consequently, the
overall minimum weight is:

W �min =Wb � 1� �I=db�2=2ObUr �49�

where Wb is the weight of the bu�er. Again, Ur is the important metric for the
foam.

Blast amelioration applications for cellular metals would appear to be favored
by their isotropy, relative to honeycombs and tubes, as well as their high energy
absorption relative to polymers [16]. Some appreciation can be gained by means
of the following case study [2]. The impulse from an explosion decreases with
distance, x, in the manner depicted in Fig. 20. Except for distances close to the
explosion, I varies in approximate accordance with:

I1BIM
1=3 exp�ÿC��x=M1=3�� �50�

where M is the mass of explosive and the coe�cients are: BI=5 � 103 sPa(kg)ÿ1/3,
C*=1.3 (kg)ÿ1/3/m. Inserting I into Eq. (48) relates the foam thickness to the
parameters for the explosion (M, x). A map characterizing the overall behavior is
presented in Fig. 21, for a material having a plateau ¯ow stress of 1 MPa [33].
The map shows the thickness and weight of material needed to protect against
explosions. For example, for a 50 kg explosion located 3 m from a structure that
can sustain a pressure of 1 MPa (10 atm), the form should be 0.5 m thick and
(with the bu�er) weigh 200 kg/m2. This is much more e�ective than the protection
that could be obtained with polymer foams, tubes, etc.
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7. Manufacturing status

One of the challenges established by the above analysis is the need to create
closed cell metals for ultralight sandwich structures with mechanical properties
approaching the best achievable (Eqs. (1) and (3)). An additional capability for
integral bonding with face sheets is implied. Beyond current capabilities, there is
also a need for materials with much lower density cores (r<<0.1) that,
nevertheless, have the best achievable properties. A status report on two basic
manufacturing categories potentially capable of realizing these possibilities is
examined in this section. These are gas expansion and hollow sphere methods.

Fig. 20. The case study characterizing the blast amelioration behavior of Al alloy foams.
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7.1. Gas expansion methods

Foam casting and powder metallurgy approaches predominate among the gas
expansion methods. Typically, an internal gas pressure is used to expand a porous

metal with closed porosity. In several cases, the expansion is conducted within a

dense shell that becomes the integrally bonded face layer. The gas pressure is

Fig. 21. A blast absorption surface for an Al foam with a plateau ¯ow of 1 MPa. The example

indicates the thickness of foam needed to absorb the blast from a 50 kg explosion located 3 m away

from a structure capable of sustaining a 10 atm pressure.
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derived by one of three methods: (i) it is released from a dispersed particulate,
such as H2 from TiH2 [3, 4]; (ii) it derives from high pressure generated within an
entrapped inert gas [6, 7]; or (iii) a gas is injected into a liquid metal [5]. Method
(i) has been applied to Al alloys and, very recently, to steels. Method (ii) has been
used with Ti alloys. Method (iii) has been implemented for particulate reinforced
Al alloys (PRA).

One embodiment of method (i) mixes Al powders with hydride particles and
cold consolidates into ribbons (e.g. by extrusion) [4]. Segments of the ribbon are
emplaced within a thin-walled container that becomes the dense structural
constituent. Upon heating above the solidus, when the gas is released, foaming
produces a closed cell porous core bonded to the container. In its present
manifestation, the method creates an isotropic, cellular core, but with occasional
large voids. Sandwich panels and foam ®lled tubular con®gurations have been
made. The method has unparalleled versatility for creating foam ®lled shapes.
This attribute has particular merit for applications insensitive to the mechanical
properties of the cellular material. It has not yet been possible to conduct the
foaming process with the control needed to contemplate ultralight structures
requiring core properties that approach the best achievable levels.

A second embodiment of (i) used for Al alloys mixes the hydride powder into
the molten alloy within a container, to cause foaming [3]. Additions of Ca to the
alloy enable a relatively high viscosity to be realized at temperatures in the two-
phase (liquid/solid) domain, just above the solidus. A hydrogen overpressure is
used to control cell development within the liquid. Large blocks are produced by
this method with relatively uniform, isotropic cells. This material has the best
relative properties (highest a1 in Eq. (1) and a3 in Eq. (3)) among presently
available commercial Al alloys [20, 21]. This uniformity is enabled by the high
viscosity achieved in the liquid and the hydrogen overpressure used during
foaming. This embodiment has not yet been used to produce material with
integrally bonded face sheets. Such structures have been produced by cutting
sheets from the as-manufactured blocks, by electrodischarge machining (EDM)
and either polymer bonding or brazing to face sheets [49]. This manufacturing
approach o�ers the best structural performance in applications, such as ultralight
shells, where weight savings require superior core properties.

Method (ii) is primarily of interest for Ti alloys [6, 7]. It is based on hot
isostatic pressing (HIPing), with several atmospheres of Ar introduced into the
can containing the alloy powder. The Ar is trapped at high pressure within
residual voids upon HIPing and subsequent rolling/forming. A ®nal heat
treatment causes the voids to expand, resulting in a sandwich structure. The
process is limited to a core containing 30±40% porosity. This limitation prohibits
the weight savings elaborated in Section 5. However, the material competes in
applications when contoured or curved thin sheets are now used, without
sti�eners, for reasons of fabricability or cost. Blistering between the core and the
face sheets is a present impediment to manufacturing by this method.

In method (iii), high pressure air injected into the molten PRA through ori®ces
causes foaming and allows for a continuous process that generates sheets of

A.G. Evans et al. / Progress in Materials Science 43 (1999) 171±221 215



porous material 110 cm thick [5]. The material tends to be anisotropic with large
cells, subject to a relatively frequent incidence of defects [20, 21]. However, the
lower manufacturing costs represent an important attribute, especially for
applications insensitive to the mechanical properties, such as energy absorption.

7.2. Hollow sphere methods

Thin walled hollow spheres of various alloys can be produced by two
intrinsically di�erent methods and then consolidated into a structure. One method
uses slurries [8] and the other involves gas atomization [9]. Thus far, hollow
spheres of Ti and Ni alloys, as well as steels, have been produced. The approach
is inherently attractive, because being solid state, the process is amenable to a
stringent control regimen. It thus has the potential to realize the properties
expressed by Fig. 5. Such realizations would enable those ultralight structures that
demand superior core properties.

(i) Slurries of metal oxide or hydride powders are blown into thin walled spheres
and sintered, employing a commercial process now used for ceramic spheres [8].
They are subsequently converted into the metal by annealing at the requisite
gas phase partial pressures, such as a low oxygen pressure for steel spheres
made from iron oxides.

(ii) When alloy powders are made by atomization, Ar can be trapped in the liquid
droplet. It then expands, as the drop projects, until it solidi®es, creating
hollow powders. The hollow fraction can be separated by ¯otation [9].

Consolidation of the hollow spheres can be achieved either by isostatic pressing or
by liquid phase sintering. This aspect of the manufacturing has yet to receive
systematic attention. It is crucially important, since the properties are so sensitive
to the area fraction achieved at each of the sphere contacts (Fig. 5).

8. Summary

The connections between the morphological quality of cellular metals and the
requirements for their implementation comprise: (i) those insensitive to the
thermomechanical properties of the material; and (ii) others that are strongly
in¯uenced by cellular material quality. This distinction partitions the connection
between manufacturing and implementation.

(a) Several applications categories are insensitive to morphological quality,
provided that some reasonable minimum is consistently achieved. These
comprise energy absorption applications and some ultralight panels and tubes.
The latter category includes some sti�ness limited structures, as well as
strength limited con®gurations subject to low imperfection sensitivity.
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(b) Other applications require that the cellular materials have the best achievable

thermomechanical properties. One category comprises imperfection sensitive

ultralight shells and circular tubes that operate in the elastic range. In such

cases relatively high strength cores, approaching the best achievable, are

essential to the realization of substantial weight savings. Another category

comprises open cell heat dissipation media.

Within these overall material property benchmarks, comparisons with competing

materials and systems suggest the following three implementation opportunities:

(i) For heat dissipation purposes, cellular metals are unique. Moreover, there are

substantial opportunities to greatly improve their thermal performance by

tailoring cell size and density. The manufacturing challenge is demanding, but

justi®ed by the performance bene®t.

(ii) Cellular Al alloys are attractive in those applications that require exceptional

energy absorption, yet are compatible with moderately high stress delivery

levels (1±10 MPa). Manufacturing requirements are not especially stringent for

these applications, enabling use of lower cost process methods. The isotropy

of the foams and the uniformity of their force delivery represent performance

advantages over competing concepts, such as thin walled box columns.

(iii) Strength and sti�ness limited ultralight structures designed within the elastic

range all exhibit a domain wherein weight bene®ts arise from the use of thin

sandwich construction comprising cellular metal cores. A subset of these

structures have su�cient performance bene®t to justify implementation.

Others may have utility because of lower manufacturing cost. Preliminary

attempts at de®ning structures that provide weight savings have identi®ed

panels and shells as opportunities. The greatest bene®ts appear to arise with

relatively long strength-limited shells subject to axial compression. There also

appear to be opportunities for sti�ness limited panels that experience lateral

loads. There are no bene®ts for compression structures designed with a load

index in the plastic range. The requirements on the mechanical properties of

the cellular material are themselves subject to the imperfection sensitivity of

the structure. For imperfection insensitive structures, the dictates on

properties are minimal, but the bene®ts from using a cellular core are also

small. Conversely, imperfection sensitive structures, such as cylindrical shells,

bene®t most from having cellular cores with properties approaching the best

achievable levels, with no knockdown. Cellular metal sandwich construction

would provide even greater weight bene®t if the density of the core could be

substantially decreased below presently available materials (r<<0.1), subject to
mechanical properties that approach best-achievable levels (Eqs. (1) and (3)).

Attainment of such materials constitutes a longer range manufacturing

objective.
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Appendix A

A.1. Appendix A

A.1.1. Minimum weight transversely loaded panels with speci®ed sti�ness

The sti�ness, s, of a transversely loaded sandwich panel can be written
as [1, 43, 50]:

1

s
� Bd

P
� 2L3

A1Efdfd2c
� L

A2dcG
�A1�

where the dimensionless coe�cients A1 and A2 depend only on the speci®c loading
and support condition (Table 5). The ®rst term in Eq. (A1) is the contribution
from bending while the second is due to shearing of the core. It has been assumed
that dc>>df , and that the core itself makes negligible contribution to the bending
sti�ness. The weight of the panel is

W=BL � Of�2df � rdc� �A2�
assuming the face sheet density is that of the fully dense core (Of=O).

Two optimization problems are considered for minimizing weight for a speci®ed
sti�ness, or, equivalently, for maximizing sti�ness at a speci®ed weight. In the
®rst, the global optimum is obtained by maximizing s with respect to df , dc and r,
subject to speci®ed W. In the second, the relative core density r is speci®ed and
thus removed as a variable in the maximization process. The core shear modulus
is considered to vary with core density in accordance with Eq. (2), such that, with
n = 1/3,

G=Es � �3=8�a2r2 �A3�
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The auxillary function used in the optimization process is

f�df; dc; r� � 2L3

A1dfd2c
� 8L

3A2dca2r2
� l�2df � rdc� �A4�

where l is a Lagrangian multiplier introduced to enforce the constraint of
speci®ed weight. Because the sum of the ®rst two terms in Eq. (A4) are
proportional to the inverse of the sti�ness, minimizing f(df , dc, r) maximizes s.

The outcome of the global minimization is as follows. The weight of the core is
exactly four times the combined weight of the two face sheets, and the
contribution to 1/s in Eq. (A1) from the second term due to core shear is exactly
twice that of the contribution from the ®rst term due to the bending
sti�ness [1, 43]. The ®rst implies

W=LB � 10dfOf � �5=4�dcrOf �A5�
while the latter result gives

1

s
� 6L3

A1Efdfd2c
�A6�

There are also speci®c values of dc, df and r at the sti�ness maximum given by [1],

dc
L
� 2

18a2A2s

A2
1Ef

� �1=5
�A7�

df
L
� A1

96a2A2

dc
L

� �3

� A1

12a2A2

18a2A2s

A2
1Ef

� �3=5
�A8�

r � 8
df
dc
� A1

3a2A2

18a2A2s

A2
1Ef

� �2=5
�A9�

In terms of the sti�ness and weight variables,

X � A1=2
1

�3a2A2=8�3=2
s

Ef
and Y � A1

3a2A2=8

� �1=2
W

OfBL2
�A10�

the global optimum satis®es

Y � 5

16
�48X�3=5 with r

1

8
�48X�2=5 �A11�

The minimization of f(df , dc, r) with respect to df and dc with r speci®ed leads to
the following parametric results for X and Y

X � 16
���
2
p

r5=2x3=2

1ÿ 4x2
and Y � 2

���
2
p

r3=2x1=2 �3ÿ 2x�
�1ÿ 2x� �A12�
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where

x � A1

�3a2A2r3=4�
df
L

� �2

�A13�

Each value of x generates a minimum weight panel for the prescribed sti�ness and
the prescribed core density. The associated core thickness can be found from

dc
df
� 4

r�1ÿ 2x� �A14�
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