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Abstract

A class of phenomenological strain gradient plasticity theories is formulated to accommodate
more than one material length parameter. The objective is a generalization of the classical J2 3ow
theory of plasticity to account for strain gradient e4ects that emerge in deformation phenomena
at the micron scale. A special case involves a single length parameter and is of similar form
to that proposed by Aifantis and co-workers. Distinct computational advantages are associated
with this class of theories that make them attractive for applications requiring the generation
of numerical solutions. The higher-order nature of the theories is emphasized, involving both
higher-order stresses and additional boundary conditions. Competing members in the class of
theories will be examined in light of experimental data on wire torsion, sheet bending, indentation
and other micron scale plasticity phenomena. The data strongly suggest that at least two distinct
material length parameters must be introduced in any phenomenological gradient plasticity theory,
one parameter characterizing problems for which stretch gradients are dominant and the other
relevant to problems when rotation gradients (or shearing gradients) are controlling. Flow and
deformation theory versions of the theory are highlighted that can accommodate multiple length
parameters. Examination of several basic problems reveals that the new formulations predict
quantitatively similar plastic behavior to the theory proposed earlier by the present authors. The
new formulations improve on the earlier theory in the manner in which elastic and plastic strains
are decomposed and in the representation of behavior in the elastic range. ? 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The range of problems being studied within the framework of strain gradient plas-
ticity theory is expanding steadily: 3ow and creep of polycrystals, two-phase alloys
and reinforced composites (Smyshlyaev and Fleck, 1994, 1996; Gurtin, 2000), shear
bands and other localizations (Aifantis, 1984; Zbib and Aifantis, 1989; de Borst and
Muhlhaus, 1992; Mikkelsen, 1999; Sluys and Estrin, 2000), crack propagation (Wei
and Hutchinson, 1997), microindentation (Begley and Hutchinson, 1998; Shu and Fleck,
1998; Nix and Gao, 1998), grain boundary e4ects in bi-crystals (Shu and Fleck, 1999;
Shu et al., 2001). Most of the studies have employed one of three di4erent types of
phenomenological theories that have been put forward to incorporate the role the gra-
dient of strain plays in increasing the e4ective 3ow strength of metals when plastic
deformation takes place at the micron scale. Each of the three theories can be cast in
a form which reduces to the classical J2 plasticity theory (3ow theory or deformation
theory, depending on the version) in the limit when the length scales of the imposed
deformation gradients are large compared to the material length parameters. Thus, the
intention of all the continuum theories that have been proposed is to extend the validity
of conventional plasticity down to roughly the micron scale where material length scale
e4ects have been well documented. It is envisioned that the scale of the deformation
phenomena is suFciently large compared to dislocation spacing that a continuum de-
scription of plastic 3ow is justiGed. This would appear to be the case for most, if not
all, of the problems cited above.
One type of theory, promulgated by Bassani and co-workers (Acharya and Bassani,

2000; Bassani et al., 2001) retains all the features of conventional J2 3ow theory but
incorporates a dependence on plastic strain gradients into the incremental, or tangen-
tial, moduli. The great advantage of this class of theories is its ease of conversion
into conventional numerical Gnite element codes. The theory has standard boundary
conditions and introduces no higher-order stresses. It has been used to characterize
rate-independent plastic deformation and is readily reformulated to accommodate creep,
or other visco-plastic, behavior (Arsenlis and Parks, 1999; Busso et al., 2000). The
main issue with this class of theories hinges on whether a standard theory is capa-
ble of embracing boundary and interface phenomena that may need to be modeled by
non-standard boundary conditions. While the focus is not on this type of theory here,
there will be examples that illustrate the necessity of additional boundary conditions
in small-scale plasticity.
The second type of theory is that Grst proposed by Aifantis (1984) to ascribe a width

to shear bands in metals, which are typically measured in microns. This theory has extra
boundary conditions and possesses higher-order stress quantities, although the existence
of the latter quantities has not been emphasized. The simplest version of the theory
introduces one material length scale and employs as its measure of strain gradients
the magnitude of the gradient of the amplitude of the plastic strain. This version is
relatively straightforward to implement in a Gnite element code compared to nearly
all other higher-order formulations, an advantage that cannot lightly be dismissed. A
disadvantage is its inability, as formulated, to address a range of problems that appear to
require more than just one material length parameter. The speciGcs of this requirement
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will be spelled out here. A generalization of this class of theories is given with two
(or, possibly, three) material length parameters. The numerical implementation of the
generalized version is not quite as straightforward as the simplest version, but it still
retains signiGcant advantages over most other higher-order formulations.
The third type of theory is the class of higher-order theories proposed and applied by

Fleck and Hutchinson (1997). Although this type of theory will not be featured here,
it is relevant to contrast its advantages and disadvantages with the class of theories
under scrutiny, and this will be done at the end of the paper. It will be seen that the
proposed new multiple parameter formulation gives quantitatively similar predictions in
the plastic range to the corresponding theory of Fleck and Hutchinson. To motivate the
present work, it can be remarked in advance that the class of theories being featured in
this paper has several advantages over the original formulation proposed by Fleck and
Hutchinson. One is the relative ease of numerical implementation, as already noted.
The other relates to the manner in which the plastic strains are treated as variables in
the theory, placing them on a footing similar to the displacements with implications
for both the theoretical framework and numerical implementation.
The essential aspects of interest here can all be examined within the context of small

strain=small rotation plasticity, and this restriction will be adopted. The spirit of the
approach will be to develop a robust extension to J2 theory to include the e4ects of
strain gradients. We will attempt to identify a promising candidate theory with the aid
of the available experimental data and current understanding of small-scale plasticity.
Another objective is the extraction of the essential structure of this class of theories in
a form not emphasized before.

2. Measures of gradients of plastic strain rate

Aifantis and coworkers employ the magnitude of the gradient of the conventional

e4ective plastic strain rate, �̇P=
√
2�̇Pij �̇

P
ij=3, as the measure of the strain gradients. With

�̇P; i �̇P; i ≡ ∇̃�̇P · ∇̃�̇P as the magnitude squared of this gradient, the present formulation
of the Aifantis theory makes use of an e4ective plastic strain rate that includes gradient
contributions and which is deGned by

Ė
2
P = �̇2P + ‘2∗�̇P; i �̇P; i : (1)

This formulation has a single length parameter, ‘∗, which is required for dimensional
consistency and whose role will be examined in detail.
It will be argued below that a one-parameter measure such as (1) does not have

the scope to include the wide range of small-scale plasticity phenomena of interest.
To generalize it, consistent with the objective of producing an extension of isotropic
J2 3ow theory, we seek to identify invariants of the gradients of plastic strain rate,
�̇Pij; k , that are homogeneous of degree two. For this purpose, introduce the plastic strain
gradient as

�ijk = �jik = �̇Pij; k : (2)
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Incompressibility of plastic deformation implies �iik = 0. As in Fleck and Hutchinson
(1997), a unique orthogonal decomposition of the type given by Smyshlyaev and Fleck
(1996) for third-order tensors is the starting point in identifying the invariants. The
detailed steps of the decomposition follow those given by Smyshlyaev and Fleck for
the analogous tensor ijk =jik ≡ uk; ij deGned in terms of the displacement Geld ui(xj);
there, incompressibility dictated ikk = 0. The outcome is

�ijk = �(1)
ijk + �(2)

ijk + �(3)
ijk (3)

with

�(1)
ijk = �S

ijk − 1
5 (�ij�S

kpp + �ik�S
jpp + �jk�S

ipp);

�(2)
ijk =

1
3ekip�

S
pj +

1
3ekjp�

S
pi;

�(3)
ijk =

1
3ekip�

A
pj +

1
3ekjp�

A
pi +

1
5(�ij�S

kpp + �ik�S
jpp + �jk�S

ipp); (4)

where

�S
ijk =

1
3(�ijk + �jki + �kij); �ij = eiqr�jrq;

�Sij =
1
2(�ij + �ji) and �A

ij =
1
2(�ij − �ji): (5)

Here, �ij is the Kronecker delta, eijk is the permutation tensor, �S
ijk is symmetric in all

its indices, and �ii = 0 because �ijk = �jik . Each of the three tensors on the right-hand
side of (3) shares the same symmetry in the Grst two indices as �ijk , and each has
�(m)
iik =0. Moreover, they have been constructed such that they are mutually orthogonal

in the sense that �(m)
ijk �(n)

ijk =0 for m �= n. Since �ijk has only three independent invariants

that are homogeneous of degree two, it follows that �(m)
ijk �(m)

ijk for m=1; 3 can be taken
for that purpose. Useful identities for evaluating these invariants are

�(1)
ijk �

(1)
ijk = �S

ijk�
S
ijk − 4

15�kii�kjj;

�(2)
ijk �

(2)
ijk =

1
3(�ij�ij + �ij�ji);

�(2)
ijk �

(2)
ijk =

3
5(�ij�ij − �ij�ji): (6)

Contact can be made with the three invariants of the strain gradients introduced by
Fleck and Hutchinson (1997) based on ijk = jik ≡ uk; ij = �ki; j + �kj; i − �ij; k . If one
identiGes the strains in this expression with the plastic strain rate components such that

ijk ≡ �̇Pki; j + �̇Pkj; i − �̇Pij; k = �kij + �kji − �ijk ; (7)

then kii vanishes; also, �ij as deGned in (5) can be written as

�ij = 1
2eiqrjqr : (8)

The orthogonal decomposition, ijk = (1)ijk + (2)ijk + (3)ijk , with (m)kii = 0 for m= 1; 3 (cf.
Fleck and Hutchinson, 1997) also provides three independent invariants of the plastic
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strain rate gradients: (m)ijk (m)ijk ; m= 1; 3. The connections with the set in (6) are

(1)ijk 
(1)
ijk = �(1)

ijk �
(1)
ijk ; (2)ijk 

(2)
ijk = 4�(2)

ijk �
(2)
ijk ; (3)ijk 

(3)
ijk = 8

3�
(3)
ijk �

(3)
ijk : (9)

For the multi-parameter theory, we take the measure of generalized e4ective plastic
strain rate, ĖP, to have precisely the same form as the e4ective strain in our earlier
work:

Ė
2
P = �̇2P + ‘21

(1)
ijk 

(1)
ijk + ‘22

(2)
ijk 

(2)
ijk + ‘23

(3)
ijk 

(3)
ijk

= �̇2P + ‘21�
(1)
ijk �

(1)
ijk + 4‘22�

(2)
ijk �

(2)
ijk + (8=3)‘23�

(3)
ijk �

(3)
ijk ; (10)

where again �̇2P = 2�̇Pij �̇
P
ij=3. The generalized e4ective plastic strain is intended as a

phenomenological measure of the total dislocation density—dislocations that are statis-
tically stored plus geometrically necessary dislocations induced by the strain gradients.
The expression in (10) is the most general isotropic measure that is homogeneous of
degree two in the plastic strain rates and their Grst gradients. It is positive deGnite, and
the three length parameters, ‘i, are required for dimensional consistency. As is the case
for ‘∗ in (1), they set the scales at which the gradients become important. If the plastic
strains are compatible, such that a displacement Geld exists with �Pij=(ui; j+uj; i)=2, then
the contributions depending on ‘2 and ‘3 vanish when the rotation rate gradients vanish
(i.e. when �ij=0, cf. (5)). The contribution depending on ‘1 measures stretch rate gra-
dients as well as rotation gradients. While this interpretation is no longer strictly true
for general distributions of plastic strain, it, nevertheless, retains approximate validity
and continues to be useful. Insight into the roles of the three gradient contributions will
emerge from speciGc examples given later in the paper. An argument will be presented
that the variety of plasticity phenomena at small scales dictates the necessity of more
than one length parameter in the gradient description.

3. Generalizations of classical J2 theory

As emphasized, the purpose here is to provide generalizations of the classical phe-
nomenological isotropic plasticity theories, J2 3ow theory and J2 deformation theory.
It is surmised that these can be applied to a wide range of plasticity phenomena at
the micron scale. The generalized theory incorporates a dependence on the gradients
of plastic strain through the measure of the e4ective plastic strain, either (1) or (10),
thereby bringing into play the new material length parameters. The formulations reduce
to the respective conventional J2 theories when either the material length parameters are
set to zero or, equivalently, when the length scale characterizing the deformation Geld
is large compared to the material length parameters. The 3ow theory is given Grst,
followed by the deformation theory. The theory is restricted to small strains and rotations.

3.1. The 9ow theory

Although the statement of the theory given below di4ers in appearance from the
form usually stated for the Aifantis theory, it is entirely equivalent. The elastic and
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plastic parts of the strains are denoted as �eij and �Pij with the total strain, �ij, as their

sum. The conventional e4ective plastic strain rate is �̇P =
√
2�̇Pij �̇

P
ij=3 with �P =

∫
�̇P dt.

The present formulation explicitly recognizes the existence of higher-order stresses in
the theory. Standard notation is used to denote the conventional stresses, �ij=�ji, their
deviatoric stress components, sij, and the conventional e4ective stress, �e =

√
3sijsij=2.

The elastic properties of the material are taken to be isotropic with Young’s modulus,
E, Poisson’s ratio, �, and with the moduli tensor, Cijkl. As in the case of conventional
J2 3ow theory, data in the form of the uniaxial tensile stress–strain curve are an input to
the formulation. SpeciGcally, the tangent hardening quantity, h(�P)= d�=d�P, evaluated
from uniaxial tensile data of stress � versus plastic strain �P will appear prominently.
The formulation under consideration is unusual in the sense that the free variables

employed are ui and �P, this being the feature that makes the formulation attractive for
numerical work. The conventional plastic 3ow condition is assumed such that with the
yield condition satisGed and �̇P¿ 0 (plastic loading),

�̇Pij = �̇Pmij; (11)

where mij =(3=2)sij=�e; otherwise, �̇Pij =0. Other details of the constitutive law will be
given following the statements of the principle of virtual work and equilibrium.
Variations of ui, �P and �P; i appear in the variational principles underlying the formu-

lation, and a higher-order stress vector quantity  i arises naturally as the work conjugate
to �P; i. The internal virtual work increment, IVW, takes the form

IVW =
∫
V
{�ij��eij + Q��P +  i��P; i} dV; (12)

where �ij��eij is the elastic work increment, Q is deGned as the work conjugate to the
plastic strain �P, and  i��P; i is the contribution due to the plastic strain gradients. Upon
noting that �ij��Pij = �e��P from (11), expression (12) is integrated by parts to give

IVW =
∫
V
{−�ij; j�ui + (Q − �e −  i; i)��P} dV +

∫
S
{�ijnj�ui +  ini��P} dS; (13)

where ni is the unit outward normal to S. In the absence of body forces, the volume
integral on the right-hand side of (13) vanishes, and we recover the usual equilibrium
relation

�ij; j = 0 (14)

in V , together with the relation for the generalized e4ective stress,

Q = �e +  i; i : (15)

The yield condition is speciGed by Q = QY where the evolution equation for the
generalized yield stress QY emerges below. On combining (12)–(15), the principle
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of virtual work statement follows as∫
V
{�ij��ij +  i; i��P +  i��P; i} dV =

∫
S
(Ti�ui + t��P) dS; (16)

where the traction quantities Ti and t on the boundary S satisfy the relations

Ti = �ijnj and t =  ini on S: (17)

Note that the stress is symmetric (�ij = �ji) and the conventional relation between
the stress tensor and the surface traction vector is preserved. The contributions in (16)
from Q, t and  i are absent where the yield condition is not satisGed. That higher-order
stresses are intrinsic to the theory is evident from the virtual work statement (16). In
particular, the rate of work across any exterior or internal surface, S, is �ijnju̇ i+  ini�̇P
and not �ijnju̇ i. It does not seem to be widely appreciated that an equilibrium state
of the body in this class of theories cannot be interpreted in terms of conventional
stresses alone.
The principle of virtual work for incremental problems reads∫

V
{�̇ij��̇eij + Q̇��̇P +  ̇i��̇P; i} dV =

∫
V
{�̇ij��̇ij +  ̇i; i��̇P +  ̇i��̇P; i} dV

=
∫
S
(Ṫ i�u̇ i + ṫ��̇P) dS: (18)

The equations for equilibrium and surface tractions are the rate forms of (14) and (17),
respectively.
While the e4ective strain rate in (1) is already in a form explicitly displaying �̇P and

�̇P; i, it must be rendered in such a form for the generalized rate in (10). From (11),

�ijk = �̇Pij; k = �̇P; kmij + �̇Pmij;k (19)

and after performing the orthogonal decomposition of �ijk , expression (10) for the
e4ective strain rate can be recast as

Ė
2
P = �̇2P + Aij�̇P; i �̇P; j + Bi�̇P; i �̇P + C�̇2P: (20)

In general, the explicit expressions for Aij(=Aji); Bi and C depend on the three material
length parameters, as well as on position when mij depends on position. General
expressions for these coeFcients are given in the Appendix, and illustrations will
be given later for speciGc problems. Note that (1) is formally included in (20) if
Aij = ‘2∗�ij; Bi = 0 and C = 0, even though (1) is not a special case of (10).
The incremental boundary value problem can be stated as a minimum principle �I=0,

with

I(u̇ i; �̇P) =
1
2

∫
V
{Cijkl(�̇ij − �̇Pmij)(�̇kl − �̇Pmkl) + h(EP)Ė

2
P} dV

−
∫
ST
(Ṫ

0
i u̇ i + ṫ0�̇P) dS: (21)

Here, Ṫ
0
i and ṫ0 are prescribed traction rates on ST , and EP=

∫
ĖP dt is the accumulated

e4ective plastic strain. A proof of this minimum principle, together with a discussion
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of the uniqueness are summarised in the Appendix. The Grst term in the volume inte-
gral is the incremental elastic work rate density while the second represents the plastic
work rate density. Apart from the explicit choice of h(EP) in (21) and the inclusion of
the higher-order traction rate, ṫ0, on the boundary, principle (21) is precisely that intro-
duced by Muhlhaus and Aifantis (1991) in their presentation of a variational principle
governing the one-parameter theory based on (1). Subsequently, de Borst and Muhlhaus
(1992) laid out a numerical Gnite element scheme for the one-parameter theory based
on (21). When the material length parameters are zero, this principle and the associated
equations reduce to the classical J2 3ow theory, although unconventionally due to the
special role of �P.
As indicated, we propose to evaluate the uniaxial hardening function h = d�=d�P

in (21) at the generalized e4ective plastic strain, EP, rather than at �P. This is the
one aspect where the present formulation di4ers from versions of the one-parameter
Aifantis theory that have been used by other investigators. Some formulations take
h(�P) in (21), and others separate h�̇2P from the gradient term in a di4erent manner
such that the coeFcient of the gradient term is independent of position. While the
speciGc choice is important for its quantitative e4ect on predictions, it is not critical
to the structure of the formulation. One argument for the choice in (21) rests on the
idea that it is the total dislocation density that primarily in3uences hardness evolution,
and EP is intended to measure this density. A more compelling reason for this choice
will emerge shortly when the deformation theory version of the theory is presented.
The Geld equations in the loading regions produced from the variational equation

�I = 0 are the rate form of the equilibrium equations (14) and associated boundary
conditions (17). In addition, by identifying Q̇ ≡ �̇e +  ̇i; i and  ̇i in (18) with the
requisite terms in the resulting Geld equations, one obtains the remaining constitutive
equations governing plastic loading (Q̇ = Q̇Y ) as

Q̇Y = h(EP)(�̇P + 1
2Bi�̇P; i + C�̇P); (22)

 ̇i = h(EP)(Aij�̇P; j + 1
2Bi�̇P): (23)

For the one-parameter theory based on (1), the variational principle (21) gives

Q̇Y = h(EP)�̇P; (24)

 ̇i = ‘2∗h(EP)�̇P; i (25)

and the e4ective stress rate follows from (15), (24) and (25) as

�̇e = Q̇ −  ̇i; i = h�̇P − ‘2∗(h�̇P; i); i : (26)

If there is no spatial variation of ‘2∗h in the second term (as is the case in some
alternative formulations), this equation becomes

�̇e = Q̇ −  ̇i; i = h�̇P − ‘2∗h∇2�̇P: (27)
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In Aifantis’s (1984) original formulation, a “hardening” equation of this general form
involving the Laplacian of the e4ective plastic strain rate was proposed as the starting
point of the new theory. The presence of the higher-order stress quantities in the theory
makes it diFcult to interpret this equation in a conventional manner, and this may be
the source of some of the confusion which has surrounded it. 1 In particular, the current
value of �e is not a meaningful measure of the current state of hardness. An alternative
is mentioned in the next subsection.
The speciGcation of the generalized J2 3ow theory is complete. Illustrations of the

theory and discussions of particular choices of boundary conditions will be given in
connection with solutions for the basic problems presented in the next section.

3.2. The deformation theory

We end this section with the presentation of a total (versus incremental) formulation
that coincides exactly with the 3ow theory stated above when proportional stressing
occurs throughout the body. Although proportional stressing is seldom satisGed pre-
cisely, it will be demonstrated that the generalized deformation theory can nevertheless
provide very accurate approximations to 3ow theory solutions. The formulation has
an unusual form for a deformation theory in that it employs the total conventional
e4ective “plastic” strain, �P, as a variable. However, as in the case of the 3ow theory,
the generalized deformation theory reduces to classical J2 deformation theory when the
material length parameters are set to zero. The applicability and utility of deformation
theory is well appreciated (Budiansky, 1959). Not only does it permit the closed-form
solution to certain basic problems, it also enables theoretical developments that would
not otherwise exist, e.g. the J -integral in crack mechanics. For numerical work, a de-
formation theory has the notable advantage that solutions at arbitrary loads can be
obtained directly by iteration without recourse to solving a sequence of incremental
problems at smaller loads.
To deGne the deformation theory, let �Pij=�Pmij(�P¿ 0), where, again, mij=(3=2)sij=�e.

Next, form the generalized total e4ective strain using the deGnition in (10), but now
in terms of the total “plastic” strains and their gradients, �ijk ≡ �Pij; k = �P; kmij + �Pmij;k ,
with the result

E2
P = �2P + Aij�P; i�P; j + Bi�P; i�P + C�2P: (28)

The factors Aij; Bi and C are identical to those in the 3ow theory expression (20)
when the distribution of mij is the same (see the Appendix). DeGne a potential energy

1 It has been suggested that a “hardening” contribution proportional to
√

�̇P; i �̇P; i can be included in (27)
in place of the term containing ∇2 �̇P. We believe that proposal is not physically sound. A term of this type
could not arise from a variational principle such as (21). More fundamentally, a contribution of this form
replacing ∇2 �̇P would turn (27) into a Grst-order partial di4erential equation which is inherently inconsistent
with boundary condition requirements for solid bodies: the Geld equations would state an initial value problem
with one-sided boundary conditions, rather than a boundary value problem. This can be appreciated by noting
that one-dimensional problems require boundary conditions to be applied at both ends of the interval.
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functional as

)(ui; �P) =
∫
v

{
1
2
Cijkl(�ij − �Pmij)(�kl − �Pmkl) +

∫ EP

0
�(�̃P) d�̃P

}
dV

−
∫
ST
(T 0

i ui + t0�P) dS: (29)

Then, the actual solution minimises )(ui; �P) provided Cijkl is positive deGnite and h is
positive. As before, �(�P) denotes data from the uniaxial tensile stress–strain curve of
the material. The Grst contribution to the volume integral is the elastic energy density
while the second is the plastic work density. In classical deformation theory the plastic
work density is

∫ �P
0 �(�̃P) d�̃P. Here, the plastic work density is evaluated at EP rather

than �P.
The Geld equations, (14) and (15), and boundary conditions (17) associated with

�) = 0 for all admissible �ui and ��P are obtained in a straightforward manner. In
addition, one obtains the constitutive relations,

Q =
�(EP)
EP

(�P + 1
2Bi�P; i + C�P); (30)

 i =
�(EP)
EP

(Aij�P; j + 1
2Bi�P): (31)

Consider boundary valued problems speciGed by a single load parameter + which
is increased monotonically. Using an approach similar to that used for the classical
theories, one can show that the solution to the boundary value problem for the de-
formation theory coincides with the solution for the corresponding 3ow theory when
the deformation theory solution obeys proportional stressing. The details of this proof
are omitted. Proportional stressing in the present context requires of the deformation
theory solution that the stress components (both �ij and  i) increase monotonically at
each point in Gxed proportion. One special class of problems satisfying proportional
stressing are solids modeled by a pure power uniaxial stress–strain curve, i.e. which
neglect elasticity and have �˙ �NP . Pure power law materials are often used to model
behavior when plastic strains are large compared to elastic strains. Solutions to pure
power law problems can be obtained with the present formulation as the limit com-
puted for increasingly large Young’s modulus. The shear problem discussed Grst in
the next section exhibits proportional stressing even though it includes both elastic and
plastic strains. For all but a very few special problems, however, the presence of elas-
ticity prevents the precise satisfaction of proportional stressing. Nevertheless, solution
of the wire torsion and void growth problems in the next section using both 3ow and
deformation theory indicates that the deformation theory provides a highly accurate
approximation to the 3ow theory solution even when the conditions for proportional
stressing are not met precisely.
The presence of h(EP) in the variational functional (21) for the 3ow theory is directly

linked to the choice of the generalized plastic work density,
∫ EP

0 �(�̃P) d�̃P, in (29).
If any other choice for h had been made, the coincidence of solutions for the two
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types of theories under proportional loading would not occur. Recall that h(EP) is
d�(�P)=d�P evaluated at EP. The incremental functional (21) arises out of a second-order
expansion of (29) about the current state. The generalized plastic strain EP has been
introduced as a phenomenological measure of dislocation density resulting from plastic
strains (statistically stored dislocations) and their gradients (geometrically necessary
dislocations). The generalized plastic work density provides perhaps the clearest and
most elementary insight to the role played by EP in the present theories. Simply stated,
the theory postulates that the plastic work expended in bringing a material element
subject to both plastic strains and plastic strain gradients to a generalized plastic strain
EP is the same as occurs in deforming that element to the plastic strain EP in uniaxial
tension. By the same token, the plastic 3ow resistance at the current state is re3ected
by �(EP). In e4ect, the formulation assumes that geometrically necessary dislocations
and statistically stored dislocations increase the 3ow resistance in the same way.
It is also worth emphasizing that the present formulations tie hardening to the gra-

dients of plastic strain �P; i and not to ∇2�P, consistent with basic notions of the role
of geometrically necessary dislocations. Instead, ∇2�P emerges in the resulting Geld
equations as a byproduct of the more fundamental role of the plastic strain gradients.
As mentioned already, the interpretation of hardening from an equation such as (27)
is obscured by the presence of higher-order stresses that alter the conventional role
of �e.

4. Solutions to problems and their implications

Three problems are solved and interpreted in this section: (1) shearing of a layer
sandwiched between two substrates, (2) wire torsion, and (3) expansion of a spherical
void. This spectrum of problems permits one to draw conclusions about the material
length parameters introduced in Section 2. In each study, a Ramberg–Osgood curve is
taken to characterize the uniaxial tensile stress–strain curve of the solid. SpeciGcally,

�=�0 = �=�0 + (�=�0)n (32)

where �0=�0=E and E is Young’s modulus. For this choice, h(EP)=NE(EP=�0)N−1 with
N = 1=n. Flow theory has been employed to generate the solutions in all three cases,
however the wire torsion and void growth problems were also solved using deformation
theory. As already noted, the respective 3ow and deformation theory solutions coincide
for the shear problem.

4.1. Shearing of a layer sandwiched between two substrates

Consider an inGnite elastic plastic layer, −∞¡x1 ¡∞, of height 2L; −L¡x2 ¡L,
where each face is bonded to a rigid substrate. The substrates are displaced such that top
and bottom of the layer undergo relative shearing displacements, u1 =U and u1 =−U
at x2=±L, respectively. The only non-zero displacement is u1(x2), which is assumed to
be independent of x1. The one non-zero strain quantity is the shearing strain 0(x2)=u′1
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with ()′ ≡ d()=dx2. With 0P(x2) denoting the plastic shear strain, the e4ective plastic
strain rate deGned in (10) is found to be

Ė
2
P =

1
3 0̇

2
P +

1
3 (

4
15‘

2
1 +

1
3‘

2
2 +

2
5‘

2
3)0̇

′2
P : (33)

The corresponding expression for the single length scale version of theory (1) is

Ė
2
P =

1
3 0̇

2
P +

1
3‘

2
∗0̇

′2
P : (34)

Variational functional (21) for both formulations reduces to

I(u̇ i; 0̇P) =
1
2

∫ L

−L

{
G(0̇− 0̇P)

2 +
h(EP)
3

(0̇2P + ‘20̇′2P )
}

dx2 (35)

with G as the elastic shear modulus, 0̇= u̇′1, and where ‘ depends on the formulation
according to

‘ ≡
√

4
5‘

2
1 + ‘22 +

6
5‘

2
3 for (10) and ‘ ≡ ‘∗ for (1): (36)

Boundary conditions on the displacement rate at the top and bottom of the layer
require u̇ 1 =±U̇ , respectively. If these were the only conditions imposed at the bound-
aries with the substrates, the solution would be a uniform shearing of the layer with
no gradients. This can be seen immediately by noting that the solution to this problem
based on the classical J2 theory has no strain gradients. It obviously satisGes all the
Geld equations. (Uniqueness of solution can be proved directly from either (21) or
(35), see Appendix A.) Strain gradients come into play in the shear problem only if
the boundaries are assumed to constrain the plastic 3ow. If the substrates are rigid, or
elastic but sti4, dislocations in the layer will be blocked as they approach the bound-
aries and arrest at a stando4 distance; Shu et al. (2001) have recently simulated such
behavior in a discrete dislocation calculation of constrained plastic 3ow within a crys-
talline layer. A continuum model of this situation must require the plastic strain to
vanish at such a boundary, i.e. 0P=0 at x2=±L. By contrast, dislocations approaching
a free surface are free to pass out leaving steps and producing unconstrained plastic
strain at the surface.
The Geld equation generated by the requirement that �I = 0 for all admissible �u̇ 1

gives G(0̇− 0̇P) = Ṡ where Ṡ is the shear force per unit area acting at the boundaries
(0̇P = 0 at the boundaries implies that only �12 does work at the boundaries). Next,
variations with respect to admissible �0̇P give

−‘2(h(EP)0̇′P)
′ + h(EP)0̇P = 3Ṡ with 0̇P = 0 at x2 =±L: (37)

The solution for an incremental step of shear can be obtained by a numerical anal-
ysis of the ordinary di4erential equation, or it can be obtained by a Gnite element
discretization of the functional in (35) and subsequent minimization with respect to
the nodal amplitudes. The results presented in Figs. 1 and 2 have been obtained by
the second method using linear elements for u̇ 1 and 0̇P. Although this problem is one
dimensional, this simple approach generalizes to two and three dimensions since linear
elements preserve continuity of displacements and plastic strains, yielding total strains
and plastic strain gradients that are uniform within each element. The plastic shear
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Fig. 1. Distribution of plastic shear strain across the upper half of the sheared layer at U=(�0L) = 10 for
various values of ‘=L where ‘ is deGned for each of the formulations in (36). The tensile stress–stress strain
curve of the material is given by (32) with N =0:2 and v=0:3. The calculation employs 50 elements across
the half-width of the layer and reaches U=(�0L) = 10 in 100 incremental steps.

Fig. 2. E4ect of the material length parameter ‘ on the overall relation between the shear traction and the
shearing displacement for the elastic–plastic layer (N = 0:2 and v = 0:3).

strain distribution in Fig. 1 displays a boundary layer which occupies a diminishing
fraction of the layer thickness decreases as ‘=L decreases. When ‘=L is increased from
zero to unity, the overall shear traction S is elevated by more than a factor of two, see
Fig. 2. Noticeable departures from the classical limit are seen for the material length
scale as small as ‘=L= 0:1. By (36), results of both the multiple and single-parameter
models are covered by the plots in Figs. 1 and 2 if ‘ is identiGed with the appropriate
length parameters. The fact that the deformation theory and 3ow theory predictions
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coincide for this problem follows directly from the homogeneity of the left-hand side
of the ordinary di4erential equation (37).

4.2. Wire torsion

A solid cylindrical wire of radius R is considered. A standard cylindrical coordinate
system (r; 3; z) is employed. When the material is isotropic and the wire is twisted
monotonically, the total shear strain is a known function of position according to 0=5r
where 5 is the twist per unit length. The single nonzero conventional stress component
is �3L , and the plastic component of the shear strain is an unknown function of r; 0P(r).
By (11), the plastic strain rate is in the direction of the shear stress such that

U̇P = 1
2 0̇P(̃e3ẽz + ẽ z ẽ3): (38)

The amplitude and the direction of the plastic strain rate are both functions of position.
The nonzero components of the gradients of plastic strain rate deGned in (2) are

�3zr = �z3r = 1
2 0̇

′
P; �rz3 = �zr3 =− 1

2 r
−10̇P: (39)

The conventional e4ective plastic strain rate is given by �̇2P = 0̇2P=3 and the generalized
e4ective plastic strain rate as deGned in (10) is found to be

Ė
2
P =

1
3 0̇

2
P +

1
6‘

2
1(0̇

′
P − r−10̇P)

2 + 4
3‘

2
2(0̇

′2
P + r−10̇′P0̇P + r−20̇2P): (40)

The parameter ‘3 does not enter the problem.
For the Aifantis-type formulation, �̇P; i �̇P; i = 0̇

′2
P =3 and the e4ective rate in (1) is

Ė
2
P =

1
3 0̇

2
P +

1
3‘

2
∗0̇

′2
P : (41)

This measure depends only on the gradient of the plastic strain rate amplitude. Wire
torsion illustrates the point made earlier that �̇P; i �̇P; i does not provide a positive-deGnite
measure of the full gradient of the plastic strain rate when the direction of the plastic
strain rates is a function of position. For example, if at any point 0̇′P vanishes, then
the e4ective rate in (41) has no gradient contribution whereas (40) does. This will be
seen to have direct bearing on the wire torsion problem.
The functional (21) governing the problem for the distribution of the plastic strain

rate for each of the two formulations is

I(0̇P) =
1
2

∫ R

0
{G(5̇r − 0̇P)

2 + h(EP)Ė
2
P}26r dr: (42)

If it is assumed that there is no constraint of the plastic 3ow at the surface of the wire, 2

then the natural boundary condition associated with the variational principle is  ̇ini=0.
For the one parameter version, this requires 0̇′P = 0 at r = R, while the condition from
(23) for the multiple parameter involves both 0̇P and its derivative. Solutions to these
problems have also been generated by a one-dimensional Gnite element analysis. In

2 If the surface of the wire were covered by a very thin elastic coating that blocked dislocations, analogous
to passivation layers laid down on thin Glms, a more appropriate boundary condition would be 0̇P=0. A larger
torque would then be required to attain a given twist. This example illustrates the scope of a higher-order
theory to address nonstandard boundary and interface conditions.
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Fig. 3. Torque versus twist based on the general formulation for a solid cylindrical wire of radius R with
N = 0:2 and v = 0:3. The length parameter ‘2 is the most important in determining the size e4ect in wire
torsion; ‘1 has very little in3uence, and ‘3 does not enter the problem. The calculation employs 100 elements
from the center of the wire to its free surface and it reaches 5R=�0 = 50 in 500 incremental steps. (Elastic
compressibility of the wire does not play a role in the solution, however the value of Poisson’s ratio enters
into the normalization used when evaluating G=E.)

this case, only representations for 0̇P and its Grst derivative are required. Results in the
form of torque as a function of twist are given in Fig. 3 for the theory based on (10). It
is seen immediately that the Grst material length parameter, ‘1, is unimportant in wire
torsion: varying ‘1 from a factor of 10‘2 to ‘2=10 has little e4ect upon the solution.
The corresponding plots for the version of the theory based on (1) are given in Fig. 4.
The responses based on the general formulation display an immediate increase in the
torque due to gradient e4ects as soon as the wire begins to deform plastically, while
torque increases predicted from the single length parameter formulation using (41)
develop much more gradually. The absence of a gradient e4ect for the single-parameter
case in the early stages of plastic 3ow lies in the fact that enforcement of the natural
boundary condition 0̇′P = 0 at r = R causes the gradient solution to co-incide with the
classical solution in the early stages of yield. Thus, the measure based on (41), which
only involves 0̇′P, requires the plastic deformation to extend well into the interior of
the wire before gradient e4ects become signiGcant. In this connection, it should be
mentioned that the predictions for wire torsion based on the one-parameter version
given by Aifantis (1999) have some inaccuracy because the natural boundary condition
(0̇′P = 0 at r = R) has not been enforced.
Insight into why ‘2 is the controlling parameter in wire torsion can be acquired

by considering the classical solution in the absence of gradient e4ects. The classical
solution in the limit in which the elastic strains are small compared to the plastic strains
has 0̇P = 5̇r. For this distribution, the gradient contribution to Ė

2
P in (40) is 4‘225̇

2.
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Fig. 4. Torque versus twist based on the one-parameter formulation for a solid wire of radius R with N =0:2
and v = 0:3. The calculation details are similar to those stated in Fig. 3.

The “stretching” contribution involving ‘1 vanishes. This limiting deformation can be
regarded as one involving only rotation gradients. When strain gradient e4ects are fully
taken into account, the interpretation is not as simple, but evidently the contribution
tied to �ij continues to dominate behavior.
It is also interesting to note that the one-parameter version (41) has (1=3)‘2∗5̇

2 as its
contribution to Ė

2
P for the classical limit noted above. Roughly similar gradient e4ects

from the two versions would be expected when ‘∗ = 2
√
3‘2, and this is seen to be

the case when the two sets of results in Figs. 3 and 4 are compared. The factor 2
√
3

simply re3ects the particular manner in which the invariants multiplying the respective
length parameters have been normalized. Nevertheless, the “correspondence” factors
are strongly problem dependent. For example, for the shear problem in the previous
subsection, the two formulations are identical when ‘∗ = ‘2 if ‘1 = ‘3 = 0. If each
of the two formulations were to be calibrated by the shear problem such that ‘∗ = ‘2
(with ‘1 = ‘3 = 0), then at least one of the versions must clearly be signiGcantly in
error in predicting wire torsion. This strong problem dependence of the size e4ect is
the essence underlying the necessity of the multiple parameter formulation, as will be
further reinforced by a study of void growth.
Solutions to the wire torsion problem were also generated based on the deformation

theory functional (29) for precisely the same input parameters and the same Ramberg–
Osgood stress–strain curve. A similar Gnite element formulation was used with Newton
iteration to provide convergence at arbitrary twist. The solutions obtained are almost
identical to those plotted in Fig. 4: the two sets of predictions are essentially indis-
tinguishable from one another when the respective plots are compared, and therefore
the deformation theory results have not been displayed. Given the pure power nature
of the stress–strain curve when the plastic strains dominate the elastic strains, it is not
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surprising that the agreement should be good at suFciently large twist. Proportional
stressing is satisGed asymptotically for large twist. The fact that the agreement is excel-
lent over the entire range of twist is undoubtedly due to the fact that the deformation
theory solution interpolates between two limits (e.g. small and large twist) for which
it exactly reproduces the 3ow theory solution.

4.3. Size e;ects in void growth

Stretch gradients play a dominant role in void growth and indentation. Here the
simplest void growth problem is considered which captures the essence of the strain
gradient phenomenon. The growth of an isolated spherical void is analyzed; it has an
initial radius R and resides in an inGnite solid subject to a remote spherically symmetric
tension �∞. A small strain formulation is invoked and the material is taken to be elas-
tically incompressible and characterized by the Ramberg–Osgood tensile stress–strain
curve (32). The solution is spherically symmetric and a standard spherical coordinate
system is used with r as the distance from the origin at the center of the void. Elastic
(and plastic) incompressibility implies that the displacement rate is speciGed according
to u̇ r = Ȧr−2, where Ȧ is an amplitude factor related to the volume expansion rate of
the void by V̇ =46Ȧ. The total strain rates are given by �̇rr=−2�̇33=−2�̇77=−2Ȧr−3.
The nonzero plastic strain rate components are given by �̇Prr = −2�̇P33 = −2�̇P77 = −�̇P
where �̇P(r) is the unknown distribution of the plastic strain rate.

As in the case of wire torsion, the plastic strain rate has both spatially varying
amplitude and direction. The nonzero components of the gradient of plastic strain rate
are

�rrr =−�̇′P; �33r = �77r = �̇′P=2; �r33 = �3r3 = �r77 = �7r7 =−3�̇P=2; (43)

The gradient-dependent e4ective plastic strain rate in (10) is found to be

Ė
2
P = �̇2P +

9
10‘

2
1(�̇

′
P − 2r−1�̇P)2 + 8

5‘
2
3(�̇

′
P + 3r−1�̇P)2 (44)

with no dependence on ‘2. In contrast, the measure for the one-parameter theory (1)
is

Ė
2
P = �̇2P + ‘2∗�̇

′2
P : (45)

Functional (21) governing the variational statement of the incremental problem becomes

I(�̇P) =
1
2

∫ ∞

R
{E(−2Ȧr−3 + �̇P)2 + h(EP)Ė

2
P}46r2 dr: (46)

Plastic 3ow is assumed to be unconstrained at the surface of the void with the conse-
quence that the natural boundary condition there is  ̇ini =0. The most convenient way
to determine the relation between the remote stress rate, �̇∞, and Ȧ in a numerical
computation of the type conducted here is to make use of the identity, 26�̇∞Ȧ= I(�̇P),
where I is evaluated after the solution, �̇P, has been obtained.
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Fig. 5. Remote stress as a function of normalized volume expansion based on the general formulation for a
spherical void subject to hydrostatic tension, �∞, at inGnity with N = 0:2 and elastic incompressibility. The
initial void radius is R. The length parameter ‘1 is the most important in determining the strain gradient
e4ect in void growth; ‘3 has very little in3uence, and ‘2 does not enter the problem. The calculation maps
the region exterior to the void onto (0; 1) and employs 100 elements in the mapped region. The calculation
attains (TV=�0)=V0 = 50 in 500 incremental steps.

Numerical solutions for each of the formulations were generated in a manner similar
to that used for wire torsion, except that in this case the region exterior to the void
is mapped onto (0; 1) prior to discretization. With TV as the volume expansion of
the void and V0 as its initial volume, the normalized volume expansion is taken as
(TV=�0)=V0. Curves of remote stress versus volume expansion for the general formu-
lation based on (44) are given in Fig. 5. It is seen that the length parameter ‘1 is
far more important that ‘3 in setting the in3uence of strain gradients on void growth.
Indeed, changing ‘3 by a factor of 10, either larger or smaller than ‘1, has relatively
little consequence. Qualitatively, one can see why this might be from the fact that
the spherically symmetric expansion involves only stretch gradients and no rotation
gradients. Where plastic strains are large compared to elastic strains incompressibility
dictates �̇P ∼= 2Ȧr−3, such that the contribution to ĖP in (44) from ‘3 vanishes and,
more fundamentally, �ij = 0. The corresponding void growth behavior as predicted by
the one-parameter formulation based on (45) is shown in Fig. 6. The parameter ‘∗ has
roughly the same in3uence as ‘1 in the multiple parameter formulation, apart from a
factor of about 2.
Numerical solutions for the deformation theory formulation based on (28) and (29)

were also produced for the void growth problem. The results are in close agreement
with the corresponding 3ow theory predictions in Fig. 5. The maximum discrepancy
is larger than in the case of wire torsion, but the discrepancy in remote stress is still
less than 10% at any given void expansion.
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Fig. 6. Remote stress as a function of normalized volume expansion based on the one-parameter formulation
for a spherical void subject to hydrostatic tension, �∞, at inGnity with N =0:2 and elastic incompressibility.

5. Implications from experimental observations

According to the general formulation, size e4ects in wire torsion are controlled by
‘2, while ‘1 is the important length parameter in void growth. Indentation is similar
to void growth in that stretch gradients are dominant with ‘1 playing the primary role
in setting size e4ects in hardness testing. When ‘2 is chosen to give a best Gt to data
on the torsion of Gne copper wires, Fleck et al. (1994) obtained ‘2 ∼= 2 �m. 3 Begley
and Hutchinson (1998) analyzed the size dependence of indentation data for di4erent
metals of varying hardness to infer that ‘1 usually fell within the range between 0.2
and 0:5 �m. Both e4orts were based on the theory of Fleck and Hutchinson (1997),
but this theory gives quantitatively similar predictions for the plastic responses as the
present multiple parameter formulation, as will be discussed in the next section. The
di4erence between these two length parameters is highly signiGcant from a quantitative
standpoint. For example, if one took ‘1 to be 2 �m, one would over-predict the size
e4ect in indentation by almost an order of magnitude for most metals. Moreover, if
‘1 were as large as 2 �m, one would conclude that voids with diameters as small as
about 10 �m should already display a strong size e4ect (cf. Fig. 5). While there is
no Grm experimental data for the void diameter at which size e4ects should set in,
there is ample anecdotal evidence that the transitional diameter must be substantially
smaller than 10 �m. Voids involved in the ductile fracture of many metals are typi-
cally observed to be from a micron to several microns in diameter prior to their Gnal
enlargement. Appropriately or not, void growth in ductile fracture is routinely modeled

3 Fleck et al. (1994) employed another normalization with a single length parameter, ‘CS=2‘2 (see ahead
to Eq. (47)). They obtained ‘CS ∼= 4 �m in their Gt to the wire torsion data.
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and analyzed using conventional plasticity theory. If, however, ‘1 is in the range from
0.2 to 0:5 �m as inferred from the indentation data, then from Fig. 5 it follows that
the transitional void diameter at which size e4ects become important would be on the
order of 1 �m. Experimental observations of the substantial resistance to void growth
predicted for voids smaller than this transitional size should be possible, but to our
knowledge none have been reported.
The distinct di4erence between the size e4ects in wire torsion, indentation and void

growth is problematic for a one-parameter formulation. For example, if one uses the
theoretical predictions in Fig. 4 to Gt the wire torsion data of Fleck et al. (1994),
one Gnds that ‘∗ must be at least as large as 12 �m. Then, if ‘∗ = 12 �m is used
in conjunction with Fig. 6 to predict void growth, one would conclude that voids
with diameters less than 25 �m should display a large size e4ect. Presumably, the
conclusion drawn for indentation would be equally erroneous if theoretical predictions
were available to make a comparison.
The argument outlined above for the necessity of more than one length parameter

in any phenomenological theory generalizing J2 3ow theory to include strain gradients
appears to be compelling. It seems highly unlikely that the various phenomena reviewed
could be subsumed under a theory that invokes only one length parameter. In an attempt
to reduce the number of necessary length parameters from three to two, Begley and
Hutchinson (1998) proposed to neglect the contributions of the invariant quantity, �ij�ji,
in (6) and (10). This invariant appears to play a relatively limited role in most of the
problems that have been investigated to date. With

‘2 =
1
2
‘CS; ‘3 =

√
5
24

‘CS; (47)

the e4ective plastic strain rate (10) becomes

Ė
2
P = �̇2P + ‘21

(1)
ijk 

(1)
ijk + 2

3‘
2
CS�ij�ij (48)

Here, ‘CS is the length parameter originally introduced by Fleck et al. (1994) in a
special couple stress formulation (with ‘1=0) tied exclusively to gradients of rotations.
If this reduction in the set of length parameters survives upon exposure to further
experimental data, it follows that the length parameters for representative metals are

‘1 = 0:2− 0:5 �m; ‘2 ∼= 2 �m; (‘3 =
√
5=6‘2; ‘CS = 2‘2) (49)

The pure bending tests of thin nickel sheets of Stolken and Evans (1998) provide
further experimental support for (49). In pure bending, the conventional e4ective plastic
strain rate, �̇P, varies through the thickness of the sheet. Its distribution completely
speciGes the plastic deformation. The e4ective plastic strain rate (10) is

Ė
2
P = �̇2P + ‘2�̇′2P (50)

with

‘2 ≡ 4
5‘

2
1 + ‘22 +

6
5‘

2
3 (51)

Stolken and Evans used the Fleck–Hutchinson deformation theory (see the next sec-
tion) to analyze pure bending and found that the length parameters speciGed in (49)
gave a reasonable Gt to their data for nickel sheets. Bending is like torsion in that the



N.A. Fleck, J.W. Hutchinson / J. Mech. Phys. Solids 49 (2001) 2245–2271 2265

contribution from ‘1 is relatively unimportant given the values in (49). In principle,
it should be possible to separate the roles of ‘2 and ‘3 using data from bending and
torsion, because torsion depends only on ‘2, but that is not yet possible using existing
data. It is interesting to note that the combination of the length parameters that governs
bending is the same as that in pure shear (compare (51) and (36)).

6. Relation of the present theory to previous higher order theories

Deformation theory and 3ow theory extensions of J2 theory to account for strain
gradient e4ects were proposed earlier by Fleck and Hutchinson (1997). These formu-
lations make use of a strain gradient decomposition with multiple length parameters
similar to that employed in the generalization proposed here. The deformation theory
version has the virtue that it is relatively simple to apply, and for basic problems like
those considered here it is amenable to closed-form solution. Two such examples will
be used to illustrate that the strain gradient e4ects predicted by the earlier theory of
Fleck and Hutchinson are quantitatively similar to those of the present class of theories.
In the deformation theory version for an incompressible solid (Fleck and Hutchinson,

1997), the gradients of the total strains are presented by the third-order tensor ijk =
jik ≡ uk; ij = �ki; j + �kj; i − �ij; k . Then, the orthogonal decomposition cited in Section 2
is used to form an isotropic overall e4ective strain measure according to

E2
e = �2e + ‘21

(1)
ijk 

(1)
ijk + ‘22

(2)
ijk 

(2)
ijk + ‘23

(3)
ijk 

(3)
ijk ; (52)

where �e =
√
2�ij�ij=3 is the e4ective total strain and the ‘’s are introduced analo-

gously to those in (10). The material is a small strain, nonlinear elastic solid which
falls within the class of higher-order theories investigated by Toupin (1962) and
Mindlin (1964). Let W (�e) =

∫ �e
0 �(�̃) d�̃ be the strain energy density of the solid in

the gradient-independent limit (i.e. the incompressible J2 deformation theory solid with
vanishing ‘’s), with �(�) now as the tensile data for stress as a function of total
uniaxial strain. The energy density of the generalized deformation theory is taken to
be W (Ee). The gradient-dependent version of the 3ow theory proposed by Fleck and
Hutchinson has been constructed such that it coincides with the deformation theory for
proportional stressing.
In wire torsion, the one nonzero strain component is 03 = 5r and the e4ective strain

(52) is E2
e =52r2=3+452‘22, involving only the one length parameter. The energy density

W (Ee) is evaluated using the Ramberg–Osgood tensile curve (32). The relation between
the normalized torque and twist from the deformation theory can be obtained in closed
form as

T
G�0R3 =

26E
G

∫ 1

0
8(x2=3 + 4(‘2=R)2)1=2x dx; (53)

where 8 satisGes 8+8n=(5R=�0)(x2=3+4(‘2=R)2)1=2. Predictions from (53) are plotted
in Fig. 7. They can compared directly with the predictions from the new formulation
in Fig. 3. The simple deformation theory correctly extracts the dominant role of ‘2.
Moreover, apart from the di4erences in behavior at low twist, the two sets of predictions
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Fig. 7. Torque versus twist based on the deformation theory of Fleck and Hutchinson (1997) for a solid wire
of radius R with N = 0:2 and v = 0:3. These results can be compared with the results computed using the
new formulation in Fig. 3. (Elastic compressibility of the wire does not play a role in the solution, however
the value of Poisson’s ratio enters into the normalization used when evaluating G=E.)

are quantitatively similar. The previous Fleck–Hutchinson (1997) deformation theory
formulation incorrectly introduces a dependence on strain gradients in the linear elastic
range, producing the unphysical dependence of the initial slope of the torque-twist
relation on ‘2. Thus, this discrepancy between the two theories is due to the limitations
of the earlier Fleck–Hutchinson deformation theory and not the new formulation. As
the plastic strains become large compared to the elastic strains, the solutions to earlier
deformation theory become asymptotic to solutions to the new deformation theory. The
void growth problem can also be solved in closed form using the earlier deformation
theory. It similarly captures all the important details of the behavior in Fig. 5, apart from
the behavior in the elastic range. In the limit of a material with elasticity suppressed,
solutions from the two deformation theories can be shown to coincide for a fairly wide
class of boundary conditions, although not all. This connection underlies the relatively
close agreement expected for a wide spectrum of problems.

7. Summary

A class of phenomenological strain gradient plasticity theories is formulated to ac-
commodate up to three material length scales. A special case involves a single length
parameter, and is of similar form to that proposed by Aifantis and co-workers (Aifantis,
1984; Muhlhaus and Aifantis, 1991). The necessity of including a dependence on at
least two length parameters in any extension of classical J2 plasticity theory to account
for size e4ects at the micron scale has been laid out in the current treatment. The new
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generalized versions give predictions in the plastic range that are quantitatively similar
to the earlier theories proposed by Fleck and Hutchinson (1997). However, the new
versions have clear advantages over the earlier theories in numerical implementation
and in representation of elastic behavior.
Both the 3ow and deformation versions of the new formulation employ the displace-

ment components and plastic strain amplitude as the primary variables in the variational
statement of boundary value problems. This aspect accounts for the advantages of this
class of formulations in framing Gnite element representations for numerical solutions.
Only the primary variables and their Grst gradients enter the variational statement of
the problems. For most higher-order theories, such as that of Fleck and Hutchinson
(1997), the primary variables are the displacement components, but both their Grst
and second gradients enter the variational statement, signiGcantly increasing the diF-
culty of developing an accurate Gnite element representation. The version of the theory
of the type originally suggested by Aifantis and coworkers, based on the e4ective
strain rate (1) with one length parameter, is the simplest to implement in a Gnite
element framework. The generalized versions are somewhat more complicated to im-
plement because the stress direction, mij, and its gradient must be evaluated at each
point to determine the coeFcients Aij; Bi and C in (20) or (28). However, these can
be evaluated in the current state (or at the current state of a sequence of iterations
in the case of the deformation theory), and therefore do not require the introduc-
tion of higher-order elements for the solution variables in the incremental or iterative
problem.
Another distinct advantage of the new class of theories over the earlier Fleck–

Hutchinson theories is the representation of behavior in the elastic range. Use of the
plastic strains as primary variables leads naturally to a formulation with conventional
behavior in the elastic range. By contrast, length parameters are artiGcially present in
the elastic range in the earlier Fleck–Hutchinson theories, as illustrated by the defor-
mation theory solutions in the previous section. In the 3ow theory version, the length
parameters in the elastic range can be set independently from those in the plastic range,
but they cannot be taken to be zero. The earlier Fleck–Hutchinson deformation the-
ory formulation has an advantage over the new theory in that its simplicity permits
closed-form solutions to basic problems. It should continue to have a useful role to play
given its relationship with the new deformation theory when elasticity is neglected, and
given the close connection between deformation and 3ow theory solutions for many
problems of interest.
An e4ort has been made to reveal the higher-order nature of the new theories as

clearly as possible. The existence of the higher-order stress,  i, requires some change to
the conventional interpretation of the Geld equations. Equally important is the latitude
the higher-order theories o4er to model nonstandard boundary and interface conditions,
as dictated on physical grounds. Illustrations are given in the paper for both constrained
and unconstrained plastic deformation at a boundary. Many examples of nonstandard
conditions for thin Glms, multiple phase composites and other metal systems can be
enumerated. This appears to be an important aspect of plasticity at the small scale.
Thus, if continuum theories are to be used to predict elastic–plastic behavior at the
micron scale, a higher-order theory is likely to be required.
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Appendix A.

A.1. Expressions for Aij, Bi and C

Examples of the expression of Ė
2
P for speciGc problems are given in the body of

the paper. For the general case, in Cartesian coordinates with �ijk given by (19), the
coeFcients in (20) and in (28) are given by

Aij = ‘21{ 1
2�ij + 2

5mipmjp}+ epirmqr{L2
2epjvmqv + L2

3eqjvmpv};
Bi = ‘21{ 4

3mpqmpi;q − 8
15mipmpq;q}+ 2epirmqr{L2

2epuvmqv;u + L2
3equvmpv;u};

C = ‘21{ 1
3mij;k(mij;k +2mjk; i)− 4

15mki; imkj; j}+epirmqr; i{L2
2epuvmqv;u+L2

3equvmpv;u}
(A.1)

with L2
2 =

4
3‘

2
2 +

8
5‘

2
3 and L2

3 =
4
3‘

2
2 − 8

5‘
2
3. Further reduction can be obtained noting that

epirepjvmqrmqv = 3
2�ij − mqimqj; epirepuvmqrmqv;u =−mqrmqi; r ;

epirepuvmqr; imqv;u = mqr;umqr;u − mqr;vmqv; r :

A.2. Minimum and uniqueness principles for 9ow theory solid

We begin by showing that the plastic dissipation within the strain gradient 3ow
theory solid of Section 3.1 is positive. The internal plastic work rate can be written
from (12) and (15) as

Internal plastic work =
∫
V
[�e��P + ( i��P); i] dV (A.2)

and re-interpreted as follows. The Grst term, �e��P, is the plastic dissipation, and is
never negative. The volume integral of the second term ( i��P); i equals the prescribed
surface plastic work

∫
S [ni i��P] dS by the divergence theorem, and may be positive

or negative.
The strain gradient version of J2 3ow theory satisGes the generalized form of Drucker’s

stability postulates (Drucker, 1951) provided h¿ 0:

Q̇�̇P +  ̇i �̇P; i = hĖ
2
P¿ 0 (A.3)
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for a stress rate (Q̇;  ̇i) corresponding to any strain rate (�̇P; �̇P; i), and

(�ij − �∗
ij)�̇

P
ij¿ 0 (A.4)

for a stress state �ij associated with a plastic strain rate �̇Pij, and a neighboring stress
state �∗

ij within or on the yield surface.
Minimum principle (21) for the displacement rate follows directly from those out-

lined by Koiter (1960) and Hill (1966), as is restated as

I(u̇ i; �̇P) =
1
2

∫
V
{Cijkl(�̇ij − �̇Pmij)(�̇kl − �̇Pmkl) + h(EP)Ė

2
P} dV

−
∫
ST
(Ṫ

0
i u̇ i + ṫ0�̇P) dS (A.5)

where Ṫ
0
i and ṫ0 are prescribed traction rates on ST , and EP =

∫
ĖP dt is the accu-

mulated e4ective plastic strain. Let (u̇ i; �̇P) be the exact solution, and (u̇∗i ; �̇
∗
P) be any

kinematically admissible Geld. Then, I(u̇∗i ; �̇
∗
P) achieves a minimum value by the actual

solution.

Proof. Denote the di4erence in displacement rates by Tu̇ i ≡ u̇∗i − u̇ i, and likewise for
the strain rate and stress rate quantities. Then, direct evaluation of TI = I(u̇∗i ; �̇

∗
P) −

I(u̇ i; �̇P) gives

TI =
1
2

∫
V
[Cijkl(T�̇ij −T�̇Pmij)(T�̇kl −T�̇Pmkl)] dV

+
1
2

∫
V
[Q̇

∗
�̇∗P + Q̇�̇P − 2Q̇�̇∗P +  ̇∗i �̇

∗
P; i +  ̇i �̇P; i − 2 ̇i �̇∗P; i] dV: (A.6)

Now, the Grst integrand on the right-hand side of (A.6) is positive since the elastic
sti4ness Cijkl is taken to be positive deGnite. It can be shown that the second integrand
on the right-hand side of (A.6) satisGes the inequality

Q̇
∗
�̇∗P + Q̇�̇P − 2Q̇�̇∗P +  ̇∗i �̇

∗
P; i +  ̇i �̇P; i − 2 ̇i �̇∗P; i¿ hTĖPTĖP¿ 0 (A.7)

for the four possible loading cases of plastic loading and unloading for each of the
two solutions. Provided h is assumed to be positive, we conclude that TI ¿ 0 for all
trial solutions. The exact solution minimizes I , and the exact solution is unique since
the minimum is absolute.
Next, we prove uniqueness of stress rate for any assumed strain rate, and vice

versa, again for the case h¿ 0. The proof follows that of Hill (1966) for multislip of
elastic-plastic crystals. Let �̇ij and �̇∗

ij be two stress rates with associated strain rates
�̇ij and �̇∗ij; the associated plastic strain rates �̇P and �̇∗P may or may not vanish. Then,
upon noting that

T�̇ij T�̇eij +TQ̇T�̇P + T ̇iT�̇P; i¿CijklT�̇eijT�̇ekl + hTĖPTĖP¿ 0; (A.8)
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we conclude that �̇ij and �̇P are unique if �̇ij is given, and that �̇ij is unique if �̇ij and
�̇P are given.
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