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Abstract

The role of geometrically necessary dislocations in providing macroscopic strengthening is reviewed with particle

reinforcement as an example. The general relation between the Nye tensor and slip along a curvilinear slip line net is

derived to emphasise the importance of curvature of slip lines upon the rate of dislocation storage.

� 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Relation between dislocation density and slip

Nye [1] has shown that the density of geomet-

rically necessary dislocations may be quantified by
a second rank tensor a. In order to calculate the

density of geometrically necessary dislocations, a

crystal lattice must be embedded within the solid:

it is insufficient to know only the plastic strain

distribution. For subsequent discussion, we sum-

marise the relation between the Nye tensor and

crystallographic slip from Fleck et al. [2]. We as-

sume that the material shears through the crystal
lattice by dislocation motion, and that the lattice

(and attached material) undergoes rotation and

elastic stretching. With vi as the velocity at a ma-

terial point xj, the velocity gradient vi;j can be

written as the sum of a slip rate tensor _ccij, a lattice
rotation rate tensor _//ij and the elastic strain rate

tensor for the lattice _eeELij , giving

vi;j ¼ _ccij þ _//ij þ _eeELij ð1Þ

The lattice rotation rate is anti-symmetric and can

be expressed equivalently in terms of the lattice

rotation rate vector xi where

xq �
1

2
ejiq _//ij ð2Þ

while the elastic strain rate _eeELij is symmetric.

A particular slip system, b, is specified by the

vectors ðsðbÞ;mðbÞÞ where sðbÞ is the slip direction

and mðbÞ is the slip plane normal. Then, the slip

rate tensor _ccij is the net slip rate due to a slip _ccðbÞ on
each of the slip systems,
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_ccij ¼
X

a

_ccðbÞsðbÞi mðbÞ
j ð3Þ

with the summation taken over all slip systems.

The density of geometrically necessary dislocations

is related to the Burger�s vector Bi associated with

crystallographic slip. Make an imaginary cut in the

crystal in order to produce a surface S of outward
normal n. Define _BBi as the displacement disconti-

nuity rate due to slip on completion of a Burger�s
circuit around the periphery C of the surface S. In

other words, _BBi completes the circuit when C is

traversed in the sense of a right-handed screw

motion along n. Thus, _BBi is

_BBi ¼
Z

C

_ccij dxj ð4Þ

and can be rewritten using Stokes� theorem as

_BBi ¼
Z
S
_aainnn dS ð5Þ

where

_aain ¼ enkj _ccij;k ð6Þ

with enkj denoting the alternating tensor. The ten-
sor a is Nye�s dislocation density tensor or torsion-
flexure tensor. It gives a direct measure of the

number of geometrically necessary dislocations.

Thus, geometrically necessary dislocations are as-

sociated with gradients of slip, and their density

can be calculated directly by geometry once the

active slip systems have been defined. The same

displacement field may or may not give rise to
geometrically necessary dislocations, depending

upon the distribution of active slip systems. Lattice

rotation (and elastic stretching of the lattice) is

usually needed in order to ensure compatibility of

displacement.

2. Strengthening mechanisms due to geometrically

necessary dislocations

The precise manner by which geometrically

necessary dislocations provide macroscopic strength-

ening remains elusive. Hardening is by local

dislocation interaction mechanisms such as jog
formation when a moving dislocation cuts through

an existing geometrically necessary dislocation

(and vice versa), and may be enhanced by the

build-up of long range back stresses. The former

mechanism provides macroscopic isotropic hard-
ening, while the latter mechanism gives kinematic

hardening. The relative importance of each hard-

ening mechanism varies from problem to problem,

and an example now follows where the relative

significance varies with level of overall imposed

strain and structural size.

3. Case study: the distribution of dislocations around

elastic particles in a dispersion strengthened alloy

No simple relation exists between the density of

geometrically necessary dislocations and the de-

gree of kinematic versus isotropic hardening. It is

illustrated below that certain observed distribu-

tions of dislocation density give rise to long range

elastic stresses and to kinematic hardening, while

other observed distributions give rise to isotropic

hardening. For the purposes of discussion we
consider the well-documented case of a dispersion

strengthened alloy [3,4].

The physical picture of dislocation distribution

around each non-deformable spherical particle is

dependent upon the diameter of the particle and

upon the overall level of plastic strain. Consider

first, the case of small particles, of diameter less

than about 150 nm. At low levels of overall plastic
shear strain (less than a few percent), geometrically

necessary dislocations accumulate in the form of

Orowan loops, giving rise to long range elastic

back stresses and to strong kinematic hardening.

The resolved shear stress on the slip planes equals

the (low) Peierls stress, with a substantial fraction

of the macroscopic stress carried by the elastic

particle. A suitable continuum idealisation is that
the elastic particle is surrounded by an external

penny-shaped mode II crack. Large elastic stresses

are generated in the vicinity of each particle, and

the macroscopic shear response has a tangent

modulus which scales with the volume fraction of

particles.

Second, consider the case of small particles (of

diameter less than about 150 nm) within a single
crystal subjected to macroscopic shear strains of
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above a few percent. Stacks of prismatic disloca-

tion loops are punched into the crystal by the

elastic particle; these loop stacks contain disloca-

tions of the same primary Burgers vector as those
responsible for plastic flow of the matrix. The loop

stacks induce no lattice rotation, and give rise to

negligible long range back stresses and to negligi-

ble kinematic hardening.

Third, rotational structures form at strains of

above a few percent around particles of diame-

ter exceeding about 150 nm. The plastic strain

state associated with these rotational structures is
closely related to the centred fan of a slip line field,

and a scheme is developed below for calculating

the associated density of geometrically necessary

dislocations. The rotational structure gives no long

range back stress and persists to large levels of

plastic strain.

In summary, the dominant source of hardening

(kinematic hardening in nature) at levels of plastic
strain below a few percent is by the generation of

long range elastic stresses generated by a gradient

of a. These long range stresses are relaxed by cross-

slip and secondary slip at higher levels of plastic

strain, and the dominant source of hardening

becomes isotropic hardening associated with short-

range dislocations interactions. The level of hard-

ening scales with the density of geometrically
necessary dislocations a.

4. Calculation of dislocation density from a slip line

field solution

Slip line field solutions provide much insight

into the state of fully developed plastic flow within

an isotropic ideally plastic continuum. With suit-

able approximations, a slip line field solution can

also be used to estimate the local density of geo-
metrically dislocations within a crystal. The slip

line field solution for a rigid, ideally plastic solid

provides useful insight into the distribution of

plastic strain for a plane strain deformation field

deep in the plastic range. In order to estimate the

slip distribution, an arbitrary choice is required for

the active slip systems, and here we assume that

the crystal has an infinite number of slip systems
available over all orientations. (The accuracy of

this simplification will depend upon the actual

number of slip systems available in any given

crystal). The crystal is taken as rigid, ideally plas-

tic, and at any point in the deforming solid two slip
systems aligned with the local slip lines are taken

as potentially active. The slip line field solution

provides the velocity gradient, but an additional

argument is required in order to apportion the

velocity gradient between the slip on each of the

two available slip systems. This is made clear

below for the case of the Prandtl field.

5. Dislocation storage along curved slip lines

Consider a curvilinear slip-line field, as sketched

in Fig. 1. The distance along the a-slip lines is

measured by the co-ordinate n while the distance

along the orthogonal b-slip lines is given by g. The
out-of-plane dimension is labelled x3, and the
curvature of the a-slip lines is denoted by jn while

the curvature of the a-slip lines is denoted by jb.

Suppose that the slip rate along the a-slip lines is

f ðn; gÞ while the slip rate along the b-slip lines is

gðn; gÞ. Then, the rate of accumulation of the Nye

tensor follows from the prescription (6), which

gives after some manipulation,

_aan3 ¼
of
on

þ ðf � gÞjg ð7aÞ

_aag3 ¼
og
og

þ ðf � gÞjn ð7bÞ

Fig. 1. Curvilinear slip line field.
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We conclude that dislocation storage occurs when

a gradient of slip occurs along a slip line, and when

slip occurs along a curved slip line.

6. Dislocation storage for the Prandtl field

The Prandtl slip line field [5], as sketched in Fig.

2, provides an illustration of the use of relation

(7a) and (7b) in order to estimate the density of
geometrically necessary dislocations. Consider the

advance of a frictionless flat punch into a rigid,

ideally plastic solid, at a normal velocity V. Then,

the deformation state within the indented solid is

given by the Prandtl slip-line field, comprising

rigid triangles and centred fans.

Take a polar co-ordinate system ðr; hÞ centred
at the apex of each fan. Then, within each centred
fan, the velocity gradient can be re-written in terms

of the rigid body rotation rate x, the slip rate f ðrÞ
along the radial slip lines, and the slip rate gðrÞ
along the circumferential slip lines as

f � x ¼ � V

r
ffiffiffi
2

p ð8aÞ

and

x � g ¼ 0 ð8bÞ

It is clear that an additional assumption is re-

quired in order to deduce the value of ðf ; g;xÞ
from the two equations (8a) and (8b). It is argued

on physical grounds that the presence of the rigid

substrate prevents slip along the radial direction

within each centred fan––in the actual dislocated

solid, dislocation pile-ups accumulated along the

radial slip planes and give rise to back stresses

which switch off radial slip, giving f � 0. Conse-
quently, relations (8a) and (8b) reduce to

g ¼ x ¼ V

r
ffiffiffi
2

p ð9Þ

and the rate of accumulation of dislocation density

within each centred fan follows from (7b) as

_aar3 ¼ � V

r2
ffiffiffi
2

p ð10Þ

We conclude that slip along the circular arcs of

each centred fan gives rise to the storage of geo-

metrically necessary dislocations, and hence to

work hardening. The ambiguity in relative amount

of slip on the two potentially active systems is re-
solved by arguing that slip along the radial lines

within the centred fan fields will give rise to dis-

location pile-ups against the adjacent rigid regions,

and thereby the radial slip system will switch off

due to the build up of back stress.

Alternative approaches may be taken to remove

the ambiguity of slip: it could be argued that the

crystal adopts a distribution of slip which mini-
mises the elastic free energy associated with the

dislocation density, a. But this assumption would

imply that the radial slip system is activated (it

generates no contribution to a) while the circum-

ferential slip system is switched off. Or we could

adopt Havner�s postulate of minimum relative spin

[6]: the active slip systems are arranged such that

the difference between the material spin rate and
the lattice spin rate is minimised. This would imply

that the amount of slip f on the radial slip planes

equals the amount of slip g on the circumferen-

tial slip planes. Neither of these approaches is in

agreement with the physical argument that f ¼ 0.
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