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Abstract

A mechanism!based theory of strain gradient plasticity "MSG# is proposed based on a
multiscale framework linking the microscale notion of statistically stored and geometrically
necessary dislocations to the mesoscale notion of plastic strain and strain gradient[ This theory
is motivated by our recent analysis of indentation experiments which strongly suggest a linear
dependence of the square of plastic ~ow stress on strain gradient[ While such linear dependence
is predicted by the Taylor hardening model relating the ~ow stress to dislocation density\
existing theories of strain gradient plasticity have failed to explain such behavior[ We believe
that a mesoscale theory of plasticity should not only be based on stressÐstrain behavior obtained
from macroscopic mechanical tests\ but should also draw information from micromechanical\
gradient!dominant tests such as micro!indentation or nano!indentation[ According to this
viewpoint\ we explore an alternative formulation of strain gradient plasticity in which the
Taylor model is adopted as a founding principle[ We distinguish the microscale at which
dislocation interaction is considered from the mesoscale at which the plasticity theory is
formulated[ On the microscale\ we assume that higher order stresses do not exist\ that the
square of ~ow stress increases linearly with the density of geometrically necessary dislocations\
strictly following the Taylor model\ and that the plastic ~ow retains the associative structure
of conventional plasticity[ On the mesoscale\ the constitutive equations are constructed by
averaging microscale plasticity laws over a representative cell[ An expression for the e}ective
strain gradient is obtained by considering models of geometrically necessary dislocations
associated with bending\ torsion and 1!D axisymmetric void growth[ The new theory di}ers
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from all existing phenomenological theories in its mechanism!based guiding principles\
although the mathematical structure is quite similar to the theory proposed by Fleck and
Hutchinson[ A detailed analysis of the new theory is presented in Part II of this paper[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Dislocations^ Strengthening mechanisms^ B[ Constitutive behavior^ Principles^ ElasticÐplastic
material^ Strain gradient plasticity

0[ Introduction

0[0[ Strain `radient plasticity] An overview

Recent experiments have shown that materials display strong size e}ects when the
characteristic length scale associated with non!uniform plastic deformation is on the
order of microns[ For example\ Fleck et al[ "0883# observed in the twisting of thin
copper wires that the scaled shear strength increases by a factor of three as the wire
diameter decreases from 069Ð01 microns\ while the increase of work!hardening in
simple tension is negligible[ In bending of ultra thin beams\ Stolken and Evans "0887#
observed a signi_cant increase in the normalized bending hardening as the beam
thickness decreases from 099Ð01[4 microns\ while data from simple tension displays
no size dependence[ For an aluminumÐsilicon matrix reinforced by silicon carbide
particles\ Lloyd "0883# observed a substantial strength increase when the particle
diameter was reduced from 05Ð6[4 microns with the particle volume fraction _xed at
04)[ More convincing experimental evidence of the size dependence of material
behavior at the micron level comes from the micro!indentation or nano!indentation
hardness test[ The measured indentation hardness of metallic materials increases by
a factor of two as the depth of indentation decreases from 09 microns to 0 micron
"Nix\ 0878^ De Guzman et al[\ 0882^ Stelmeshenko et al[\ 0882^ Ma and Clarke\ 0884^
Poole et al[\ 0885^ McElhaney et al[\ 0887#[

The classical plasticity theories can not predict this size dependence of material
behavior at the micron scale because their constitutive models possess no internal
length scale[ The predictions based on the classical plasticity theories for non!uniform
deformation "e[g[\ twisting\ bending\ deformation of composites\ micro! or nano!
indentation# do not exhibit a size dependence after normalizations[ However\ there is
an impending need to deal with design and manufacturing issues at the micron level\
such as in thin _lms where _lm thickness is on the order of 0 micron or less^ sensors\
actuators and microelectromechanical systems "MEMS# where the entire system size
is less than 09 microns^ microelectronic packaging where features such as vias are
smaller than 09 microns^ advanced composites where particle or _ber size is on the
order of 09 microns^ as well as in micromachining[ The current design tools\ such as
_nite element analysis "FEA# and computer aided design "CAD#\ are based on
classical continuum theories\ which may not be suitable at such a small length scale[
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On the other hand\ it is still not possible to perform quantum and atomistic simulations
on realistic time and length scales required for the micron level structures[ A con!
tinuum theory for micron level applications is thus necessary to bridge the gap between
conventional continuum theories and atomistic simulations[

Another objective that warrants the development of a micron level continuum
theory is to link macroscopic fracture behavior to atomistic fracture processes in
ductile materials[ In a remarkable series of experiments\ Elssner et al[ "0883# measured
both the macroscopic fracture toughness and atomic work of separation of an inter!
face between a single crystal of niobium and a sapphire single crystal[ The macroscopic
work of fracture was measured using a four!point bend specimen designed for the
determination of interfacial toughness\ while the atomic value was inferred from the
equilibrium shapes of microscopic pores on the interface[ The interface between the
two materials remained atomistically sharp\ i[e[ the crack tip was not blunted even
though niobium is ductile and has a large number of dislocations[ The stress level
needed to produce atomic decohesion of a lattice or a strong interface is typically on
the order of 9[92 times Young|s modulus\ or 09 times the tensile yield stress[ Hut!
chinson "0886# pointed out that the maximum stress level that can be achieved near
a crack tip is not larger than 3Ð4 times the tensile yield stress of metals\ according to
models based on conventional plasticity theories[ This clearly falls short of triggering
the atomic decohesion observed in Elssner et al[|s "0883# experiments[ Attempts to
link macroscopic cracking to atomistic fracture are frustrated by the inability of
conventional plasticity theories to model stressÐstrain behavior adequately at the
small scales involved in crack tip deformation\

Apparently\ some microscopic understanding of plasticity is necessary in order to
accurately describe deformation at small length scales[ When a material is deformed\
dislocations are generated\ moved\ and stored\ and the storage causes the material to
work harden[ Dislocations become stored for one of two reasons] they accumulate by
trapping each other in a random way\ or they are required for compatible deformation
of various parts of the material[ In the former case the dislocations are referred to as
statistically stored dislocations "Ashby\ 0869#\ while in the latter case they are called
geometrically necessary dislocations and are related to the gradients of plastic shear
in a material "Nye\ 0842^ Cottrell\ 0853^ Ashby\ 0869#[ Plastic strain gradients appear
either because of the geometry of loading or because of inhomogeneous deformation
in the material\ as in the aforementioned experiments[ These considerations have
motivated Fleck and Hutchinson "0882\ 0886# and Fleck et al[ "0883# to develop a
phenomenological theory of strain gradient plasticity intended for applications to
materials and structures whose dimension controlling plastic deformation falls
roughly within a range from a tenth of a micron to ten microns[ This theory has been
applied to many problems where strain gradient e}ects are expected to be important\
including analyses of crack tip _elds "Huang et al[\ 0884\ 0886^ Xia and Hutchinson\
0885#[ The FleckÐHutchinson theory _ts the mathematical framework of higher order
continuum theories of elasticity "Toupin\ 0851^ Koiter\ 0853^ Mindlin\ 0853\ 0854#\
with the strain gradients represented either in terms of the gradients of rotation in the
couple!stress theory of strain gradient plasticity "Fleck and Hutchinson\ 0882^ Fleck
et al[\ 0883# or in terms of both rotation and stretch gradients in a more general
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isotropic!hardening theory based on all the quadratic invariants of the strain gradient
tensor "Fleck and Hutchinson\ 0886#[ The couple stress theory used by Fleck and
Hutchinson "0882# also bears some resemblance to the early work of Kroener "0852#
who studied the connection between lattice curvature associated with dislocations
and couple stresses and developed a non!local continuum theory based on that
connection[ The work!conjugate of the rotation and:or stretch gradient of defor!
mation de_nes the higher order stress which is required for this class of strain gradient
theory to satisfy the ClausiusÐDuhem thermodynamic restrictions on the constitutive
model for second deformation gradients "Gurtin\ 0854a\ b^ Acharya and Shawki\
0884#[ In comparison\ no work conjugate of strain gradient has been de_ned in the
alternative gradient theories "Aifantis\ 0873^ Zbib and Aifantis\ 0878^ Muhlhaus and
Aifantis\ 0880# which represent the strain gradient e}ects as the _rst and second
Laplacian of e}ective strain[ Acharya and Bassani "0884# have considered possible
formulations of strain gradient plasticity which retain the essential structure of con!
ventional plasticity and obey thermodynamic restrictions^ they conclude that the only
possible formulation is a ~ow theory with strain gradient e}ects represented as
an internal variable which acts to increase the current tangent!hardening modulus[
However\ there has not been a systematic way of constructing the tangent modulus
so as to validate this framework[ The internal variable formulation has also been
adopted by Dai and Parks "0887# in their formulation of a rate!dependent\ single
crystal theory of strain gradient plasticity[

From a dimensional consideration\ an internal constitutive length parameter\ l\ was
introduced to scale the rotational gradient terms in the couple!stress theory of strain
gradient plasticity "Fleck and Hutchinson\ 0882^ Fleck et al[\ 0883#[ This length scale
is thought of as an internal material length related to the storage of geometrically
necessary dislocations\ and is found to be approximately 3 microns for copper from
Fleck et al[|s "0883# twisting of thin wire experiments\ and 5 microns for nickel from
Stolken and Evans| "0887# bending of ultra!thin beam experiments[ The contribution
of the strain gradient could be symbolically represented as ldo:dx½ o"l:D# where D
represents the characteristic length of the deformation _eld usually corresponding to
the smallest dimension of geometry "e[g[\ thickness of a beam\ radius of a void\ depth
of indentation#[ When D is much larger than the material length\ l\ the strain gradient
terms become negligible in comparison with strains\ and strain gradient plasticity
then degenerates to the conventional plasticity theory[ However\ as D becomes com!
parable to l as in the aforementioned experiments\ strain gradient e}ects begin to play
a dominating role[ The couple!stress theory of strain gradient plasticity has had some
success in estimating the size dependence observed in the aforementioned torsion of
thin wires "Fleck et al[\ 0883# and bending of thin beams "Stolken and Evans\ 0887#[
However\ its prediction of indentation hardness "Shu and Fleck\ 0887# falls short of
agreement with the signi_cant increase of 199 or even 299) observed in micro!
indention or nano!indentation tests "Nix\ 0878^ De Guzman et al[\ 0882^ Stelmashenko
et al[\ 0882^ Ma and Clarke\ 0884^ Poole et al[\ 0885^ McElhaney et al[\ 0887#[ For
this reason\ Fleck and Hutchinson "0886# proposed an extended theory of strain
gradient plasticity theory which includes both rotation gradient and stretch gradient
of the deformation in the constitutive model[ The work!conjugates of rotation and



H[ Gao et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 0128Ð0152 0132

stretch gradients of deformation are couple stress and higher order stress\ respectively[
Accordingly\ two more internal material lengths are introduced in addition to l[ Begley
and Hutchinson "0887# determined these new lengths to be in the range of 9[11Ð9[5
microns by _tting indentation data[

0[1[ An experimental law of strain `radient plasticity

Recent analysis of indentation experiments by Nix and Gao "0887# has shed some
light on both the material length l introduced by Fleck and Hutchinson "0882# and
the experimental law needed to advance a mechanism!based theory of strain gradient
plasticity[ Nix and Gao started from the Taylor relation between the shear strength
and dislocation density in a material\

t� ambzrT � ambzrS¦rG "0#

where rT is the total dislocation density\ rS is the density of statistically stored
dislocations\ rG is the density of geometrically necessary dislocations\ m is the shear
modulus\ b is the Burgers vector and a is an empirical constant usually ranging from
9[1Ð9[4[ A gradient in the strain _eld is accommodated by geometrically necessary
dislocations\ so that an e}ective strain gradient h can be de_ned as

h�rGb[ "1#

This expression allows h to be interpreted as the curvature of deformation under
bending and twist per unit length under torsion[

If the von Mises rule is used\ the tensile ~ow stress can be written as

s�z2t�z2ambzrS¦h:b[ "2#

In the absence of the strain gradient term\ we identify the uniaxial stressÐstrain law

s�z2ambzrS �sYf"o# "3#

as the hardening due to the statistically stored dislocations alone[ For convenience\
we de_ne the state of plastic yield as

s�sY\ o� oY\ f "oY# � 0\ "4#

where oY is usually taken as 9[1) for ductile metals[ Combining "2# and "3# leads to
a law for strain gradient plasticity "Nix and Gao\ 0887#\

s�sYzf 1"o#¦lh\ "5#

where

l� 2a1 0
m

sY1
1

b "6#

is identi_ed as the material length introduced by Fleck and Hutchinson "0882\ 0886#[
In terms of macroscopic properties of structural metals\ the ratio between m and sY
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is typically in the order of 099\ suggesting that l is in the order of 093b\ which is indeed
in the order of microns\ in agreement with the estimation from twisting of thin copper
wires "Fleck et al[\ 0883# and bending of ultra!thin beams "Stolken and Evans\ 0887#[

Nix and Gao "0887# developed a dislocation model to estimate the density of
geometrically necessary dislocations underneath a conical indenter\ and found that
the strain gradient law of "5# implies the following relation for the indentation
hardness H

H
H9

�X 0¦
h�
h

\ "7#

where H9 is the hardness in the absence of strain gradient e}ects\ h is the depth of
indentation\ and

h��
70
1

ba1 tan1 u 0
m

H91
1

\ "8#

u being the angle between the surface of the indenter and the plane of the surface to
be indented[ The prediction of "7# agrees remarkably well with McElhaney et al[|s
"0887# microindentation hardness data for single crystal and cold worked poly!
crystalline copper\ as well as with Ma and Clarke|s "0884# microindentation hardness
data for single crystal silver[ A re!examination of Poole et al[|s "0885# experimental
data also con_rms the linear relation between the square of indentation hardness and
the inverse of indent depth[ Figure 0 shows the excellent agreement of "7# with the
depth dependence of the hardness of "000# single crystal copper measured by McEl!
haney et al[ "0887#[ In contrast\ conventional plasticity theories predict the indentation

Fig[ 0[ Depth dependence of the hardness of "000# single crystal copper\ plotted according to "7#[
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hardness to be independent of the indent depth\ also shown in Fig[ 0[ This evidence
highlights the need to advance strain gradient plasticity theories for small scale
applications[

From a fundamental consideration\ the Burgers vector and the dislocation spacing
are two physical length scales which control plastic deformation[ Nix and Gao "0887#
found it helpful to examine an alternative form of "5#\

0
s

s91
1

� 0¦l¼h\ "09#

where s9 �sYf "o# denotes the ~ow stress in the absence of strain gradients[ The
scaling length l¼ is found to be related to the Burgers vector b and the mean spacing
LS between statistically stored dislocations\

l¼�
L1

S

b
[ "00#

For the case of materials strengthened by dispersoids or precipitates\ l¼ is on the order
of L1

P:b\ where LP is the mean spacing between particles[ The material length l roughly
corresponds to the value of l¼ at yielding\ l¹ l¼yield[

0[2[ Motivation for mechanism!based strain `radient plasticity

Fleck and Hutchinson "0882\ 0886# used the dislocation theory to motivate their
formulation of strain gradient plasticity[ However\ the actual theory was formulated
by replacing e}ective stresses and strains in conventional plasticity with higher order
e}ective stresses and strains which contain strain gradient terms scaled by a phenom!
enological material length to be determined from experiments[ In other words\ the
FleckÐHutchinson theory is developed\ primarily based on the macroscopically mea!
sured uniaxial stressÐstrain behavior[ Micromechanical experiments such as micro!
indentation\ micro!torsion and micro!bending were not used at the stage of theory
construction\ but rather were used to _t the material length l[ The remarkable agree!
ment between the strain gradient law of "5# and the micro!indentation data for various
materials indicates that the linear relation between the square of indentation hardness
and the inverse of indent depth represents a fundamental\ intrinsic nature of defor!
mation at the microscale[ This provides a strong motivation to develop an alternative
formulation in which the strain gradient law of "5# derived from the Taylor relation
is incorporated as a fundamental postulate[ In this paper\ we propose a multiscale\
hierarchical framework to facilitate such a marriage between plasticity and dislocation
theory[ A mesoscale cell with linear variation of strain _eld is considered[ Each
point within the cell is considered as a microscale sub!cell within which dislocation
interaction is assumed to "approximately# obey the Taylor relation so that the strain
gradient law of "5# applies[ On the microscale\ the h term is to be treated as a measure
of the density of geometrically necessary dislocations whose accumulation increases
the ~ow stress strictly following the Taylor model[ In other words\ microscale plastic
~ow is assumed to occur as slip of statistically stored dislocations in a background of
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geometrically necessary dislocations and the microscale plastic deformation is
assumed to obey the Taylor work hardening relation and the associative laws of
conventional plasticity[ The notion of geometrically necessary dislocations is con!
nected to the gradient of the strain _eld on the level of the mesoscale cell[ Higher
order stresses are introduced as thermodynamic conjugates of the strain gradients at
the mesoscale level on which the plasticity theory is formulated[ This ensures that
the theory obeys the ClausiusÐDuhem thermodynamic restrictions of a continuum
constitutive model[ This hierarchical structure provides a systematic approach for
constructing the mesoscale constitutive laws by averaging microscale plasticity laws
over the representative cell[ The new theory di}ers from all existing phenomenological
theories in its mechanism!based guiding principles\ although it _ts nicely within the
mathematical framework of the phenomenological theory by Fleck and Hutchinson
"0886#[

1[ Basic postulates

Figure 1 shows the multiscale framework which we adopt to construct the MSG
theory[ On the microscale\ the scale of analysis is small compared with the length
over which the strain _eld varies\ and the dislocation activities are described by the
slip of statistically stored dislocations in a background of geometrically necessary
dislocations which in~uence the microscale ~ow stress according to the strain gradient

Fig[ 1[ The multiscale framework for strain gradient plasticity^ dislocation interaction is considered on the
microscale via the Taylor relation^ the higher order continuum theory of strain gradient plasticity is
established on the mesoscale representative cell[
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law of "5#[ At this level of analysis\ the stress and strain tensors are de_ned in the
classical sense and will be denoted as s½ and o½\ respectively[ Concepts associated with
strain gradient plasticity such as higher order stresses and strain gradients will be
needed to ensure that the constitutive model we develop satis_es the essential ther!
modynamic restrictions[ These concepts are introduced at a higher level of analysis\
which will be referred to as the mesoscale analysis[ Here the terminology {mesoscale|
is adopted because our continuum strain gradient plasticity theory is formulated based
on dislocation activities on a subscale which we have referred to as the {microscale|[

Why is such hierarchical framework necessary for strain gradient plasticity< The
reason is that the microscale picture allows us to make a connection with the scenario
envisioned by Taylor\ in which the ~ow stress is de_ned as the critical stress to move
a glide dislocation through a forest of obstacles[ On the other hand\ the mesoscale
picture makes it possible to connect the notion of geometrically necessary dislocations
to the gradient of the strain _eld and to institute a thermodynamically sound consti!
tutive framework[ In other words\ the multiscale framework allows the concept of
geometrically necessary dislocations to become a coherent part of the constitutive
law[ Our mesoscale variables include the stress s\ strain o\ the higher order stress t

and strain gradient h[
In formulating the MSG theory on the mesoscale\ we will adopt the higher order

framework laid out by Fleck and Hutchinson "0886#\ which was developed based on
the earlier work of Toupin "0851#\ Koiter "0853# and Mindlin "0853\ 0854#[ In this
framework\ the generalized strain variables are the symmetric strain tensor

oij �
0
1
"ui\ j¦uj\ i# "01#

and the second gradient of displacement

hijk �uk\ ij[ "02#

For simplicity\ elastic deformation and compressibility of materials are ignored in the
analysis of this paper[ The condition of incompressibility can be stated as

oii � 9\ hH
ijk � 0

3
"dikhjpp¦djkhipp# � 9\ "03#

where hH
ijk denotes the hydrostatic part of hijk\ following the notation of Fleck and

Hutchinson "0886#[ Under these restrictions\ the work increment per unit volume of
solid due to an arbitrary variation of displacement u is

dw�s?ijdoij¦t?ijkdhijk "04#

where s?ij denotes the deviatoric stress components\ and t?ijk are the deviatoric com!
ponents of the higher order stress tensor conjugated to the strain gradient tensor hijk[

In order to link the microscale picture of Taylor hardening and the mesoscale
picture of strain gradient plasticity\ we adopt the following three postulates in our
constitutive framework]

"0# We assume that the microscale ~ow stress is governed by the dislocation motion\
and that it obeys the Taylor hardening relation as exhibited by the strain gradient
law of "5#\
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s½ �sYzf 1"o½#¦lh "05#

"1# Strain gradient plasticity is a mesoscale description of dislocation activities and
as such it must be derivable from the dislocation!based microscale plasticity laws[
We choose a mesoscale cell which will be taken as small as possible so that the
variation of strain _eld can be approximated as linear within the cell\ and yet
su.ciently large for application of the Taylor model[ Higher order strain gradients
"higher than the _rst order# are assumed to be negligible within the meso!cell[
The microscale and mesoscale are linked by the plastic work equality

gVcell

s½ ?ijdo½ij dV� "s?ijdoij¦t?ijkdhijk#Vcell[ "06#

"2# We assume that the essential structure of conventional plasticity is preserved on
the microscale[ This can be justi_ed by linking the microscale plastic ~ow to slip
of statistically stored dislocations in a background of geometrically necessary
dislocations[ If dislocation slip is assumed to be proportional to the resolved
Schmid stress along an appropriate slip system\ the associative rule of plastic
normality holds "Rice\ 0869\ 0860#\

do½ij

do½
�

2s½ ?ij
1s½ e

"07#

where

s½ e �z
1
2
s½ ?ijs½ ?ij "08#

is the e}ective stress and

do½ �z
1
2
do½ij do½ij "19#

is the e}ective strain increment[ For proportional\ monotonically increasing defor!
mation\ the e}ective strain in the deformation theory of MSG plasticity can be
de_ned as

o½ �z
1
2
o½ijo½ij[ "10#

The microscale yield criterion is

s½ e �s½ "11#

where s½ is given by "05#[

2[ Dislocation models

2[0[ Density of `eometrically necessary dislocations and effective strain `radient

Before the theory of MSG can be established\ the density of geometrically necessary
dislocations rG � h:b must be related to the components of the strain gradient tensor
hijk[ Following Fleck and Hutchinson "0886#\ we de_ne
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h�zc0hiikhjjk¦c1hijkhijk¦c2hijkhkji "12#

as an e}ective strain gradient which measures the density of geometrically necessary
dislocations^ the three constants\ c0\ c1 and c2 scale the three quadratic invariants for
the incompressible third order tensor hijk[ Fleck and Hutchinson "0886# attempted to
determine c0\ c1 and c2 from experimental data[ Due to the scarcity of experiments on
strain gradient e}ects\ we shall take a di}erent approach[ We shall determine the
three constants from a series of distinct dislocation models consisting of plane strain
bending\ pure torsion and 1!D axisymmetric void growth[ There may be multiple
con_gurations of geometrically necessary dislocations for a given continuum strain
_eld\ in which case the constants cannot be uniquely determined[ These con_gurations
are often in~uenced by the orientations of available slip systems[ Without accounting
for such complications\ we will assume an abundance of slip systems and consider the
most e.cient dislocation con_guration which corresponds to the minimum density
of geometrically necessary dislocations required to accommodate a given deformation
_eld[

For plane strain bending\ the most e.cient dislocation con_guration is shown in
Fig[ 2"a#[ The plastic bending of a crystal of curvature k can be accomplished by
introducing a density\

Fig[ 2[ Models of geometrically necessary dislocations associated with "a# plane strain bending\ "b# torsion
and "c# 1!D axisymmetric void growth^ "d# 2!D spherical void growth[
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rG � h:b "13#

of dislocations of Burgers vector b "Nye\ 0842^ Ashby\ 0869^ Stolken and Evans\
0887# where

h�k[ "14#

Assuming the mean spacing between geometrically necessary dislocations is LG\ this
relation can be obtained from the similarity relation

b:LG �kLG\ rG � 0:L1
G �k:b[ "15#

On the other hand\ Huang et al[ "0887# have shown that the displacement _eld for
plane strain bending consistent with MSG is

u0 �kx0x1\ u1 �−0
1
k"x1

0¦x1
1#[ "16#

The non!zero components of the third!order strain gradient tensor hijk � uk\ij are then

h001 �−k\ h100 � h010 �k\ h111 �−k "17#

with quadratic invariants equal to

hiikhjjk � 3k1\ hijkhijk � 3k1\ hijkhkji � 9[ "18#

Combining "12#\ "14# and "18#\ the dislocation model for plane strain bending leads
to

c0¦c1 � 0
3
[ "29#

For simple torsion of a cylinder of radius R shown in Fig[ 2"b#\ the most e.cient
dislocation con_guration is a screw dislocation lying along the axis of the cylinder[
The displacement _eld associated with such a coaxial screw dislocation is "Eshelby\
0842^ Hirthe and Lothe\ 0871#

u0 �−
b

pR1
x1x2\ u1 �

b

pR1
x0x2\ "20#

which has the identical form as the displacement of pure torsion "Huang et al[\ 0887#\

u0 �−kx1x2\ u1 �kx0x2 "21#

with twist per unit length equal to

k�
b

pR1
[ "22#

Within a length H of the cylinder\ the density of geometrically necessary dislocations
is
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rG �
H

pR1H
�

0

pR1
\ "23#

so that

rG � h:b\ h�k\ "24#

similar to the bending case[ The non!zero strain gradient components are

h120 � h210 �−k\ h021 � h201 �k\ "25#

with quadratic invariants

hiikhjjk � 9\ hijkhijk � 3k1\ hijkhkji �−1k1[ "26#

Combining "12#\ "24# and "26#\ the dislocation model for pure torsion suggests

c1−
0
1
c2 � 0

3
[ "27#

Now consider the growth of a 1!D axisymmetric void\ in which case the most
e.cient dislocation con_guration is shown in Fig[ 2"c#[ The total number of geo!
metrically necessary dislocations in a ring of radius r and width dr is

dnd �rG"1prdr#[ "28#

The variation of hoop strain ouu across such a ring from radius r to r¦dr is

douu �−
dndb
1pr

�−rGbdr[ "39#

Letting dr: 9 yields

rG �
h

b
\ h�−

1ouu

1r
[ "30#

The displacement _eld associated with 1!D axisymmetric void growth consistent with
the MSG theory is "Huang et al[\ 0887#\

ur �u9

r9

r
"31#

where r9 is the initial size of the void and u9 is the displacement of the void boundary[
This displacement leads to

ouu �u9

r9

r1
[ "32#

The non!zero components of strain gradient are

hrrr � 1u9

r9

r2
\ hruu � huru � huur �−1u9

r9

r2
\ "33#

with quadratic invariants
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hiikhjjk � 9\ hijkhijk � 05u1
9

r1
9

r5
\ hijkhkji � 05u1

9

r1
9

r5
[ "34#

Combining "12#\ "30# and "34#\ the dislocation model for 1!D axisymmetric void
growth suggests

c1¦c2 � 0
3
[ "35#

Solving "29#\ "27#\ "35# gives

c0 � 9\ c1 � 0
3
\ c2 � 9[ "36#

Therefore\ the form of the e}ective strain gradient consistent with the notion of most
e.cient dislocation con_guration is

h�z
0
3
hijkhijk\ "37#

which is similar to that of the e}ective strain in conventional plasticity

o�z
1
2
oijoij[ "38#

As an independent check\ we apply "37# to the growth of 2!D spherical void[ It
is di.cult to construct a dislocation model consistent with spherically symmetric
deformation[ We will be content with the approximate model shown in Fig[ 2"d#
where a small block of deformed material near the growing void is assumed to contain
a cross grid of edge dislocations[ The total number of dislocations in this block is

rGa1dR� 1adnd\ "49#

where a is the side length of the block and dnd denotes the number of geometrically
necessary dislocations along a tangential direction^ the factor of two arises due to the
cross grid assumption[ The variation in strain ouu across the width of the block from
radius R to R¦dR is

douu �−
dndb

a
�−

0
1
rGbdR[ "40#

Letting dR: 9\ we obtain

rG �
h

b
\ h�−1

1ouu

1R
[ "41#

The displacement _eld associated with a 2!D spherical void consistent with the MSG
theory is "Huang et al[\ 0887#\

uR �u9

R1
9

R1
"42#

where R9 is the initial size of the void and u9 is the displacement of the void boundary[
This displacement leads to



H[ Gao et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 0128Ð0152 0142

ouu �u9

R1
9

R2
[ "43#

The non!zero strain gradient components are

hRRR � 5u9

R1
9

R3
\ hRuu � huRu � hRff � hfRf � huuR � hffR �−2u9

R1
9

R3
[ "44#

The e}ective strain gradient calculated from the deformation _eld according to "37#
is

h�
0
1
z hijkhijk � 2X

4
1
u9

R1
9

R3
\ "45#

which is compared to the corresponding quantity calculated from the cross!grid
dislocation model

hd �−1
1ouu

1R
� 5u9

R1
9

R3
[ "46#

The relative di}erence between the two results is

hd−h

hd

� 9[10[ "47#

The 10) di}erence can be partly attributed to the use of a cross!grid of edge
dislocations to approximate spherically symmetric deformation and partly to the
di.culty in establishing the most e.cient dislocation con_guration in the present
case[ Nevertheless\ we believe this comparison is encouraging since the e}ective strain
gradient calculated from "37# is expected to be slightly smaller than hd estimated from
a non!optimal dislocation con_guration[ We are presently unaware of any other cases
where appropriate dislocation models can be constructed for further comparison[

2[1[ Comparison with the FleckÐHutchinson results

Smyshlyaev and Fleck "0885# and Fleck and Hutchinson "0886# have shown that
the incompressible strain gradient tensor hijk can be decomposed as

h� h"0#¦h"1#¦h"2#\ "48#

where

h"0#
ijk � hs

ijk−
0
4
ðdijh

s
kpp¦djkh

s
ipp¦dkih

s
jppŁ\ "59#

h"1#
ijk � 0

5
ðeikpejlmhlpm¦ejkpeilmhlpm¦1hijk−hjki−hkijŁ\ "50#

h"2#
ijk � 0

5
ð−eikpejlmhlpm−ejkpeilmhlpm¦1hijk−hjki−hkijŁ

¦0
4
ðdijh

s
kpp¦djkh

s
ipp¦dkih

s
jppŁ[ "51#
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In the above equations\ eikp is the permutation tensor and hs denotes the fully symmetric
part of h\

hs
ijk � 0

2
ðhijk¦hjki¦hkijŁ[ "52#

Fleck and Hutchinson "0886# showed that the e}ective strain gradient de_ned in "12#
can be rewritten as

lh�zl1
0h

"0#
ijk h"0#

ijk ¦l1
1h

"1#
ijk h"1#

ijk ¦l1
2h

"2#
ijk h"2#

ijk "53#

where the material length l is introduced so that the coe.cients l1
0\ l1

1 and l1
2 can be

interpreted as three constitutive lengths which are related to constants c0\ c1 and c2 by

l1
0

l1
�c1¦c2\

l1
1

l1
�c1−

0
1
c2\

l1
2

l1
�

4
1
c0¦c1−

0
2
c2[ "54#

Fleck and Hutchinson "0886# intended to determine these three lengths from exper!
iments[ In our approach\ the choice of "36# implies that

l0 �l1 �l2 � 0
1
l[ "55#

That is\ the dislocation models we use suggest that the three constitutive lengths
introduced by Fleck and Hutchinson "0886# are identical[ This choice does not deviate
much from a suggestion of Begley and Hutchinson "0887#\

l0 � 0
7
l\ l1 � 0

1
l\ l2 �z

4
13

l\ "56#

which are obtained by _tting the experimental data from bending of ultra!thin beams
"Stolken and Evans\ 0887#\ torsion of thin wires "Fleck et al[\ 0883#\ and micro!
indentation "Stelmashenko et al[\ 0882^ Atkinson\ 0884^ Ma and Clarke\ 0884^ Nix\
0886#[

At this point\ we also mention in passing that the phenomenological couple stress
theory of strain gradient plasticity by Fleck and Hutchinson "0882# corresponds to
the following choice

l0 � 9\ l1 � 0
1
l\ l2 �z

4
13

l\ "57#

where the e}ective strain gradient has the form

h�z
1
2
xijxij[ "58#

Here\ xij is the curvature tensor de_ned as the gradient of material rotation[ The
relationship between xij and hijk is "Fleck and Hutchinson\ 0886#

xijxij �
2
7
h"1#

ijk h"1#
ijk ¦ 4

05
h"2#

ijk h"2#
ijk \ "69#

xijxji �
2
7
h"1#

ijk h"1#
ijk − 4

05
h"2#

ijk h"2#
ijk [ "60#

It is thus clear that h"1#
ijk and h"2#

ijk are associated with the rotational gradients\ while
h"0#

ijk is associated with the stretch gradient "Fleck and Hutchinson\ 0886#[ The three
dislocation models we use to derive the e}ective strain gradient have di}erent fractions
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of rotation and stretch gradients[ The torsion deformation of "21# is a _eld of pure
rotation gradient\ the 1!D axisymmetric void deformation of "31# is a _eld of pure
stretch gradient\ and the bending deformation of "16# is a _eld of mixed rotation and
stretch gradients[

3[ Constitutive equations

Based on the theoretical postulates discussed in Section 1 and dislocation models
in Section 2\ a new theoretical framework of strain gradient plasticity is proposed
below[ This theory will be referred to as a mechanism!based theory of strain gradient
plasticity "MSG#[ Attention is focused on the deformation theory of MSG[ The ~ow
theory of MSG will be presented in a forthcoming paper[

Consider a unit cell on the mesoscale with the length of all edges equal to lo "Fig[
1#[ The mesoscale cell size lo is much smaller than the intrinsic material length l in "6#
associated with strain gradient plasticity[ Within this cell\ the displacement _eld is
assumed to vary as

u½k � oikxi¦
0
1
hijkxixj¦o"x2# "61#

where xi denotes the local coordinates with origin at the center of the cell and hijk is
second gradient of the displacement _eld[ When the cell is su.ciently small\ higher
order displacement gradients can be ignored and the strain _eld varies linearly as

o½ij � oij¦
0
1
"hkij¦hkji#xk[ "62#

The microscale strain o½ij is thus related to the mesoscale strain oij and strain gradient
hkij[

Following classical plasticity theory "Hill\ 0849#\ we de_ne the microscale e}ective
strain as

o½1 � 1
2
o½ijo½ij\ "63#

o½do½ � 1
2
o½ijdo½ij[ "64#

The incremental plastic work can be expressed as s½ ?ijdo½ij[ Inserting "05# and "64# into
the above expression yields

s½ ?ij �
1o½ij

2o½
s½ e\ s½ e �s½ �sYz f 1"o½#¦lh[ "65#

We note that the e}ective stress s½ e is always equated to the ~ow stress s½ for the
deformation theory of MSG[

Substituting the microscale constitutive law "65# into the plastic work equality "06#
gives
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gVcell

s½ ?ijdo½ij dV� "s?ijdoij¦t?ijkdhijk#Vcell[ "66#

Inserting the kinematic assumption

do½ij � doij¦
0
1
"dhkij¦dhkji#xk "67#

into "66# and equating the corresponding coe.cients of doij and dhkij leads to the
constitutive equations for the deformation theory of MSG[ The coe.cient of doij gives

s?ij �
0

Vcell gVcell

s½ ?ij dV\ "68#

and the coe.cient of dhijk gives

t?ijk �
0

Vcell

Dev $
0
1 gVcell

s½ ?jkxi¦s½ ?ikxj dV%\ "79#

where Dev ð[ [ [Ł denotes the deviatoric part of ð[ [ [Ł[
Since the coordinate origin of xk is located at the center of the cubic cell\ the integral

in the above equation can be carried out according to the rules

0
Vcell gVcell

dV� 0\ gVcell

xk dV� 9\
0

Vcell gVcell

xkxm dV�
0
01

l1
o dkm[ "70#

Keeping terms to the lowest order in lo\ we obtain the mesoscale constitutive equations

s?ij �
1oij

2o
s\ "71#

t?ijk � l1
o $

s

o
"Lijk−Pijk#¦

s1
Yf "o# f ?"o#

s
Pijk%\ "72#

where

s�sYz f 1"o#¦lh\ "73#

Lijk � 0
61

ð1hijk¦hkji¦hkij−
0
3
"dikhppj¦djkhppi#Ł\ "74#

Pijk �
omn

43o1 $oikhjmn¦ojkhimn−
0
3

"dikojp¦djkoip#hpmn%[ "75#

Note that terms of order o"l1
o # in s?ij and those of order o"l3

o # in t?ijk have been ignored[
An important question is whether we could write the MSG constitutive law in the

form

s?ij �
1W
1oij

\ t?ijk �
1W
1hijk

\ "76#
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where W�W"o\ h# is a strain energy density function[ This is clearly impossible
because the MSG constitutive equations do not satisfy the reciprocity relation\ i[e[

1s?ij
1hkmn

�
1t?kmn

1oij

\ "77#

required for the existence of a strain energy function[ This has important implications
for the application of a J!integral approach to the MSG theory\ which we leave to
future work[

The ~ow theory of MSG can be established based on the same guiding principles
outlined in this paper[ Although we do not discuss it in detail here\ the MSG ~ow
theory has been worked out and is currently being subjected to analysis "Huang et
al[\ work in progress#[ The starting point for the MSG ~ow theory is the microscale
normality relation

do½ij

do½
�

2s½ ?ij
1s½ e

[ "78#

Under proportional\ monotonically increasing deformation\

do½ij

do½
�

o½ij

o½
\ s½ e �s½ \ "89#

the microscale ~ow equation "78# reduces to the deformation equation "65# and the
~ow theory becomes coincident with the deformation theory[ Further discussions of
the ~ow theory of MSG are deferred to a later paper[

4[ Discussion

The MSG constitutive equations will be analyzed in Part II "Huang et al[\ 0888# of
this paper for several sample applications\ and will be further studied in Part III
"Huang et al[\ work in progress# with a detailed investigation of micro!indentation[
Here we give some discussion on a few outstanding issues of the new theory[

4[0[ Taylor hardenin` model

Some discussion of the Taylor hardening model might be helpful to gain a deeper
understanding of the connection between MSG and the dislocation interaction
processes[ Dislocation theory indicates that the PeachÐKoehler force due to inter!
action of a pair of dislocations is proportional to

spair ½
mb

1p"0−n#L
"80#

where L is the distance between the dislocations[ This stress sets a critical value for
the applied stress to break or untangle the interactive pair so that slip can occur even
if one of the dislocations is pinned by an obstacle[ In the Taylor model\ this picture
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is generalized to the interaction of a group of statistically stored dislocations which
trap each other in a random way[ If the mean dislocation spacing is L\ the critical
stress required to untangle the interactive dislocations and to induce signi_cant plastic
deformation is de_ned as the Taylor ~ow stress

s�
amb
L

� ambz r\ "81#

where r�0:L1 is the dislocation density[ Alternatively\ the Taylor ~ow stress can
also be viewed as the {passing stress| for a moving dislocation to glide through a forest
of tangled dislocations without being pinned[ The similarity between the Taylor model
and the interaction of a pair of dislocations indicates the potential of using "81# as a
fundamental measure of dislocation interaction at length scales close to those of
discrete dislocations[

4[1[ Strain `radient len`th scale l

The material length l corresponds to the scale at which the e}ects of strain gradient
become comparable to those of strain[ In the presence of a strong strain gradient\
the total dislocation density r is considered to be the sum of statistically stored
dislocations rs � 0:L1

S and geometrically necessary dislocations rG � h:b[ The strain
gradient e}ects become signi_cant when rS and rG are of the same order of magnitude[
Equating

rS �rG "82#

immediately suggests that

h−0 �L1
S:b� l¼ "83#

is a fundamental length scale signifying the strain gradient e}ects[ Nix and Gao "0887#
have shown that L1

S:b is a fundamental length scale which is related to the material
length l and the uniaxial stressÐstrain behavior s9 �sYf "o# by the following relations

l¼�
L1

S

b
\ LS ¹

mb
s9

\ l¹ l¼yield\ "84#

where l¼yield is the value of l¼ at yielding[ Therefore\ the material length l is a fundamental
length scale related to Burgers vector and dislocation spacing at yielding\ and is a
fundamental measure of the deformation length at which geometrically necessary
dislocations constitute a signi_cant fraction of the total dislocation population[

4[2[ Mesoscale cell size lo

The theory of strain gradient plasticity is intended for applications with deformation
length scales in the range of 9[0Ð09 micron "Fleck and Hutchinson\ 0886#[ Since
plasticity theories describe the collective behavior of a large number of dislocations\
the range of validity of MSG should be larger than the mean dislocation spacing[ A
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dislocation spacing of 9[0 micron corresponds to a dislocation density on the order
of 0909 cm−1\ which is typical for a deformed crystal[ The cell size lo in the MSG theory
is a resolution parameter which controls the accuracy with which the strain gradient
is calculated in each cell[ This parameter needs to be su.ciently small to ensure
accuracy of the strain gradient[ However\ since the Taylor hardening model is assumed
to govern\ this cell also needs to be large enough to contain a su.cient number of
dislocations to ensure the accuracy of the ~ow stress[ In other words\ there is a
fundamental inconsistency in trying to capture both the strain gradient and the ~ow
stress accurately[ A compromise between these two con~icting requirements dictates
a suitable choice of lo[ We propose to de_ne

lo �bLyield �b
mb
sY

\ "85#

where Lyield is the mean spacing between statistically stored dislocations at yielding
and b is a constant coe.cient to be determined from experiments[ Dislocation spacing
provides a fundamental measure of the {discreteness| limit for continuum plasticity\
similar to atomic spacing as a measure of the discreteness limit for continuum elas!
ticity[ For stress levels below the yield point\ plastic deformation is negligible and
elasticity theory is usually used to analyze the deformation[ For stresses above the
yield point\ the mean dislocation spacing becomes smaller than Lyield so that lo is
always larger than the dislocation spacing for the intended application range[ The
condition b× 0 ensures that there are multiple dislocations within the mesoscale cell[

For typical structural metals\ we may take the following numbers as representative
estimates of the relevant length scales]

m:sY � 099\ b� 9[0 nm\ Lyield � 09 nm\ "86#

lo ½ 09Ð099 nm\ l½ 0Ð09mm

where the cell size parameter b is taken to be from 0Ð09[
With the exception of single crystal materials\ there is usually more than one

microstructural length scale in an engineering material[ Examples of such length scales
include grain size\ particle spacing\ layer thickness\ etc[ Dislocations are usually not
uniformly distributed[ These complications make it di.cult to calculate the strain
gradient length l directly from microstructure[ An important advantage of MSG is
that the material length l�2a1"m:sY#1b is related to macroscopically measurable
quantities such as the yield stress sY\ which account for\ in an average sense\ the
e}ects of various microstructural features[ For example\ the HallÐPetch relation
indicates that the uniaxial ~ow stress increases with the reduction in grain size\

sY �c9¦c0d
−0:1\ "87#

where d is the mean grain diameter[ The grain size thus a}ects the strain gradient
plasticity indirectly through its in~uence on sY and on the constitutive length l[

4[3[ A {quantum mechanical| analo`y of MSG

There may be signi_cant di.culties in understanding the role of the cell size
parameter lo since a similar concept does not exist in the conventional theories of
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elasticity and plasticity[ We believe that this parameter is not an ad hoc parameter
introduced for convenience\ but rather a fundamental parameter associated with the
very nature of plastic deformation[ It may be particularly helpful to draw a loose
analogy between MSG and a few concepts in quantum mechanics "e[g[\ Saxon\ 0857#
for physics oriented readers[ First of all\ plastic deformation {quantized| by dislocation
activities may be compared to lattice vibration quantized by phonons\ or to electro!
magnetic radiation quantized by photons[ In quantum mechanics\ complementary
variables such as position!momentum and energy!time obey the Heisenberg uncer!
tainty principle in that both variables in a pair cannot be simultaneously determined
to arbitrary accuracy[ This uncertainty is dictated by Planck|s constant h which
measures the strength of quantization[ The cell size lo of MSG is a consequence of a
similar uncertainty associated with plastic deformation[ This uncertainty is evident
for the complementarity between ~ow stress and strain gradient\ in that accurate
determination of ~ow stress requires large cell size lo with many interactive dislo!
cations\ while accurate determination of strain gradient requires small cell size lo so
that the linear expansion of the strain _eld within the cell is valid[ The analogy can
be further extended to the mathematical structure of MSG\ in the sense that lo scales
the highest derivative of the deformation _eld "see further discussions in Part II#\
similar to the role of Planck|s constant in scaling the highest derivative of the Sch!
roedinger equation[

4[4[ Prospects of strain `radient plasticity

The MSG theory represents an e}ort to bridge the length scales between con!
ventional mechanics theories which are intended for applications beyond 09 micron
and quantum!atomistic simulations which are still restricted to submicron size scales
and picosecond time scales[ There is still a long way to go before the quantum!
atomistic simulations can be routinely applied to engineering applications[ In the
meantime\ e}orts must be made to improve the continuum models of deformation
and failure so that micro! and nano!structures can be manufactured and designed on
a rational basis[ These e}orts must involve interdisciplinary research activities which
combine continuum mechanics\ materials science and physics[

The theory of MSG is a true marriage between continuum mechanics and materials
science[ This marriage is profoundly manifested by the fundamental length scales l
and lo which are combinations of the elasticity constant m\ the plasticity constant sY

and the Burgers vector b[ These fundamental lengths can be obtained merely by a
dimensional analysis combining elasticity\ plasticity and the atomic nature of solids]

ln � 0
m

sY1
n

b "88#

where n is an arbitrary integer[ If we restrict our attention to lengths which are in the
size range from interatomic spacing to 09 microns\ we are necessarily led to the
fundamental lengths lo ½ l0 and l½ l1[ The higher order length scales\ ln "n× 1#\ are
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above the millimeter range where conventional mechanics theories have proven to be
successful[

Historically\ the theories of elasticity and plasticity in continuum mechanics were
developed largely based on phenomenological behaviors of materials on the macro!
scopic scale\ and quite independent of the advances in materials science and physics
on the understanding of the microscopic processes which are responsible for the
deformation[ The theory of elasticity has been successfully applied to studies of crystal
defects\ which has led to the theory of dislocations[ However\ apart from notable
exceptions\ this interaction between mechanics and materials science has primarily
been a one!way process in the past[ Despite the fact that the theory of dislocations
has provided a fundamental understanding of plastic deformation\ much of the
conventional theory of plasticity had already been in place when dislocations were
discovered in the 0829s[ The development of mechanism!based strain gradient plas!
ticity highlights a new era in which advances in modern materials science and physics
begin to play an essential part in the founding principles of continuum mechanics[

5[ Summary

In this paper\ the following objectives have been achieved]

"0# We have proposed a systematic method of formulating mechanism!based strain
gradient plasticity for mesoscale applications with deformation lengths in the
range of 9[0 microns and above[ This method consists of three basic postulates[
First\ it is assumed that the microscale ~ow stress is governed by the Taylor
hardening model[ Second\ the microscale and mesoscale variables are linked by
a virtual work statement equating plastic work on the two scales[ Third\ the
essential structure of conventional plasticity such as normality is retained at the
microscale[

"1# Dislocation models are developed to relate the microscale notion of geometrically
necessary dislocations to the mesoscale notion of strain gradients[ In particular\
we show that the dislocation models indicate that the e}ective strain gradient h\
which measures the density of geometrically necessary dislocations\ is related to
the strain gradient tensor hijk � uk\ij by the simple expression h1 � "0:3#hijkhijk[

"2# It is shown that the three basic postulates of MSG allow us to construct higher
order continuum theories of strain gradient plasticity[ For conciseness\ only the
deformation theory of MSG is considered in this paper\ without accounting for
elasticity and compressibility of materials[

"3# Two length scales are identi_ed in MSG[ The _rst is a material length l which
governs the strain gradient e}ects and measures the interaction between stat!
istically stored and geometrically necessary dislocations[ This length is related to
elastic modulus\ plastic yield stress and Burgers vector by l½ "m:sY#1b "Nix and
Gao\ 0887#[ The second length is a resolution parameter lo ½mb:sY corresponding
to the size of the mesoscale cell in the theory formulation[ The signi_cance of lo
can be explained from a fundamental uncertainty relationship in the simultaneous
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determination of ~ow stress and strain gradient[ Accurate determination of ~ow
stress requires large cell size lo with many interactive dislocations within the cell
while accurate determination of strain gradient requires small cell size lo so that
the linear expansion of the strain _eld within the cell is valid[ A loose analogy
with quantum mechanics is used to illustrate the signi_cance of the uncertainty
concept for continuum plasticity and the cell size lo in MSG[
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