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Abstract

Stress intensity factor distributions at the edge of semi-circular and semi-elliptical surface cracks are obtained for
cracks aligned perpendicular to the surface of a semi-in®nite solid subject to remote shear parallel to the plane of

the crack. Mixed mode conditions along the crack edge are characterized. Application to fatigue crack thresholds in
mixed mode is discussed. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Surface crack solutions are widely used in applications of fracture mechanics to fatigue and

monotonic loadings. A semi-elliptical surface crack lying perpendicular to the surface and subject to

applied stresses with no shear component parallel to the crack experiences mode I conditions around its

edge. It is usually tacitly assumed that this orientation is the critical one. Whether this orientation is

critical for designs based on fatigue crack thresholds has been called into question by some recent

experimental data [1±3] which indicate that long crack threshold conditions may be lower under mixed

mode than under mode I. It is this observation which motivates the present study of the mixed mode

stress intensity factors for cracks at surfaces under general remote uniform stressing. Attention is

directed to cracks which are perpendicular to the surface. The results presented below supplement the

mode I stress intensity factors of Raju and Newman [4,5] for cracks perpendicular to the surface and by

Noda and Miyoshi [6] and Noda et al. [7] for cracks inclined to the surface. The only other results in
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the literature on the mixed mode crack problem analysed in this paper appears to be prelimary results in
a paper by Murikami [8] which will be discussed later.

The problem addressed here is depicted in Fig. 1(a). An isotropic elastic half-space with a semi-
circular or semi-elliptical crack in the �x1, x3� plane is subject to a remote uniform stress speci®ed by the
components �s011, s022, s012). The crack is not in¯uenced by the component s011 since this component
produces no traction on the crack plane. The component s022 induces a mode I stress intensity factor
distribution along the crack edge which is available in Ref. [5]. The component s012 induces both mode
II and mode III intensity factor distributions. It is these distributions which will be computed and
characterized in this paper. The solution for arbitrary uniform remote stressing is obtained by
superposition of the distributions due to s022 and s012: A crack inclined to a remote tensile ®eld, as shown
in Fig. 1(b), is a special case of this solution. This case will be used to illustrate potential mixed mode
e�ects later in the paper.

2. Solution for shear stress applied parallel to the crack

Consider semi-elliptical cracks in the �x1, x3� plane with depth a and half-length c at the surface(Fig.
1(a)). The only nonzero remote stress component is s012: The Young's modulus of the elastic material is
E and the Poisson's ratio is n: The symmetry of the geometry and anti-symmetry of the loading dictates
that the mode I stress intensity factor, KI, vanishes along the crack edge. The mode II and mode III
intensity factors, KII and KIII, vary along the crack edge and will be regarded as functions of the angle j
de®ned in Fig. 1(a). These factors are odd and even functions, respectively, with respect to the deepest
point of the crack, j � p=2: It will be seen that KII is largest in magnitude near the surface, while KIII is
largest where the crack penetrates most deeply into the body.

2.1. A reference solution

A useful reference solution is that for the similarly aligned and loaded elliptical crack in an in®nite

Fig. 1. (a) Semi-elliptical surface crack in a semi-in®nite isotropic elastic solid subject to uniform remote stresses �s011, s022, s012). The
present paper considers the shear loading s012 which induces mode II and III stress intensities along the crack front. Solutions for

the mode I problem due to s022 exist in the literature. The stress component s011 has no in¯uence on the stress intensity factors. (b)

Surface crack aligned obtusely to the remote tensile ®eld.
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solid [9±11]. This is an exact solution given by
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The maximum values of the reference intensity factors will be used for scaling the surface crack
solutions:ÿ

K 0
II

�
j�0� s012

������
pa
p

k2�a=c�1=2=B

ÿ
K 0

III

�
j�p=2� s012

������
pa
p

k2�1ÿ n�=B �2�

Numerical values for these factors are given in Table 1 for a range of c=a and n:

Table 1

Maximum values of the reference intensity factors from Eq. (2)

n c=a �K 0
II�j�0=s012

������
pa
p �K 0

III�j�p=2=s012
������
pa
p

0 1 0.637 0.637

0 1.5 0.618 0.756

0 2 0.584 0.826

0 3 0.518 0.898

0.2 1 0.707 0.566

0.2 1.5 0.710 0.695

0.2 2 0.685 0.775

0.2 3 0.623 0.863

0.3 1 0.749 0.525

0.3 1.5 0.767 0.657

0.3 2 0.750 0.743

0.3 3 0.693 0.841

0.5 1 0.849 0.425

0.5 1.5 0.913 0.559

0.5 2 0.927 0.655

0.5 3 0.895 0.775
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2.2. Behavior at the corner of the crack at the free surface �j � 0�

Under general stressing, the stress ®eld along interior points of the crack edge is the superposition of
the conventional mode I, II and III ®elds, which are characterized by an inverse square root dependence
on the distance from the tip. At the point where the crack edge intersects the free surface, a three-
dimensional corner singularity exists [12±14]. With R as the distance from the corner point, the singular
stresses associated with the symmetric ®eld (mode I) become unbounded as R diminishes according to

sARÿSs �3a�
while the stresses in the anti-symmetric ®elds (modes II and III) satisfy

sARÿSa �3b�
Plots of Ss and Sa as a function of n are given in Fig. 2. Except for n � 0, the corner singularity of the
mode I ®eld is weaker, and that of the anti-symmetric modes is stronger, than inverse square root
behavior. The relationship between the corner and interior singularity strengths and the character of the
full solution has been examined for a speci®c three-dimensional, mode I problem [15] (e.g. the through-
crack in a ®nite thickness plate). The e�ective zone of dominance of the corner singularity comprises a
very small fraction of the crack edge. Over most of the crack edge, the stress intensity factor associated
with the inverse square root behavior governs the stresses and strains, although the distance from the
crack tip for which local plane strain conditions are achieved is a small fraction of the plate thickness.

The e�ect of the strong corner singularity (3b) on the mode II and III stress intensity factor
distributions for the problem considered here will be apparent. However, no attempt has been made to
incorporate the corner singularity (3b) in the representation of the numerical results for the
distributions. High resolution accuracy at the corner may not be worth pursuing, in any case, because
the geometry where the crack intersects the surface is expected to adjust under loading so as to
ameliorate the stronger singularity.

Fig. 2. Dependence of the singularity exponents (3) for stress ®elds at the corner where the crack intersects the surface of the half

space, Ss for the mode I and Sa, for mode II and III, respectively [14].
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2.3. Finite element meshes

A three-dimensional ®nite-element analysis has been used to calculate the strain energy release rate
and the mode II and III stress-intensity factor distributions along the surface crack front. The ®nite-
element mesh for a semi-elliptical crack can be obtained from that for a semi-circular crack by an
elliptical transformation. This transformation is convenient for generating the mesh, and it has
advantages for the evaluation of the energy release rate because of its orthogonal nature. The element
sides along the crack front are perpendicular to the front. This increases the accuracy of strain energy
release rate (for crack advance in the plane of the crack) when it is evaluated numerically using the J-
integral with the domain integral method [16]. Speci®cally, the �x, y, z� Cartesian coordinates of a node
in the semi-circular case become the �x 0, y 0, z 0� coordinates of the same node in the semi-elliptical case
when

x � aZcos j �4a�

y � aZsin j �4b�

such that

x 0 � cos j
ÿ
c2 �

ÿ
Z2 ÿ 1

�
a2
�1=2

y 0 � y

z 0 � z �5�

for c=a > 1: The relation between circular arcs and radial lines in the �x, y� plane of the semi-circular
crack and ellipses and hyperbolas, respectively, in the �x 0, y 0� plane of the semi-elliptical crack is
illustrated in Fig. 3(a). While the total energy release rate, G, was evaluated using J-integral method, the
individual stress intensity factors were determined by ®tting the near-tip displacement ®elds for mode II
and III to the crack face displacement components from the numerical solution.

A general purpose ®nite element code, ABAQUS was used for the analysis. Twenty-node quadratic
isoparametric brick elements were employed to model the problem. Symmetry and anti-symmetry
conditions were exploited such that only one quarter of the half space was meshed. Several meshes were
used to gauge accuracy (see Fig. 3(b) for a representative mesh). The coarse mesh used in the
convergence study had 864 element and 4698 nodes. A ®ner mesh, which had 1728 elements and 9002
nodes, was used to generate the main results in the paper.

To evaluate the quality of the mesh, the energy release rate was calculated for an embedded elliptical
crack in the full space under uniform remote shear stress using the same mesh employed to produce
solutions for the surface crack problems. The results were within 0.5% of the exact solution from Eq.
(1).

Examples of the numerical solution for the stress intensity distributions are presented in Fig. 4 for the
semi-circular crack �c=a � 1). Complications at the corner at j � 0 do not appear in Fig. 4(a) when
Poisson's ratio vanishes. A ®ne mesh has been employed in the vicinity of the corner, as revealed by the
points in the ®gure where the stress intensity factors have been evaluated. The solution to the semi-
circular surface crack is very close to that for the penny-shaped crack in the in®nite body (1) when n �
0: The e�ect of the corner singularity is evident in Fig. 4(b) for n � 0:3: In the vicinity of the corner, KIII

does not go smoothly to zero, and KII displays distinctly non-uniform behavior for j < 0:1�� 58�,
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consistent with the existence of a corner singularity Eq. (3) stronger than the square root dependence in
the interior. The e�ect of the ®nite element mesh is also evident in Fig. 4(b). The coarse mesh provides
accuracy almost equal to that of the moderately ®ne mesh for j > 0:35�� 208�, but provides inadequate
resolution nearer to the corner.

Another exploration of meshing is presented in Fig. 5, which shows the energy release rate along the
front of a semi-circular surface crack normalized by the corresponding distribution, G0�j�, from Eq. (1)
for the penny-shaped crack in the in®nite body. The rates are for crack advance in the plane of the
crack. The two meshes used have the same number of elements. One is the ®ne mesh described above,
and the other employs smaller elements near the free surface and larger elements along the edge in the
interior. The J-integral has been used to compute the energy release rate at points along the front. For
n � 0:3, the evaluation points for the mesh with the ®nest resolution at the corner are indicated by solid
diamonds in Fig. 5, while a curve has been drawn for the results from the other mesh. The role of the
strong corner singularity for j < 0:1�� 58� is brought out clearly by the trend near the corner. (The
results for n � 0, which have not been plotted, are virtually identical to those for the penny-shaped
crack in the in®nite solid with G going smoothly to the limit at the corner.) For n � 0:3, both meshes
capture the upturn in the energy release at the corner for j < 0:1�� 58�: Apart from the behavior very
near the corner, the distribution for the penny-shaped crack is within 5% of that of the surface crack.
Whether the highly localized behavior at the corner has important physical implications will have to
await comparison with observations. In this paper, no attempt has been made to provide accurate

Fig. 3. (a) Coordinates used to generate the mesh. (b) Representative ®nite element mesh for c=a � 1:5:
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Fig. 4. Distributions of the stress intensity factors for (a) n � 0 and (b) n � 0:3 for the semi-circular surface crack and the penny-

shaped crack in the in®nite solid, both subject to nonzero s012: Comparison between predictions of coarse and ®ne meshes are

shown in (b).

Fig. 5. Energy release rate of semi-circular surface crack normalized by energy release rate of penny-shaped crack in an in®nite

body at same j for n � 0:3: The applied stress is s012: A comparison is shown between the predictions of two meshes with the same

number of elements but di�ering re®nement near the corner where the crack meets the free surface at j � 0:
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resolution of the intensity factors within about j � 0:05�� 2:58� of the corner. The ®ne mesh with the
more uniformly distributed spacing around the crack front was used in the following.

2.4. Stress intensity distributions

The main results for semi-elliptical surface cracks are given in Fig. 6 and Fig. 8. Stress intensity factor
distributions for c=a � 1, 1.5 and 2 are plotted in Fig. 6(a) for n � 0:2 and in Fig. 6(b) for n � 0:3: The
intensity factors, KII and KIII, have been normalized by the corresponding maximum values for the full
elliptical crack with the same c=a and n de®ned in Eq. (2) and provided in Table 1. The corresponding
normalized distributions for elliptical cracks in the in®nite body are plotted for comparison purposes in
Fig. 7. Inspection of the reference solution (1) for the full elliptical crack, normalized by the respective
maxima in Eq. (2), reveals that the normalized distributions are independent of n (i.e. all the dependence
on n is contained in the normalizing factors, �K 0

II�j�0 and �K 0
III�j�p=2). The dependence on n of the

normalized distributions for the surface crack is displayed in the three plots of Fig. 8 for c=a � 1, 1.5
and 2. Now the role of Poisson's ratio shows up as a fairly strong in¯uence on the stress intensity
distribution near the corner at j � 0, which is related to the e�ect of n on the corner singularity
discussed in Section 2.2. The in¯uence on KIII is by far the largest, but this occurs in a range of j in
which KIII is relatively small.

Away from the corner, the role of n on the normalized distributions is relatively small. The main

Fig. 6. Normalized distributions of the stress intensity factors for the semi-elliptical surface crack subject to nonzero s012: (a)

n � 0:2 and (b) n � 0:3:
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Fig. 7. Normalized distributions of the stress intensity factors for the elliptical crack in the in®nite body subject to nonzero s012:
The normalized distributions are independent of Poisson's ratio.

Fig. 8. Normalized distributions of the stress intensity factors for the semi-elliptical surface crack subject to nonzero s012 for n � 0,

0.2 and 0.3: (a) c=a � 1, (b) c=a � 1:5 and (c) c=a � 2:
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dependence of the intensity factors on n is contained in the normalizing factors (2). Indeed, comparison
of the distributions in Figs. 6 and 8 with those in Fig. 7 for the full elliptical crack in the in®nite body
indicates that, away from the corner, the full elliptical crack solution (1) provides a reasonably accurate
approximation to problem for the semi-elliptical surface crack. The error in this approximation can be
displayed by expressing the intensity factors of the surface crack as the sum of the reference intensity
factors (1) and the corrections:

KII � K 0
II � dKII and KIII � K 0

III � dKIII �6�
Values of dKII=�K 0

II�j�0 and dKIII=�K 0
III�j�p=2 are presented as solid points in Fig. 9 for c=a � 1:5: The

error in using Eq. (1) for the surface crack is less than 10% for the distributions in almost the entire
range of j, except for KIII near the corner. The error in the vicinity of the maxima of the respective

Fig. 9. Normalized distributions of the corrections to Eq. (1), de®ned in Eq. (6), for the semi-elliptical crack in the in®nite body for

the case c=a � 1:5: The solid points are the computed values, and the curves are the polynomial ®ts given in Table 2.
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intensity factors is well below 5%. The trends for dKII=�K 0
II�j�0 and dKIII=�K 0

III�j�p=2 for the other two
values of c=a are similar and will not be shown. Accurate polynomial ®ts to the normalized corrections
over the range 0:1 < jRp=2 are presented in Table 2, and these are shown for the case c=a � 1:5 as the
curves in Fig. 9. The numerical results for the cases in this study can be reproduced using Eq. (6) with
the polynomial representations in Table 2.

Murikami's [8] estimates of the stress intensity factors for the mixed mode surface crack employs what
is essentially an approximation of the full elliptical crack solution. The error in this estimate can be
somewhat larger than that in using the full elliptical crack solution itself.

3. Trends under mixed mode

The results presented in the previous section presenting the response of the surface crack to the
applied stress component s012 can be combined by superposition with the results of Newman and Raju
[5] for the mode I contribution due to s022, giving the distribution of each of the three stress intensity
factors along the crack front. (Recall that s011 has no e�ect on the intensity factors.) Thus, for example,
the energy release rate distribution associated with crack advance in the extended crack plane can be
computed using the well known relation

G � �1ÿ n2 �ÿK 2
I � K 2

II

�
=E� �1� n�K 2

III=E �7�
The general solution for the combined modes also permits one to compute energy release rates for local
crack advance in directions other than in the original crack plane. In principle, the mixed mode solution
contains the information required to implement any criterion for a brittle material based on local
conditions in the immediate vicinity of the crack front. Several such mixed mode criteria have been
widely studied and employed for cracking under monotonic loading. None are well established when the
mode III component is signi®cant.

The situation with respect to fatigue cracking is less certain under mixed mode. There seems to be
general agreement, a few exceptional cases aside, that the local crack front advances under mode I
conditions once it has begun to propagate. However, criteria governing threshold conditions for

Table 2

Polynominal approximations for the stress intersity factor corrections in Eq. (6)a

K n c=a c0 c1 c2 c3 c4 c5 c6 c7 c8

yII 0.2 1 0.0134 ÿ0.7898 4.893 ÿ13.94 20.63 ÿ15.25 4.436

yIII 0.2 1 0.3141 ÿ2.851 14.08 ÿ38.12 55.28 ÿ40.23 11.53

yII 0.2 1.5 0.03585 ÿ1.706 15.22 ÿ72.67 203.8 ÿ342.6 338.9 ÿ181.7 40.66

yIII 0.2 1.5 0.2476 ÿ2.258 11.35 ÿ31.53 47.34 ÿ35.81 10.67

yII 0.2 2 0.0542 ÿ1.214 6.921 ÿ19.95 30.58 ÿ23.44 7.041

yIII 0.2 2 0.1949 ÿ1.452 5.474 ÿ10.36 9.411 ÿ3.250
yII 0.3 1 0.0153 ÿ2.494 27.32 ÿ143.5 421.1 ÿ723.8 723.8 ÿ389.7 87.34

yIII 0.3 1 0.5177 ÿ4.421 22.59 ÿ63.87 96.07 ÿ71.99 21.13

yII 0.3 1.5 ÿ0.0475 ÿ0.3309 1.041 ÿ1.063 0.4011

yIII 0.3 1.5 0.3608 ÿ2.528 10.62 ÿ26.41 36.99 ÿ26.72 7.715

yII 0.3 2 0.02388 ÿ1.019 3.102 ÿ3.975 2.401 ÿ0.5322
yIII 0.3 2 0.3341 ÿ2.406 8.369 ÿ14.63 12.35 ÿ3.991

a where y � c0 � c1x� c2x
2 � c3x

3 � c4x
4 � c5x

5 � c6x
6 � c7x

7 � c8x
8, x � 2j=p, and y � yII � dKII=�K 0

II�j�0 or y � yIII �
dKIII=�K 0

III�j�p=2.
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initiating fatigue crack growth under mixed mode cyclic loading are not established. It seems reasonable
to expect that the threshold stress intensity factor, �DKI�TH, determined in a mode I test might be greater
than the DKI component at threshold under mixed mode cyclic loading. However, there is little data on
which to base such a criterion. For example, it is not known whether the decidedly more conservative
criterion based on a threshold energy release rate provides a bound. That is, does a threshold value of
the cyclic variation of the energy release rate determined in a mode I test, �DGI�TH, provide an lower
bound to DG at threshold under mixed mode? Some recent experiments under combined mode I and II
on an alloy with a very ®ne and relatively isotropic micro-structure [3] have suggested that �DGI�TH may
provide a lower bound, although that conclusion must be regarded as tentative until more data is
available.

As remarked above, the present results for the shear loading, when combined with those for the
tensile loading [5], can be used to generate distributions along the surface crack front relevant to any
potential fracture criterion. As an illustration, consider the surface crack oriented at an angle b to the
applied tensile stress s in Fig. 1(b). The applied stress components in axes aligned with the crack areÿ

s011, s
0
22, s

0
12

�
� s

ÿ
sin2b, cos2b, sin b cos b

�
�8�

An issue, for example, is whether the crack orientation perpendicular to the tensile stress �b � 0� is
critical for threshold fatigue crack growth when s is cycled, or whether a mixed mode orientation gives
rise to fatigue crack growth at the lowest s: It is not possible to answer this question in the absence of a

Fig. 10. Distributions of the energy release rate along the crack front for a surface crack oriented at angle b to an applied tensile

stress s: (a) c=a � 1, (b) c=a � 1:5 and (c) c=a � 2:
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criterion for threshold under mixed mode conditions. However, examination of the energy release rate
(7) distribution at various orientations can provide insight. Both KII and KIII contribute signi®cantly to
this measure in addition to KI, and it is plausible that �DGI�TH might provide a conservative threshold
criterion under mixed mode. The energy release rate G has been computed using Eqs. (7) and (8)
together with the distributions of KI due to s022 from [5] and with those for KII and KIII due to s012 from
the data in Figs. 6 and 8 (or, equivalently, using Eq. (6) and the polynomial expressions in Table 2).

Plots of G=�4�1ÿ n2�s2a=�pE �� as a function of j are shown in Fig. 10 for four orientations of the
surface crack and three crack shapes. As already emphasized, values within about j � 0:05�� 2:58� from
the corner at j � 0 are not reliable. In any case, it is only the semi-circular crack for which the largest
values of G occur within an appreciable vicinity of the corner. For c=a � 1:5 and 2, the largest values of
the energy release rate occur at the point of deepest penetration of the crack at j � p=2: The most
notable feature for each of the three crack shapes shown in Fig. 10 is that the energy release rate
distribution for the crack oriented perpendicularly to the tensile stress lies well above those for the other
orientations. At a given point along the crack front, the energy release monotonically decreases as b
increases. Quantitatively, similar behavior occurs for the full elliptical crack in the in®nite body. If
fatigue crack threshold under mixed mode were governed by �DGI�TH, the critical orientation would be
b � 0: Based on the seemingly conservative nature of the criterion based on �DGI�TH, it would be most
surprising if a surface crack at an orientation other than b � 0 were critical for threshold growth.

4. Summary

Mode II and III stress intensity factor distributions for semi-elliptical surface cracks subject to remote
shear stress have been obtained for a limited range of crack ellipticity. When combined with existing
results for the mode I distributions due to remote tensile stress, these results make it possible to
compute critical conditions for brittle fracture initiation or fatigue crack growth threshold for any
criterion requiring stresses and strains at localities near the crack front. The mode III stress intensity
factor distribution, in particular, is strongly a�ected by a corner singularity in stresses which di�ers
from the conventional inverse square root singularity at interior points along the front. In the vicinity of
the corner, the mode III factor does not go smoothly to zero unless Poisson's ratio is zero. Apart from
behavior in the vicinity of the corner, the solution (1) for the intensity factor distributions for the full
elliptical crack in an in®nite body provides a reasonably good approximation to the surface crack
distributions for shear loading parallel to the crack. Corrections to Eq. (1) for the surface crack problem
are de®ned in Eq. (6) and provided by polynomials given in Table 2.
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