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Abstract

A mechanism-based theory of strain gradient (MSG) plasticity has been proposed in Part
I of this paper. The theory is based on a multiscale framework linking the microscale
notion of statistically stored and geometrically necessary dislocations to the mesoscale
notion of plastic strain and strain gradient. This theory is motivated by our recent analysis

of indentation experiments which strongly suggest a linear dependence of the square of
plastic ¯ow stress on strain gradient. Such a linear dependence is consistent with the Taylor
plastic work hardening model relating the ¯ow stress to dislocation density. This part of

this paper provides a detailed analysis of the new theory, including equilibrium equations
and boundary conditions, constitutive equations for the mechanism-based strain gradient
plasticity, and kinematic relations among strains, strain gradients and displacements. The

theory is used to investigate several phenomena that are in¯uenced by plastic strain
gradients. In bending of thin beams and torsion of thin wires, mechanism-based strain
gradient plasticity gives a signi®cant increase in scaled bending moment and scaled torque
due to strain gradient e�ects. For the growth of microvoids and cavitation instabilities,

however, it is found that strain gradients have little e�ect on micron-sized voids, but
submicron-sized voids can have a larger resistance against void growth. Finally, it is shown
from the study of bimaterials in shear that the mesoscale cell size has little e�ect on global

physical quantities (e.g. applied stresses), but may a�ect the local deformation ®eld
signi®cantly. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Summary of the mechanism-based strain gradient plasticity

Based on a multiscale framework linking the microscale notion of statistically
stored and geometrically necessary dislocations to the mesoscale notion of plastic
strain and strain gradient, we have derived the constitutive equations of the
mechanism-based strain gradient (MSG) plasticity in Part I of this paper (Gao et
al., 1999). The MSG plasticity constitutive equations, as well as equilibrium
equations and kinematic relations among strains, strain gradients and
displacements are summarized in this section to constitute a complete set of
governing equations for mechanism-based strain gradient plasticity. We use MSG
plasticity to investigate several phenomena that are in¯uenced by plastic strain
gradients, including bending of thin beams, torsion of thin wires, growth of
microvoids, cavitation instabilities, and bimaterials in shear.

The deformation theory of the mechanism-based strain gradient plasticity is
summarized in this section, while the MSG ¯ow theory will be published
elsewhere. For simplicity, elastic deformation and compressibility of materials are
ignored in this paper. In addition, the theory and analysis are restricted to small
deformation only.

1.1. Generalized stresses and strains in a strain gradient theory

Both strains and strain gradients are introduced in higher-order continuum
theories of elasticity (Toupin, 1962; Koiter, 1964; Mindlin, 1964, 1965) and
plasticity (Fleck and Hutchinson, 1993, 1997; Fleck et al., 1994; Gao et al., 1999).
In a Cartesian reference frame xi, the strain tensor Eij and strain gradient tensor
Zijk are related to the displacement ui by (Fleck and Hutchinson, 1997)

Eij � 1

2
�ui,j � uj,i � �1�

and

Zijk � uk,ij, �2�

which have the symmetry Eij � Eji and Zijk � Zjik. The condition of
incompressibility can be stated as

Eii � 0, ZH
ijk �

1

4
�dikZjpp � djkZipp� � 0, �3�
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where ZH
ijk is the hydrostatic part of Zijk, following the notation of Fleck and

Hutchinson (1997).
The work increment per unit volume of an incompressible solid due to a

variation of displacement dui is (Fleck and Hutchinson, 1997)

dw � sijdEij � tijkdZijk � s 0ijdEij � t 0ijkdZijk, �4�

where the symmetric Cauchy stress sij is the work conjugate of the variation of
strain dEij;s 0ij� sijÿ skkdij=3 is the deviatoric part of Cauchy stress; the symmetric
higher-order stress tijk (tijk=tjik) is the work conjugate of the variation of strain
gradient dZijk; and t 'ijk is the deviatoric part of higher-order stress given by

t 0ijk � tijk ÿ 1

4
�diktjpp � djktipp� �5�

such that t 'ipp=0.

1.2. Equilibrium equations

Based on the principle of virtual work, Fleck and Hutchinson (1997) have
shown that equilibrium equations for an incompressible solid can be written as

s 0ik,i ÿ t 0ijk,ij �H,k � fk � 0, �6�

where fk is the body force and H is a combined measure of the hydrostatic stress
and higher-order stress according to

H � 1

3
skk ÿ 1

2
tjkk,j: �7�

For an incompressible solid, the double-stress tractions rÃk tangential to the surface
of the body are

r̂k � ninjt 0ijk ÿ nkninjnpt 0ijp: �8�

The stress tractions tÃk on the surface of the body are

t̂k � Hnk � ni�s 0ik ÿ t 0ijk,j � �Dk�ninjnpt 0ijp� ÿDj�nit 0ijk� � �ninjt 0ijk
ÿ nkninjnpt 0ijp��Dqnq�, �9�

where ni is the unit normal to the surface and Dj is the surface-gradient operator
given by

Dj � �djk ÿ njnk� @
@xk

: �10�

On the surface of the body, the gradient @/@xj can be resolved into the above
surface gradient Dj and a normal gradient njD, i.e.
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@

@xj
� Dj � njD, �11�

where

D � nk
@

@xk
: �12�

For the special case where the surface of the body has edges, there is a line
traction pÃk that must be taken into account (Fleck and Hutchinson, 1997).
Suppose the surface has an edge C, formed by the intersection of two smooth
surface segments S (1) and S (2). The unit normal to segment S (i ) (i = 1, 2) is
designated n (i ), while the unit tangent c (i ) along the edge C is de®ned with
segment S (i ) to the left. The line traction pÃk is

p̂k � S�nikjt 0ijk ÿ kkninjnpt 0ijp�, �13�

where the summation is over both surfaces S (1) and S (2) at the edge C, and k (i )

(i = 1, 2) is the unit outward normal to C lying within the surface S (i ) given by
k (i )=c (i ) � n (i ) (i = 1, 2). (It should be pointed out that (13) corrects the misprint
in Fleck and Hutchinson's (1997) expression for the line traction pÃk.)

1.3. Constitutive equations of MSG plasticity

The uniaxial stress±strain relation can be written, in general,

s � sYf�E�, �14�
where sY is a measure of yield stress in uniaxial tension and f is a function of
strain. For most ductile materials, the function f can be written as a power law
relation,

f�E� �
�
EE
sY

�N

: �15�

Here E is the Young's modulus and N is the plastic work hardening exponent
(0 R N < 1). The ¯ow stress s, after incorporating the strain gradient e�ects, is
(Nix and Gao, 1998; Gao et al., 1999)

s � sY

���������������������
f 2�E� � lZ

p
, �16�

where E and Z are the e�ective strain and e�ective strain gradient (Gao et al.,
1999),

E �
������������
2

3
EijEij

r
, Z � 1

2

�������������
ZijkZijk

p
: �17�

The characteristic material length l for strain gradient plasticity in (16) is given in
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terms of the shear modulus m and Burgers vector b by

l � 3

�
am
sY

�2

b, �18�

where a is an empirical material constant in Taylor's dislocation model for plastic
work hardening of ductile materials, ranging from 0.2 to 0.5. For a typical ratio
of shear modulus to yield stress, m/sY=200, and coe�cient a=0.4, the
characteristic material length l is 19,200 times the Burgers vector b. For copper
(b = 0.255 nm), l is approximately 5 m. For most engineering materials, the
intrinsic material length l at which strain gradient e�ects are important is on the
order of microns.

The constitutive equations for mechanism-based strain gradient plasticity are
(Gao et al., 1999)

s 0ij �
2Eij
3E

s, �19�

t 0ijk � l2E

�
s
E
�Lijk ÿPijk� � s2Yf�E�f 0�E�

s
Pijk

�
, �20�

where the ¯ow stress s is given in terms of the e�ective strain E and e�ective strain
gradient Z in (16), and Lijk and Pijk are given by

Lijk � 1

72

�
2Zijk � Zkij � Zkji ÿ

1

4
�dikZppj � djkZppi �

�
, �21�

Pijk � 1

54

Emn

E2

�
EikZjmn � EjkZimn ÿ

1

4
�dikEjp � djkEip�Zpmn

�
: �22�

The length lE in (20), as discussed in Part I of this paper (Gao et al., 1999), is the
mesoscale cell size and is on the order of dislocation spacing at plastic yielding,
Lyield, i.e.

lE � bLyield � b
m
sY

b, �23�

where Lyield=mb/sY is the mean spacing between statistically stored dislocations at
plastic yielding, and b is a constant coe�cient to be determined from experiments.
In order to ensure that there are multiple dislocations within the mesoscale cell, it
is suggested in Part I of this paper (Gao et al., 1999) that br1. On the other
hand, in order to ensure that there are at least a few mesoscale cells within the
characteristic material length l for strain gradient plasticity such that the
homogenization at the mesoscale still holds in this multiscale framework, the cell
size as well as the coe�cient b cannot be too large. For typical metallic materials,
the intrinsic material length l is on the order of 100 times the mean dislocation
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spacing Lyield at plastic yielding (Gao et al., 1999). Therefore we suggest that b is
between 1 and 10.

Eqs. (1), (2), (6), (19) and (20) constitute the governing equations for
mechanism-based strain gradient plasticity. The traction boundary conditions are
given in (8), (9) and (13). There are two constants in MSG plasticity that are to be
determined by experiments, namely the coe�cient a in Taylor's dislocation model
for plastic work hardening and the normalized mesoscale cell size b in (23),
ranging from 0.2 to 0.5 and from 1 to 10, respectively.

We use the mechanism-based strain gradient (MSG) plasticity theory to
investigate several phenomena that are in¯uenced by plastic strain gradient e�ects
in the following sections, including bending of thin beams, torsion of thin wires,
growth of spherical and cylindrical voids, cavitation instabilities, a bimaterial
interface in shear and a ®ber embedded in an in®nite matrix in shear.

2. Bending of thin beams

In bending of ultra thin nickel beams with the beam thickness ranging from
12.5 to 100 m, Stolken and Evans (1998) observed a strong size e�ect whereby thin
beams (e.g. 12.5 m thickness) display much stronger plastic work hardening than
thick ones (e.g. 100 m thickness). This size e�ect in bending cannot be explained
by classical plasticity, which does not depend on an intrinsic material length. In
this section, we use MSG plasticity to investigate bending of ultra-thin beams. For
simplicity, we assume the beam is under plane-strain bending.

The Cartesian reference frame is set such that the x1 axis coincides with the
neutral axis of the beam, and bending is applied in the (x1, x2) plane. A unit beam
width is taken in the out-of-plane (x3) direction. The curvature is designated k and
the beam thickness is designated h. Strains in the Cartesian reference frame and
the e�ective strain E are given by

E11 � ÿE22 � kx2, E12 � 0, E � 2���
3
p k j x2 j , �24�

where E22 is obtained from the assumptions of plane strain deformation (E33=0)
and incompressibility (Ekk=0). The corresponding displacement ®eld is u1 �
kx1x2,u2 � ÿ 1

2k�x2
1 � x2

2�. The non-vanishing strain gradients in the Cartesian
reference frame and the e�ective strain gradient Z are given by

Z112 � Z222 � ÿk, Z121 � Z211 � k, Z � k: �25�
The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 011 � ÿ2s 022 � sign�x2� s���
3
p , �26�
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6

5
t 0121 �

6

5
t 0211 � ÿt 0222 � 6t 0233 � 6t 0323 �

kl2E s
2
Yf�E�f 0�E�
24s

, �27�

where sign(x2) stands for the sign of x2, s is the ¯ow stress given in (16), and lE is
the mesoscale cell size in (23).

The equilibrium Eq. (6) and traction-free boundary conditions on the top and
bottom surfaces of the beam (x2=2h/2) give the hydrostatic stress

H � ÿs 022 �
dt 0222
dx2

: �28�

The double-stress traction rÃk at the cross section of the beam is zero, while the
non-vanishing stress traction is

t̂1 � H� s 011 ÿ 2
dt 0211
dx2

:

There is a line traction at the edge between the cross section and top surface
(x2=h/2) of the beam, given by p̂1��2t 0211ÿ t 0222�x 2

� h=2. The line traction at the
edge between the cross section and bottom surface (x2=ÿh/2) is just the negative
of the above expression. These stress and line tractions give a pure bending

Fig. 1. The normalized bending moment, M/(sYh
2), vs the normalized curvature, kh, for several ratios

of intrinsic material length to beam thickness, l/h, where sY is the yield stress, h is the beam thickness,

and l is the intrinsic material length for mechanism-based strain gradient plasticity. The limit l/h= 0

corresponds to classical plasticity. Plastic work hardening exponent N = 0.2, shear modulus m=200sY,
the coe�cient a for Taylor's dislocation model=0.4, and the ratio b of mesoscale cell size lE to

dislocation spacing at plastic yielding is 1 for solid lines and 10 for dashed lines.
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moment M, i.e. there are no net forces or torques in the cross section. The
bending moment M can be obtained from the integration over the cross section of
moments induced by these tractions as

M �
�h=2
ÿh=2

"
2���
3
p j x2 j s� kl2E

9

s2Yf �E�f 0�E�
s

#
dx2: �29�

This moment-curvature relation can also be obtained from the principle of virtual
work by enforcing the equality of interval virtual work done by stresses and
higher-order stresses in the beam and external virtual work done by the moment,
similar to the method used by Fleck and Hutchinson (1997) for torsion.

The normalized bending moment, M/(sYh
2), vs the normalized curvature, kh, is

shown in Fig. 1 for several ratios of intrinsic material length to beam thickness, l/
h. The limit l/h = 0 corresponds to classical plasticity. The plastic work hardening
exponent N is 0.2, the shear modulus m is 200 times the yield stress sY, and the
coe�cient a in (18) for Taylor's dislocation model is 0.4. These constants are also
used in all of the following examples, except where explicitly noted otherwise. In
order to investigate the sensitivity to the mesoscale cell size, lE, two ratios of cell

Fig. 2. The normalized bending moment, M/M0, vs the normalized curvature, kh, for several ratios of

intrinsic material length to beam thickness, l/h, where M0 is the bending moment from classical

plasticity, h is the beam thickness, and l is the intrinsic material length for mechanism-based strain

gradient plasticity. Plastic work hardening exponent N= 0.2, shear modulus m=200sY, the coe�cient

a for Taylor's dislocation model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at

plastic yielding is 10 for MSG plasticity (dashed lines). The dotted lines correspond to Fleck and

Hutchinson's (1997) phenomenological strain gradient plasticity with intrinsic material lengths l1=l/8,

l2=l/2, and l3=l
����������
5=24
p

.
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size to dislocation spacing at plastic yielding are taken, b=1 and b=10. The
results for the two values of b are indistinguishable in Fig. 1. The mesoscale cell
size lE has virtually no e�ect on the moment over the range of parameters
considered. Even at a ratio of l/h = 2, for which the beam thickness is half of the
intrinsic material length and is on the order of microns, b=10 corresponds to a
mesoscale cell size more than one ®fth of the beam thickness, yet the di�erence
between b=1 and b=10 is still rather small. This is because the approximation of
linear strain distribution within the mesoscale cell in MSG plasticity (Gao et al.,
1999) is accurate for pure bending.

The bending moment M, normalized by its counterpart M0 (kh ) for classical
plasticity, vs the normalized curvature kh is shown in Fig. 2 for several ratios of
intrinsic material length to beam thickness, l/h, where the ratio of mesoscale cell
size to dislocation spacing at plastic yielding is b=10, and M0 can be obtained
from (29) by taking l = 0 and lE=0. The horizontal lines in Fig. 2 correspond to
the bending moment estimated by Fleck and Hutchinson's (1997)
phenomenological strain gradient plasticity since both M and M0 are proportional
to kN. The intrinsic material lengths in phenomenological strain gradient plasticity
are l1=l/8, l2=l/2, and l3 � l

����������
5=24
p

, as suggested by Begley and Hutchinson
(1998), where li's are de®ned in Part I (Gao et al., 1999). This combination of
material lengths for phenomenological strain gradient plasticity and b=10 for
MSG plasticity are also used in all of the following comparisons between two
strain gradient plasticity theories. As far as bending is concerned, it appears that
the MSG representation signi®cantly underestimates the plastic work hardening
reported by Stolken and Evans (1998) at small curvatures k, which displays
relatively large moment increases due to strain gradients in the range of small k.
However, this is reversed at large curvatures, i.e. MSG plasticity gives a larger
bending moment than phenomenological strain gradient plasticity when the
curvature is large. This is because the ¯ow stresses are di�erent in two theories. In
phenomenological strain gradient plasticity, the ¯ow stress is obtained from the
uniaxial stress±strain relation (14) by replacing the strain E with a combined
measure of e�ective strain and e�ective strain gradient

������������������
E2 � l 2Z2

p
. The ¯ow stress

in MSG plasticity, however, is given in (16). The strain gradient term lZ in (16) is
proportional to k, while f 2(E ) is proportional to k 2N. Therefore, the ¯ow stress at
a large curvature in MSG plasticity is on the order of

���
k
p

, while the ¯ow stress in
phenomenological strain gradient plasticity is only on the order of kN and is
smaller. However, at an in®nitesimal curvature, both ¯ow stresses are on the order
of kN because the strain gradient term lZ becomes negligible in (16), such that the
¯ow stress in phenomenological strain gradient plasticity becomes larger.

3. Torsion of thin wires

Fleck et al. (1994) observed in twisting of thin copper wires that the scaled
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shear strength increases signi®cantly as the wire diameter decreases from 170 to 12
m, whereby the shear ¯ow strength of the thinnest wires is about three times of
that of the thickest wires. However, no size dependence is observed in the tension
tests, which induce no strain gradient. Here again, this size e�ect in torsion cannot
be explained by classical plasticity, which involves no intrinsic material length. In
this section, we use MSG plasticity to investigate torsion of thin wires.

The Cartesian reference frame is set such that the x1 and x2 axes are within the
cross section of the wire, while the x3 axis coincides with the central axis of the
wire. The twist per unit length is designated k and the radius of the wire is
designated a. The displacement ®eld is u1=ÿkx2x3, u2=kx1x3, u3=0. The non-
vanishing strains and strain gradients in the Cartesian reference frame and the
e�ective strain E and e�ective strain gradient Z are given by

E13 � E31 � ÿk
2
x2, E23 � E32 � k

2
x1, E � 1���

3
p kr, �30�

Z231 � Z321 � ÿk, Z132 � Z312 � k, Z � k, �31�
where r �

����������������
x2
1 � x2

2

q
is the radius in polar coordinates (r, y ).

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 013 � s 031 �
2E13
3E

s, s 023 � s 032 �
2E23
3E

s; �32�

ÿt 0113 � t 0223 � ÿ2t 0311 � ÿ2t 0131 � 2t 0322 � 2t 0232 �
kl2E
36

x1x2

r2

�
s2Yf�E�f 0�E�

s
ÿ s

E

�
,

t 0123 � t 0213 �
kl2E
72

x2
1 ÿ x2

2

r2

�
s2Yf �E�f 0�E�

s
ÿ s

E

�
,

t 0132 � t 0312 �
kl2E
72

�
x2
1

r2
s2Yf �E�f 0�E�

s
� x2

2

r2
s
E

�
,

t 0231 � t 0321 � ÿ
kl2E
72

�
x2
2

r2
s2Yf�E�f 0�E�

s
� x2

1

r2
s
E

�
; �33�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
The equilibrium Eq. (6) and traction-free boundary conditions on the lateral

surface of the wire (r=a ) give a vanishing hydrostatic stress, i.e.

H � 0: �34�
The double-stress traction rÃk in the cross section of the wire is zero, while the non-
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vanishing stress tractions are

t̂1 � s 031 ÿ 2
dt 0311
dx1
ÿ 2

dt 0321
dx2

, t̂2 � s 032 ÿ 2
dt 0312
dx1
ÿ 2

dt 0322
dx2

:

There is a line traction along the circumferential (y ) direction at the edge between
the cross section and lateral surface (r=a ) of the wire, given by

p̂y �
kl2E
36

s2Yf �E�f 0�E�
s

:

These stress and line tractions give a pure torque T, i.e. there are no net forces or
bending moments in the cross section. The torque T can be obtained from the
integration over the cross section of torques induced by these tractions as

T � 2

3
pk
�a
0

r

��
r2 � l2E

12

�
s
E
� l2E

12

s2Yf �E�f 0�E�
s

�
dr: �35�

This torque vs twist-per-unit-length relation can also be obtained from the
principle of virtual work by enforcing the equality of interval virtual work done

Fig. 3. The normalized torque, T/(sYa
3), vs the normalized twist per unit length, ka, for several ratios

of intrinsic material length to wire radius, l/a, where sY is the yield stress, a is the wire radius, and l is

the intrinsic material length for mechanism-based strain gradient plasticity. The limit l/a= 0

corresponds to classical plasticity. Plastic work hardening exponent N = 0.2, shear modulus m=200sY,
the coe�cient a for Taylor's dislocation model=0.4, and the ratio b of mesoscale cell size lE to

dislocation spacing at plastic yielding is 1 for solid lines and 10 for dashed lines.
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by stresses and higher-order stresses in the wire and external virtual work done by
the torque, as detailed in Fleck and Hutchinson (1997).

The normalized torque, T/(sYa
3), vs the normalized twist per unit length, ka, is

shown in Fig. 3 for several ratios of intrinsic material length to wire radius, l/a.
The limit l/a = 0 corresponds to classical plasticity. Once again, in order to
investigate the sensitivity to the mesoscale cell size, lE, two ratios of cell size to
dislocation spacing at plastic yielding are taken, b=1 and b=10. It is observed
that the torque-twist relation is rather insensitive to the parameter b, as well as to
the mesoscale cell size lE. When l/a = 2, the wire radius is half of the intrinsic
material length and is on the order of microns, and b=10 corresponds to a
mesoscale cell size more than one ®fth of the wire radius; nevertheless, the
di�erence between b=1 and b=10 is still rather small. This indicates that, even
though the strain distribution (in a Cartesian reference frame) is not linear in
torsion, MSG plasticity still gives a rather weak dependence on the mesoscale cell
size.

It can be seen from Fig. 3 that the increase in plastic work hardening for a thin
wire under torsion is slightly smaller than that observed in Fleck et al.'s (1994)

Fig. 4. The normalized torque, T/T0, vs the normalized twist per unit length, ka, for several ratios of

intrinsic material length to wire radius, l/a, where T0 is the torque from classical plasticity, a is the wire

radius, and l is the intrinsic material length for mechanism-based strain gradient plasticity. Plastic work

hardening exponent N= 0.2, shear modulus m=200sY, the coe�cient a for Taylor's dislocation

model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at plastic yielding is 10 for

MSG plasticity (dashed lines). The dotted lines correspond to Fleck and Hutchinson's (1997)

phenomenological strain gradient plasticity with intrinsic material lengths l1=l/8, l2=l/2, and

l3=l
����������
5=24
p

.
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experiments. For example, the torque for l/a = 1 is approximately twice of that of
classical plasticity (l/a = 0), and is smaller than the increase in shear ¯ow strength
by a factor of two to three for the thinnest wires in Fleck et al.'s experiments
(1994).

The torque T, normalized by its counterpart T0 (ka ) for classical plasticity, vs
the normalized twist per unit length ka is shown in Fig. 4 for several ratios of
intrinsic material length to wire radius, l/a, where T0 can be obtained from (35) by
taking l = 0 and lE=0. The horizontal lines in Fig. 4 correspond to the torque
estimated by Fleck and Hutchinson's (1997) phenomenological strain gradient
plasticity since both T and T0 are proportional to kN. As far as torsion is
concerned, it appears that the MSG representation underestimates the plastic
work hardening at small twists per unit length k reported by Fleck et al. (1994),
which displays relatively large torque increases due to strain gradients in the range
of small k. It is observed that phenomenological strain gradient plasticity gives a
larger torque than MSG plasticity at small twists per unit length, but this is
reversed when the twist per unit length becomes large, consistent with Fig. 2 for
bending moment. This is once again due to the di�erence in ¯ow stress in two
theories.

4. Void growth: the role of void size

The nucleation, growth and coalescence of microvoids is a common fracture
mechanism of ductile metals. Though there have been signi®cant studies on the
mechanics of void growth based on classical plasticity theory (e.g. Rice and Tracy,
1969; Gurson, 1977; Tvergaard, 1990; Huang, 1991; Needleman et al., 1992), these
studies do not show any dependence on void size since classical plasticity theories
do not involve an intrinsic material length. It is therefore of interest to investigate
the e�ect of void size on the void growth phenomena, particularly for micron- and
submicron-sized voids. In this section, we use MSG plasticity to investigate the
following two simplest cases: (1) growth of a spherical void in an in®nite medium
subjected to remote spherically symmetric tension, and (2) growth of a cylindrical
void in an in®nite medium subjected to remote equi-biaxial tension.

4.1. Growth of spherical voids

A spherical void of initial radius R0 in an in®nite medium is subjected to remote
spherically symmetric tension, s1. The spherical coordinates (R, y, f ) are used.
The solid is incompressible, so that the non-vanishing displacement in spherical
coordinates is

uR � R2
0

R2
u0, �36�
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where u0 is the displacement on the void surface. The non-vanishing strains and
strain gradients in spherical coordinates are

ERR � ÿ2Eyy � ÿ2Eff � ÿ2R
2
0

R3
u0, �37�

ZRRR � ÿ2ZRyy � ÿ2ZyRy � ÿ2ZRff � ÿ2ZfRf � ÿ2ZyyR � ÿ2ZffR

� 6
R2

0

R4
u0: �38�

The e�ective strain E and e�ective strain gradient Z are given by

E � 2
R2

0

R3
u0, Z � 3

����
5

2

r
R2

0

R4
u0: �39�

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 0RR � ÿ2s 0yy � ÿ2s 0ff � ÿ
2

3
s; �40�

t 0RRR � ÿ2t 0Ryy � ÿ2t 0yRy � ÿ2t 0Rff � ÿ2t 0fRf �
l2E
12

R2
0

R4
u0

�
3s2Yf �E�f 0�E�

s
� s

E

�
,

t 0yyR � t 0ffR � ÿ
l2E
6

R2
0

R4
u0

s
E
; �41�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
The equilibrium Eq. (6) and traction-free boundary conditions on the void

surface (R=R0) give the hydrostatic stress H as

H � dt 0RRR

dR
� 2

R
�2t 0RRR ÿ 2t 0Ryy ÿ t 0yyR� ÿ s 0RR

� 2

�R
R0

�
3
t 0RRR ÿ 2t 0Ryy ÿ t 0yyR

R2
ÿ s 0RR ÿ s 0yy

R

�
dR: �42�

As R approaches in®nity, all deviatoric stresses and higher-order stresses vanish,
such that (42) gives the remotely applied spherically symmetric stress,

s1 � 2

�1
R0

�
3
t 0RRR ÿ 2t 0Ryy ÿ t 0yyR

R2
ÿ s 0RR ÿ s 0yy

R

�
dR: �43�

The substitution of deviatoric stresses and higher-order stresses in (40) and (41)
into the above expression gives
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s1 � 2

�1
R0

�
s
R
� l2E

2

R2
0

R6
u0

�
2s
E
� 3s2Yf�E�f 0�E�

s

��
dR: �44�

The remotely applied stress, s1, normalized by the yield stress sY, vs the
normalized displacement on the void surface, u0/R0, is shown in Fig. 5 for several
ratios of intrinsic material length to initial void radius, l/R0. The limit l/R0=0
corresponds to classical plasticity, while l/R0=2 and l/R0=5 correspond to
micron-sized voids since the intrinsic material length l is on the order of microns
(e.g. 5 m for copper). It is observed that, for micron-sized voids (e.g. l/R0=2 and
5), the void growth is rather insensitive to the parameter b, as well as to the
mesoscale cell size lE. The di�erence between b=1 and b=10 is slightly larger than
those in Figs. 1 and 3, because l/R0=5 and b=10 corresponds to a relatively large
mesoscale cell size, more than half of the initial radius of the void. This supports
the conclusions established from the previous sections for bending and torsion
that MSG plasticity predicts a rather weak dependence on the mesoscale cell size.

It is also observed from Fig. 5 that the curves for l/R0=0, 2 and 5 are rather
close. For example, the curve for l/R0=5 is no more than 25% higher than the

Fig. 5. The remotely applied stress, s1, normalized by the yield stress sY, vs the normalized

displacement on the surface of a spherical void, u0/R0, for several ratios of intrinsic material length to

initial void radius, l/R0, where R0 is the initial radius of the void, and l is the intrinsic material length

for mechanism-based strain gradient plasticity. The limit l/R0=0 corresponds to classical plasticity.

Plastic work hardening exponent N = 0.2, shear modulus m=200sY, the coe�cient a for Taylor's

dislocation model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at plastic yielding

is 1 for solid lines and 10 for dashed lines.
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prediction by classical plasticity (l/R0=0). Therefore, MSG plasticity predicts
small e�ects of the radius of micron-sized voids on their growth. However, we
must point out that this conclusion is limited to micron-sized voids. In fact, for
submicron-sized voids (e.g. l/R0r20), we have found that the corresponding
curves are much higher than those in Fig. 5, indicating the submicron-sized voids
are much less susceptible to growth at a given stress state than larger voids.

The remotely applied stress s1, normalized by its counterpart (s1)0 for
classical plasticity, vs the normalized displacement u0/R0 on the void surface is
shown in Fig. 6 for a micron-sized void (l/R0=1) and a submicron-sized void (l/
R0=10), where (s1)0 can be obtained from (44) by taking l= 0 and lE=0. The
horizontal lines in Fig. 6 correspond to the remotely applied stress estimated by
Fleck and Hutchinson's (1997) phenomenological strain gradient plasticity. For a
micron-sized void (l/R0=1), the di�erence between two theories are relatively
small. For a submicron-sized void (l/R0=10), the phenomenological strain
gradient plasticity gives a larger remotely applied stress than MSG plasticity in the

Fig. 6. The remotely applied stress, s1, normalized by the counterpart in classical plasticity, (s1)0, vs
the normalized displacement on the surface of a spherical void, u0/R0, for several ratios of intrinsic

material length to initial void radius, l/R0, where R0 is the initial radius of the void, and l is the

intrinsic material length for mechanism-based strain gradient plasticity. Plastic work hardening

exponent N = 0.2, shear modulus m=200sY, the coe�cient a for Taylor's dislocation model=0.4, and

the ratio b of mesoscale cell size lE to dislocation spacing at plastic yielding is 10 for MSG plasticity

(dashed lines). The dotted lines correspond to Fleck and Hutchinson's (1997) phenomenological strain

gradient plasticity with intrinsic material lengths l1=l/8, l2=l/2, and l3=l
����������
5=24
p

.
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range of displacement on the void surface shown in Fig. 6. The di�erences
between the two theories, however, decrease as the void grows.

4.2. Growth of cylindrical voids

A cylindrical void of initial radius r0 in an in®nite medium is subjected to
remote equi-biaxial tension, s111=s122=s1. The cylindrical coordinates (r, y, z )
are used, where the z axis coincides with the central axis of the void. The solid is
incompressible and is under plane-strain deformation, such that the non-vanishing
displacement is ur=(r0/r )u0, where u0 is the displacement on the void surface. The
non-vanishing strains and strain gradients in cylindrical coordinates and the
e�ective strain E and e�ective strain gradient Z are given by

Err � ÿEyy � ÿr0
r2
u0, E � 2���

3
p r0

r2
u0, �45�

Zrrr � ÿZryy � ÿZyry � ÿZyyr � 2
r0
r3
u0, Z � 2

r0
r3
u0: �46�

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 0rr � ÿs 0yy � ÿ
1���
3
p s; �47�

t 0rrr �
l2E
36

r0
r3
u0

�
3s2Yf�E� f 0�E�

s
� s

E

�
,

t 0ryy � t 0yry � ÿ
l2E
72

r0
r3
u0

�
5s2Yf�E� f 0�E�

s
� 3s

E

�
,

t 0yyr � ÿ
l2E
9

r0
r3
u0

s
E
,

t 0rzz � t 0zrz � ÿ
l2E
72

r0
r3
u0

�
s2Yf�E�f 0�E�

s
ÿ s

E

�
; �48�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
The equilibrium Eq. (6) and traction-free boundary conditions on the void

surface (r=r0) give the hydrostatic stress H as
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H � dt 0rrr
dr
� 1

r
�2t 0rrr ÿ 2t 0ryy ÿ t 0yyr� ÿ s 0rr

�
�r
r0

�
2
t 0rrr ÿ 2t 0ryy ÿ t 0yyr

r2
ÿ s 0rr ÿ s 0yy

r

�
dr: �49�

As r approaches in®nity, all deviatoric stresses and higher-order stresses vanish,
such that (49) gives the remotely applied equi-biaxial stress,

s1 �
�1
r0

�
2
t 0rrr ÿ 2t 0ryy ÿ t 0yyr

r2
ÿ s 0rr ÿ s 0yy

r

�
dr: �50�

The substitution of deviatoric stresses and higher-order stresses in (47) and (48)
into the above expression gives

s1 � 2���
3
p

�1
20

"
s
r
� 2l2E

3
���
3
p r0

r5
u0

�
s
E
� s2Yf�E�f 0�E�

s

�#
dr: �51�

The remotely applied stress, s1, normalized by the yield stress sY, vs the

Fig. 7. The remotely applied stress, s1, normalized by the yield stress sY, vs the normalized

displacement on the surface of a cylindrical void, u0/r0, for several ratios of intrinsic material length to

initial void radius, l/r0, where r0 is the initial radius of the void, and l is the intrinsic material length for

mechanism-based strain gradient plasticity. The limit l/r0=0 corresponds to classical plasticity. Plastic

work hardening exponent N= 0.2, shear modulus m=200sY, the coe�cient a for Taylor's dislocation

model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at plastic yielding is 1 for

solid lines and 10 for dashed lines.
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normalized displacement on the void surface, u0/r0, is shown in Fig. 7 for several
ratios of intrinsic material length to initial void radius, l/r0. Once again, it is
observed that void growth is rather insensitive to the parameter b, as well as to
the mesoscale cell size lE, for micron-sized voids. Since curves in Fig. 7 are rather
close, it is found that MSG plasticity predicts little e�ect of the void radius of
micron-sized voids on their growth.

5. Cavitation instabilities

A void in an elastic-plastic solid will grow unstably at su�ciently high mean
stresses, a phenomenon called cavitation instability (Bishop et al., 1945; Huang et
al., 1991). Fleck and Hutchinson (1997) investigated the e�ect of void size on
cavitation instability by the phenomenological strain gradient plasticity, and
established that strain gradients delay cavitation to larger mean stresses when the
void size is on the order of microns. In this section, we investigate cavitation
instability in mechanism-based strain gradient plasticity.

A spherical void in an in®nite, incompressible solid is subjected to remote
triaxial tension. Since cavitation instabilities are dominated by a very high mean
stress, we can simplify the remote stress state to a spherically symmetric tension,
s1. The spherical coordinates (R, y, f ) in the initial con®guration and (r, y, f )
in the current con®guration are used, where we use R to designate the initial
radius of a material point in the undeformed con®guration, and r to denote the
current radius of the same material point in the deformed con®guration. The void
radius is denoted by R0 and r0 in the initial and current con®gurations,
respectively. It is important to distinguish between these two con®gurations
because ®nite strain e�ects play a crucial role in cavitation instability.

Cavitation is driven by the elastic energy stored in the remote ®eld (Huang et
al., 1991); therefore it is essential to include elasticity in the constitutive model.
We use the following elastic-power-law-hardening uniaxial stress±strain relation to
replace that in (15),

f�E� � EE
sY

if ERsY

E

f�E� �
�
EE
sY

�N

if E >
sY

E
, �52�

where E is the Young's modulus.
The incompressibility of the solid requires

R3 ÿ R3
0 � r3 ÿ r30: �53�

Its derivative with respect to time gives the particle velocity in the current
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con®guration,

vr � _r � r20
r2

_r0, �54�

where r
.
0 is the velocity of the void surface. The strain rates in the current

con®guration are

_Err � dvr

dr
, _Eyy � _Eff � vr

r
: �55�

Because the velocity ®eld is irrotational, we may integrate the strain rate tensor
with respect to time to obtain strains in ®nite deformation as

Err � ÿ2 ln
r

R
, Eyy � Eff � ln

r

R
: �56�

It is observed that the above expressions for strains are identical to logarithmic
true strains de®ned by Huang et al. (1991) for a spherically symmetric problem.
Similarly, the rates of strain gradients in the current con®guration are given in
terms of the velocity ®eld by

_Zrrr �
d2vr

dr2
, _Zryy � _Zyry � _Zrff � _Zfrf � _Zyyr � _Zffr �

d

dr

�
vr

r

�
: �57�

Accordingly, the integration of rates of strain gradients with respect to time gives
strain gradients in ®nite deformation,

Zrrr � 6

�
1

R
ÿ 1

r

�
,

Zryy � Zyry � Zrff � Zfrf � Zyyr � Zffr � ÿ3
�
1

R
ÿ 1

r

�
:

�58�

The e�ective strain E and e�ective strain gradient Z are given by

E � 2 ln

�
r

R

�
� 2

3
ln

 
r3

r3 ÿ r30 � R3
0

!
,

Z � 3

����
5

2

r �
1

R
ÿ 1

r

�
� 3

����
5

2

r "
1

�r3 ÿ r30 � R3
0�1=3
ÿ 1

r

#
, �59�

where the radius R of the material point in the initial, undeformed con®guration
has been eliminated by (53).

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric true stresses
and true higher-order stresses in the current con®guration

Y. Huang et al. / J. Mech. Phys. Solids 48 (2000) 99±128118



s 0rr � ÿ2s 0yy � ÿ2s 0ff � ÿ
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s; �60�

t 0rrr � ÿ2t 0ryy � ÿ2t 0yry � ÿ2t 0rff � ÿ2t 0frf
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,

t 0yyr � t 0ffr � ÿ
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1
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ÿ 1
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�
s
E
; �61�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
The equilibrium Eq. (6) can be written in terms of s 'ij, t 'ijk, and the hydrostatic

stress H as

Fig. 8. The cavitation stress, sc, normalized by the yield stress sY, vs the ratio of intrinsic material

length to initial void radius, l/R0, where R0 is the initial radius of the void, and l is the intrinsic

material length for mechanism-based strain gradient plasticity. The limit l/R0=0 corresponds to

classical plasticity. Plastic work hardening exponent N= 0.2 and N= 0, Young's modulus E= 500sY,
shear modulus m=200sY, the coe�cient a for Taylor's dislocation model=0.4, and the ratio b of

mesoscale cell size lE to dislocation spacing at plastic yielding is 1 for solid lines and 10 for dashed lines

in MSG plasticity. The dotted lines correspond to Fleck and Hutchinson's (1997) phenomenological

strain gradient plasticity with intrinsic material lengths l1=l/8, l2=l/2, and l3=l
����������
5=24
p

.
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dH

dr
� ds 0rr

dr
� 2

r
�s 0rr ÿ s 0yy� ÿ

d

dr

�
dt 0rrr
dr
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r
�t 0rrr ÿ t 0ryy ÿ t 0yyr�

�
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r

�
d
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�t 0rrr ÿ t 0ryy� �

1

r
�2t 0rrr ÿ 5t 0ryy ÿ 3t 0yyr�

�
� 0:

�62�

The traction-free boundary conditions on the void surface in the current
con®guration give the value of H at r=r0. Since all deviatoric stresses and higher-
order stresses vanish in the remote ®eld, the integration of (62) from the void
surface (r=r0) to in®nity gives the remotely applied spherically symmetric stress as

s1 � 2

�1
r0

(
s
r
� l2E

2r2

"
1

�r3 ÿ r30 � R3
0�1=3
ÿ 1

r

#�
2s
E
� 3s2Yf�E�f 0�E�

s

�)
dr: �63�

This is the relation between the void radius, r0, in the current con®guration and
the remotely applied stress, s1. The numerical integration for (63) has shown
that, as the void radius r0 starts to increase from the initial void radius R0, the
remote stress s1 also increases. However, when r0 exceeds a critical value,
typically from 1.3 to 3 times the initial void radius R0, the remote stress s1

begins to decrease as r0 increases, i.e. there exists a maximum value of remote
stress at which the void grows without bound (dr0/ds

1 41). This maximum
value of the remote stress is called the cavitation stress and is designated sc; it
represents the intrinsic limit for mean stress in a material.

The cavitation stress, sc, normalized by the yield stress sY, vs the ratio of
intrinsic material length to initial void radius, l/R0, is shown in Fig. 8. The limit l/
R0=0 corresponds to classical plasticity, while l/R0=1 and l/R0=10 correspond
to a micron-sized void and a submicron-sized void, respectively, since the intrinsic
material length l is on the order of microns. The plots show two values of the
plastic work hardening exponent N, 0.2 and 0, where the latter corresponds to an
elastic-perfectly plastic solid. The Young's modulus E is 500 times the yield stress
sY. It is observed that for both micron- and submicron-sized voids, the cavitation
stress is rather insensitive to the parameter b, as well as to the mesoscale cell size
lE.

Although strain gradient e�ects increase the cavitation stress, this increase in
MSG plasticity is di�erent from that in Fleck and Hutchinson's (1997)
phenomenological strain gradient plasticity. The cavitation stress in
phenomenological strain gradient plasticity with material lengths l1=l/8, l2=l/2,
and l3 � l

����������
5=24
p

(Begley and Hutchinson, 1998) is also shown in Fig. 8. For an
elastic-perfectly plastic solid (N = 0), MSG plasticity gives a slightly higher
cavitation stress than phenomenological strain gradient plasticity when the void
radius is larger than approximately one quarter of intrinsic material length l (i.e.
micron-sized void). When the void size is reduced to submicron, however, the
cavitation stress in phenomenological strain gradient plasticity increases rapidly
and becomes much higher than that in MSG plasticity. For submicron-sized voids
(l/R0=10), the cavitation stress in MSG plasticity is approximately 40% larger
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than the estimate based on classical plasticity, while the increase in
phenomenological strain gradient plasticity is more than 100%. For an elastic-
power law hardening solid (N = 0.2), the above observations also hold, except
that the curve for MSG plasticity becomes more ¯at, while the curve for
phenomenological strain gradient plasticity increases much more rapidly.

6. Bimaterials in shear

The studies in the previous sections all shared one feature, namely that the
deformation ®eld is known a priori except for a single amplitude factor, such as
the curvature in bending, twist per unit length in torsion, or displacement on the
void surface in void growth and cavitation instabilities. In this section, we study
two problems whereby the deformation ®elds are not known a priori and can only
be obtained numerically. First, a semi-in®nite material bonded to a rigid substrate
and subjected to remote shear. Second, an axisymmetric ®ber embedded in an
in®nite matrix subjected to shear parallel to the ®ber direction.

6.1. Bimaterial interfaces in shear

A semi-in®nite solid is bonded to a rigid substrate and is subjected to remotely
imposed pure shear. The Cartesian reference frame is set such that the interface
between the solid and the rigid substrate coincides with the plane x2=0, and the
shear is parallel to the x3 axis. The remote shear strain is designated E123. For
convenience, the remote engineering shear strain is designated g1 (=2E123).

The only non-vanishing displacement is the displacement u3, which depends
only on the distance away from the interface, i.e. u3 � w�x2�. The non-vanishing
strains and strain gradients in the Cartesian reference frame are

E23 � E32 � 1

2

dw

dx2
, Z223 �

d2w

dx2
2

:

The e�ective strain E and e�ective strain gradient Z are given by

E � 1���
3
p dw

dx2
, Z � 1

2

d2w

dx2
2

:

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 023 � s 032 �
1���
3
p s, �64�
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t 0223 � ÿ8t 0311 � ÿ8t 0131 �
8

3
t 0322 �

8

3
t 0232 � ÿ4t 0333 �

l2E
36

d2w

dx2
2

s2Yf�E�f 0�E�
s

, �65�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
It can be veri®ed from the equilibrium equation and traction-free condition of

the normal stress in the x3 direction that the hydrostatic stress H is zero, and the
equilibrium Eq. (6) becomes

ds 023
dx2
ÿ d2t 0223

dx2
2

� 0: �66�

The remote boundary conditions are

s 023�x241� � s123, t 0223�x241� � 0, �67�

where s123 is the remotely applied shear stress. Since the solid is bonded to a rigid
substrate, the displacement and rotation must vanish at the interface, so that

w � dw

dx2
� 0 at x2 � 0: �68�

It should be pointed out that the strain gradient e�ects come only from the
higher-order boundary conditions at the interface in this example. In other words,
the simple solution of uniform shear stress and strain would hold if the vanishing
of rotation dw/dx2=0 at x2=0 were not imposed. This example illustrates the
additional scope of the higher order theory in an essential way.

It can be shown that Eqs. (66)±(68) have the following perturbation solution:

w � w0�x2� � l2Ew1�x2� � l4Ew2�x2� � � � � , �69�
where the zeroth order perturbation solution w0 is governed by

l

2

d2w0

dx2
2

� f 2�E0� � 3s12
23

s2Y
, �70�

and the ®rst order perturbation solution w1 is governed by

l

2

d2w1

dx2
2

� 2���
3
p f�E0� f 0�E0�dw1

dx2
� 2���

3
p d

dx2

"
f�E0�f 0�E0�d

2w0

dx2
2

#
: �71�

Here l is the intrinsic material length in (18), f is the uniaxial stress±strain relation
given in (52), and E0 is the e�ective strain for the zeroth order perturbation
solution, i.e. E0=(1/

���
3
p

) dw0/dx2.
The displacement near the interface, normalized by the remote engineering

strain g1 and the intrinsic material length l, vs the normalized distance to the
interface, x2/l, is shown in Fig. 9(a) for remote shear strain g1=0.1gY, where
gY �

���
3
p

sY=E is the yield strain in pure shear. The Young's modulus E is 500
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Fig. 9. The displacement near the interface, normalized by the remote engineering strain g1 and the

intrinsic material length l, vs the normalized distance to the interface, x2/l. Plastic work hardening

exponent N= 0.2, Young's modulus E = 500sY, shear modulus m=200sY, the coe�cient a for

Taylor's dislocation model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at

plastic yielding is 1 for solid lines and 10 for dashed lines. (a) Remote shear strain g1=0.1gY, where
gY=

���
3
p

sY/E is the yield strain in pure shear; (b) remote shear strain g1=gY.
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times the yield stress sY. It is observed that the curves corresponding to b=1 and
b=10 are quite separate near the interface, but begin to converge away from the
interface, indicating a clear boundary layer e�ect. For a much larger remote
loading g1=gY, shown in Fig. 9(b), the boundary layer e�ect becomes much
more signi®cant; that is, the curves converge much more slowly. This model
problem clearly shows that, even though the mesoscale cell size has little e�ect on
global physical quantities such as bending moment, torque, and remotely applied
stress, it can a�ect the local deformation and strain ®elds, particularly near a solid
interface. In other words, the parameter b may be important to the local
deformation ®eld.

6.2. The axisymmetric ®ber-matrix interaction in shear

In order to further investigate the role of mesoscale cell size on the local
deformation ®eld, we examine a ®ber embedded in an in®nite matrix subjected to
shear parallel to the ®ber direction. This is similar to a ®ber pull-out problem,
looking at the behavior away from the ®ber ends and neglecting the ®ber/matrix
interfacial debonding. A cylindrical rigid ®ber of radius a is bonded to an in®nite
matrix material. The cylindrical coordinates (r, y, x3) are set such that the x3 axis
coincides with the ®ber axis. The matrix material is subjected to remote shear in
the x3 direction.

The only non-vanishing displacement is u3=w(r ), which depends only on r due
to axisymmetry. The non-vanishing strains and strain gradients in cylindrical
coordinates are

Er3 � E3r � 1

2

dw

dr
, Zrr3 �

d2w

dr2
, Zyy3 �

1

r

dw

dr
:

The e�ective strain E and e�ective strain gradient Z are given by

E � 1���
3
p dw

dr
, Z � 1

2

������������������������������������������
d2w

dr2

�2

�
�
1

r

dw

dr

�2
s

:

The constitutive Eqs. (19) and (20) give non-vanishing deviatoric stresses and
higher-order stresses as

s 0r3 � s 03r �
1���
3
p s, �72�

t 0rr3 �
l2E
36

s2Yf�E�f 0�E�
s

d2w

dr2
,

t 0yy3 �
l2E
36

s
E
1

r

dw

dr
,

Y. Huang et al. / J. Mech. Phys. Solids 48 (2000) 99±128124



t 03rr � t 0r3r �
l2E
288

�
3s2Yf�E�f 0�E�

s
d2w

dr2
ÿ s

E
1

r

dw

dr

�
,

t 03yy � t 0y3y � ÿ
l2E
288

�
s2Yf�E� f 0�E�

s
d2w

dr2
ÿ 3s

E
1

r

dw

dr

�
,

t 0333 � ÿ
l2E
144

�
s2Yf�E� f 0�E�

s
d2w

dr2
� s

E
1

r

dw

dr

�
; �73�

where s is the ¯ow stress given in (16), and lE is the mesoscale cell size in (23).
The hydrostatic stress H is zero, and the equilibrium Eq. (6) becomes

rs 0r3 ÿ t 0rr3 � t 0yy3 ÿ r
dt 0rr3
dr
� A, �74�

where A is a constant representing the amplitude of remotely applied shear stress
because s 'r3 is on the order of Arÿ1 as r41. The other remote boundary
condition is the vanishing of the higher-order stress traction, i.e. t 'rr3(r41)=0.
Since the matrix is bonded to a rigid ®ber, the displacement and rotation must
vanish at the interface, so that

w � dw

dr
� 0 at r � a: �75�

It should be pointed out that the strain gradient e�ects come not only from the
higher-order boundary conditions at the ®ber/matrix interface, but also from the
intrinsic characteristics of non-uniform deformation in this example. Even if the
higher-order boundary condition dw/dr= 0 is not imposed at the interface,
classical plasticity still gives a non-uniform distribution of shear stress sr3=A/r,
where r is the polar radius in the cylindrical coordinates, and A is the same
constant as in (74) for the amplitude of remotely applied shear stress. Therefore,
this example illustrates combined e�ects of higher-order boundary conditions as
well as the intrinsic strain gradients in the higher order theory.

The displacement, normalized by the corresponding value at a distance of 20%
of ®ber radius to the ®ber/matrix interface (i.e. at r=b = 1.2a ), vs the normalized
distance to the interface, r/a, is shown in Fig. 10. The void radius a is the same as
the intrinsic material length l. The Young's modulus E is 500 times the yield stress
sY. The curve for b=10 is much higher than that for b=1, indicating a strong
dependence of the local deformation ®eld on the mesoscale cell size. This con®rms
the conclusion established in section 6.1 that, even though the mesoscale cell size
has little e�ect on global physical quantities such as the remotely applied stresses,
it can a�ect the local deformation and strain ®elds.
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7. Summary

In this paper, we have used the mechanism-based strain gradient (MSG)
plasticity to investigate several sample applications, including bending of thin
beams, torsion of thin wires, growth of microvoids, cavitation instabilities, and
bimaterials in shear. It is established that, in general, results based on MSG
plasticity are quite di�erent from those of classical plasticity theories, particularly
when the characteristic length of the deformation is on the order of microns or
smaller. It is established that the mesoscale cell size lE has little e�ect on the global
physical quantities such as bending moments, torques, and applied stresses,
though it can a�ect the local deformation ®eld, particularly near the boundary of
a solid. Results of this study are summarized in the following.

1. In bending of thin beams or torsion of thin wires, strain gradients signi®cantly
increase the plastic work hardening of materials, particularly when the beam
thickness or wire radius is on the order of microns. For the same curvature in
bending (or twist per unit length in torsion), the bending moment (torque) for
micron-sized beams (wires) can be three times that estimated from classical
plasticity. At small curvatures, however, MSG plasticity seems to underestimate
the bending moment reported by Stolken and Evans (1998), and gives a smaller
bending moment (or torque in torsion) than phenomenological strain gradient

Fig. 10. The displacement, normalized by the corresponding value at a distance of 20% of ®ber radius

to the ®ber/matrix interface (i.e. at r = 1.2a ), vs the normalized distance to the interface, r/a. The void

radius a is the same as the intrinsic material length l. Plastic work hardening exponent N = 0.2,

Young's modulus E = 500sY, shear modulus m=200sY, the coe�cient a for Taylor's dislocation

model=0.4, and the ratio b of mesoscale cell size lE to dislocation spacing at plastic yielding is 1 for

solid lines and 10 for dashed lines.
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plasticity does (Fleck and Hutchinson, 1993, 1997; Fleck et al., 1994). However,
this comparison between MSG plasticity and phenomenological strain gradient
plasticity gives an opposite trend when the curvature (twist per unit length)
becomes large.

2. Although strain gradients delay void growth and cavitation instabilities to
larger mean stresses, this e�ect is only signi®cant for submicron-sized voids.
For micron-sized voids, the increase in resistance against void growth and
cavitation instabilities is only a few percent over that of classical plasticity. This
is consistent with the estimate by phenomenological strain gradient plasticity
(Fleck and Hutchinson, 1997). However, for submicron-sized voids, strain
gradient e�ects are important. For example, a void size of 0.5 m in copper can
give a 40% increase in cavitation stress in MSG plasticity, while the increase is
even higher (more than 100%) in phenomenological strain gradient plasticity.

3. The mesoscale cell size introduced in the multiscale framework in Part I of this
study (Gao et al., 1999) has little e�ect on the global physical quantities such as
bending moments, torques, and applied stresses. But it can change the local
deformation ®eld signi®cantly, as observed near interfaces in bimaterials.

Acknowledgements

The work of YH was supported by the NSF through Grant INT-9423964 and
CMS-9896285 and by the NSF of China. The work of HG was supported by the
NSF Young Investigator Award MSS-9358093. The work of WDN was supported
by the DOE through grant DE-FG03-89ER45387. The work of JWH was
supported in part by the ONR through grant N00014-96-10059 and by the NSF
through grant CMS-96-34632. YH and HG acknowledge helpful discussions with
Keh-Chih Hwang.

References

Begley, M.R., Hutchinson, J.W., 1998. The mechanics of size-dependent indentation. J. Mech. Phys.

Solids 46, 2049±2068.

Bishop, R.F., Hill, R., Mott, N.F., 1945. The theory of indentation and hardness tests. Proc. Phys.

Soc. 57, 147±159.

Fleck, N.A., Hutchinson, J.W., 1993. A phenomenological theory for strain gradient e�ects in plas-

ticity. J. Mech. Phys. Solids 41, 1825±1857.

Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. Advances in Applied Mechanics 33,

295±361.

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient plasticity: theory and

experiment. Acta Metallurgica et Materialia 42, 475±487.

Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based strain gradient plasticityÐ

I. Theory. J. Mech. Phys. Solids 47, 1239±1263.

Y. Huang et al. / J. Mech. Phys. Solids 48 (2000) 99±128 127



Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: part I±yield

criteria and ¯ow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2±15.

Huang, Y., 1991. Accurate dilatation rate for spherical voids in triaxial stress ®elds. J. Appl. Mech. 58,

1084±1086.

Huang, Y., Hutchinson, J.W., Tvergaard, V., 1991. Cavitation instabilities in elastic-plastic solids. J.

Mech. Phys. Solids 39, 223±241.

Koiter, W.T., 1964. Couple stresses in the theory of elasticity, I and II. Proc. K. Ned. Akad. Wet. (B)

67, 17±44.

Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51±78.

Mindlin, R.D., 1965. Second gradient of strain and surface tension in linear elasticity. Int. J. Solids

Struct. 1, 417±438.

Needleman, A., Tvergaard, V., Hutchinson, J.W., 1992. Void growth in plastic solids. In: Argon, A.S.

(Ed.), Topics in Fracture and Fatigue. Springer-Verlag, New York, pp. 145±178.

Nix, W.D., Gao, H., 1998. Indentation size e�ects in crystalline materials: a law for strain gradient

plasticity. J. Mech. Phys. Solids 46, 411±425.

Rice, J.R., Tracy, D.M., 1969. On the ductile enlargement of holes in triaxial stress ®elds. J. Mech.

Phys. Solids 17, 201±217.

Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale.

Acta Materialia 46, 5109±5115.

Tvergaard, V., 1990. Material failure by void growth to coalescence. Adv. Appl. Mech. 27, 83±147.

Toupin, R.A., 1962. Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385±414.

Y. Huang et al. / J. Mech. Phys. Solids 48 (2000) 99±128128


