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Abstract

Buckling of cylindrical sandwich shells subject to axial compression is addressed for shells having foamed metal

cores. Optimal face sheet thickness, core thickness and core density are obtained which minimize the weight of a

geometrically perfect shell with a speci®ed load carrying capacity. Constraints imposed by wrinkling and yielding of the

face sheets and yielding of the core are all considered. The range of the structural load index is identi®ed for which the

sandwich shells have a competitive weight advantage over stringer sti�ened shells. In most of this range, the minimum

weight design has elastic buckling simultaneous with face sheet yielding. Imperfection sensitivity of the shells is assessed

with special emphasis on the role of plasticity in degrading strength, especially in light of the coincidence of elastic

buckling and face sheet yielding in the optimally designed perfect shell. The purpose is to examine the interaction

between imperfections and plastic yielding to see if buckling load knockdowns should be larger than those expected for

elastic shells. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Economical processes to produce metal foams have advanced to the point where applications are being
explored (Evans et al., 1998). Application as cores for sandwich plates and shells is considered promising
for a number of reasons. Face sheets can be integrally formed with a closed cell core producing sandwiches
without the usual environmental and delamination susceptibilities of honeycomb sandwiches. Methods are
being developed which permit sandwich components to be curved to form a shell prior to foaming the core.
If successful, such methods would side step the di�cult and costly process of assembling a sandwich shell by
joining precurved face sheets and core. Integrally formed metal foam core sandwich panels may also have
thermal and acoustic advantages over the conventional panel structure.

This article addresses two issues related to axially loaded cylindrical sandwich shells with metal foam
cores. The ®rst is to identify the load range for which the sandwich shells have a competitive weight ad-
vantage over shells of a more conventional construction. The second is to examine the interaction between
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imperfections and plastic yielding in optimally designed sandwich shells to see if larger buckling load
knockdowns than those occurring for elastic cylindrical shells are to be expected.

Agarwal and Sobel (1977) established the weight competitiveness of a honeycomb sandwich construction
for cylindrical shells under axial compression compared to the more established construction involving
rings and sti�eners. By comparing weight optimized shells, these authors showed that honeycomb sand-
wiches o�er a substantial weight advantage over a signi®cant load range. It does not follow from this
®nding that metal foamed core sandwiches will necessarily have a similar competitive weight advantage
because the relative core weight of these sandwiches is much greater than that for honeycomb construction.
Indeed, Budiansky (1999) has found that ¯at sandwich panels with metal foam cores generally do not have
a potential weight advantage over their axially sti�ened counterparts for the case of uniaxial loads. There is,
however, no bene®t derived from the equi-biaxial stretching and bending sti�nesses of the sandwich con-
struction in the case of a uniaxially loaded ¯at panel, whereas, the biaxial sti�nesses do contribute to load
carrying capacity in most shell buckling problems. Thus, it will be seen that there is an important range of
loads for which optimized sandwich construction employing cores of metal foam have a distinct weight
advantage over the lightest weight metal stringer construction for cylindrical shells loaded in axial com-
pression.

The uniaxially compressed sandwich shells will be optimized under the assumption that they are free of
imperfections. The strong buckling sensitivity of this class of structures to geometric imperfections is
usually taken into account by use of a knock-down factor multiplying the buckling load of the perfect shell,
thereby reducing the estimated load carrying capability to a level deemed appropriate for shells of a given
radius to thickness ratio (NASA, 1965). Knock-down factors have been established empirically using a
large but diverse set of experimental buckling loads obtained for shells which are designed to buckle in the
elastic range. The motivation for the present imperfection-sensitivity study stems from the fact that opti-
mized perfect sandwich shells turn out to have face sheet yielding coincident with overall buckling over
most of the load range in which they have a weight advantage. Thus, the question arises as to whether
interaction between imperfections and plastic yielding will require larger knock-down factors for these
shells. The starting point in the present analysis is the elastic imperfection-sensitivity analysis of Koiter
(1963) as extended by Tennyson and Chan (1990) to sandwich cylindrical shells under axial compression.
The onset of plastic yielding in the imperfect shell is determined, and it is shown that in most instances
buckling precedes yielding if the face sheet yield stress has been designed such that the perfect shell has
coincident yielding and elastic buckling. A numerical ®nite element model is also developed and employed
to address the interaction between imperfections and plastic yielding in the optimized shells.

The face sheets and the core are each taken to be isotropic. The face sheets have Young's modulus Ef ,
Poisson's ratio mf , compressive yield stress rY, weight density qf , and thickness t. The thickness of the core is
denoted by d. With the weight density of the fully dense core metal speci®ed by q0

c , the density of the metal
foam is given by qc � gq0

c , where g will be referred to as the relative density of the core. Following Gibson
and Ashby (1997) and Sugimura et al. (1997), the relation between Young's modulus of the core material,
Ec, and the relative density can be written as

Ec=E0
c � ag2; �1:1�

where E0
c is the modulus of the fully dense material and a is a numerical coe�cient chosen to give the best ®t

to experimental modulus data over the range of g of interest. Current manufacturing processes for metal
foams lead to a � 1 for relative densities centered about g � 0:1. If improvements in material morphology
can be made, there is reason to hope that modulus levels might be increased to levels consistent with a � 4.
A limited investigation of the in¯uence of this coe�cient will be made. With mc as Poisson's ratio of the
metal foam, the shear modulus of the core is Gc � Ec=�2�1� mc��. The compressive yield stress of the core
foam is denoted by rc

Y.
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2. Buckling of perfect axially compressed sandwich shells

2.1. Elastic overall buckling of perfect shell

A perfect cylindrical shell of radius R is considered subject to a uniform axial compressive force per unit
length, N, such that the total force is P � 2pRN . When end conditions are ignored, the classical elastic
buckling problem admits sinusoidal mode shapes which are periodic in the axial and circumferential di-
rections. Buckling (Zahn and Kuenzi, 1963; Sullins et al., 1969; Tennyson and Chan, 1990) takes place in an
axisymmetric mode with a short axial wavelength which is proportional to

���������
Rteff

p
, where teff �

���
3
p

d is the
e�ective shell thickness. Unlike the monocoque isotropic cylindrical shell, the buckling eigenvalues asso-
ciated with non-axisymmetric modes are appreciably higher than that of the critical axisymmetric mode if
the shear sti�ness of the core is low. A synopsis of the elastic buckling analysis is given in Appendix A. The
critical N for axisymmetric buckling is

N
EfR
� 2td�������������

1ÿ m2
f

p
R2

1

�
ÿ l���

2
p
�
; �2:1a�

where

l � Ef t�������������������
2�1ÿ m2

f �
p

GcR
: �2:1b�

This result applies if the length of the shell L is at least several times the axial buckle wavelength. The
applicability of this result also rests on the assumption that su�ciently strong end support conditions are in
e�ect. End conditions modify Eqs. (2.1a) and (2.1b) slightly, but not nearly as much as initial imperfections
which will be considered in Sections 4 and 5. Thus, Eqs. (2.1a) and (2.1b) are taken as the buckling criterion
for the perfect shell.

Formula (2.1a) has been simpli®ed assuming d is large compared to t, consistent with optimally designed
sandwich shells considered in Section 3. Thus, the bending sti�ness of each face sheet about its own
midplane can be neglected with little error. Additionally, the load carrying contribution of the core and its
contribution to the bending sti�ness have been neglected in this formula. (The core shear sti�ness is not
neglected.) As a consequence, the buckling load of the perfect shell is underestimated, but the error is small
when the elastic modulus of the core is su�ciently low compared to that of the face sheets (i.e.
Ec=Ef � 2t=d). Under these conditions, the primary function of the core is to maintain the separation of the
face sheets, which carry the axial load, and to provide an adequate shear sti�ness to carry transverse shear
forces in the shell when non-uniform deformations develop. When l de®ned in Eq. (2.1b) is small, there will
be relatively little reduction in the buckling load due to core shear compliance. Moreover, the validity of
Eq. (2.1a) requires that l < 1=

���
2
p

, ensuring that localized shear kinking is excluded. This condition will be
imposed on the shells considered. The ®nite element model of the shell employed in Section 6 accounts for
the contributions to the bending and stretching sti�nesses, verifying the small errors involved in making
these approximations in the analytical part of the study.

2.2. Yield of face sheets and core, and face sheet wrinkling

With rY as the compressive yield stress of the face sheets, the condition for face sheet yielding of the
perfect shell prior to, or simultaneous with, buckling is

N � 2trY: �2:2�
Yielding of the core does not directly a�ect the load carrying capacity as the core is assumed to support no
load. However, core yielding will a�ect the ability of the core to suppress face sheet wrinkling and to
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maintain initial postbuckling load carrying capacity. Yielding of the core prior to buckling in the perfect
shell will be avoided if the axial strain in the unbuckled shell, e � N=�2tEf�, does not exceed the uniaxial
compressive yield strain of the metal foam, rc

Y=Ec. In other words, core yielding is excluded if the yield
strain of the core is higher than that of the face sheets. If neither the core nor the face sheets have yielded,
face sheet wrinkling is governed by the condition that the compressive stress in the face sheet attain
B�EfE2

c�1=3
, where B is a coe�cient given by Allen (1969) which is approximately 0.58. The condition as-

sumes that the core is su�ciently thick and that there is no interaction with the opposite face sheet. In terms
of the compressive resultant stress, the onset of face wrinkling in the perfect shell occurs when

N � 2tB�EfE2
c�1=3

: �2:3�

3. Optimally designed perfect sandwich shells

Optimum con®gurations are sought for a cylindrical shells of prescribed radius R and length L that are
designed to carry a prescribed load P, or, equivalently, a prescribed load per circumferential length,
N � P=�2pR�. The face sheet material is speci®ed, and it is assumed that the fully dense base metal of the
foam in the core is the same as the face sheet material such that Ef � E0

c � E and qf � q0
c � q. The class of

metal foams characterizing the core is taken to be speci®ed in the sense that a in Eq. (1.1) is speci®ed. Two
optimization problems are posed. In the ®rst, the relative density g of the core is also taken to be speci®ed,
while thicknesses of the face sheets t and core d are sought that give rise to the minimum weight shell,
subject to the condition that N exceeds none of Eqs. (2.1a)±(2.3). In the second, termed the global optimum,
the relative core density g is treated as a variable in the minimization process along with t and d.

The weight of the shell is

W � 2pRLq�2t � gd�: �3:1�
The auxiliary function used to ®nd the variables characterizing the minimum weight shell is

F �t; d; g� � W ÿ k1 N
�
ÿ 2Etd=R�������������

1ÿ m2
p 1

�
ÿ 4gÿ2t=R

3a
�������������
1ÿ m2
p

��
ÿ k2�N ÿ 2trY� ÿ k3�N ÿ 2BEa2=3tg4=3�: �3:2�

The core shear modulus has been expressed in terms of the relative core density using Eq. (1.1) and
mc � 1=3. Poisson's ratio m in Eq. (3.2) is that of the face sheets. Three Lagrangian multipliers, ki, have been
introduced to enforce the constraints, Eqs. (2.1a)±(2.3), when they are active. The optimum sought is that
combination of variables with minimizes F subject to the constraints. The constraint associated with overall
buckling is always active because it is the only one of the three depending on d. If one or more of the
constraints is not active, the corresponding term in Eq. (3.2) is dropped.

3.1. Optimal shells with g prescribed

If the core density is chosen such that g > �rY=EBa2=3�3=4
, face sheet wrinkling will be excluded as a

possibility because face sheet yielding will always intervene ®rst. Assuming this is the situation, there are
two possibilities: (i) optimum weight is attained for a shell which buckles in the elastic range, or (ii) elastic
buckling and face sheet yielding occur simultaneously. In the case where face sheet yielding is not active,
combinations �W ;N� at the optimum are generated by regarding t as a free variable. The associated value of
d is given by

d=R � 2�a1 ÿ a2�t=R�gÿ2��t=R�
g�a1 ÿ 2a2�t=R�gÿ2� �3:3�
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with �W ;N� then evaluated from Eqs. (3.1) and (2.1a). Here, and throughout this article,

a1 � 2=
�������������
1ÿ m2
p

; a2 � 8=�3a�1ÿ m2��: �3:4�
These results are only valid in the range of t for which N < 2trY. When face sheet yielding (2.2) is active at
the optimum,

t � N
2rY

;
d
R
� N

ER
�a1t=Rÿ a2�t=R�2gÿ2�ÿ1 �3:5�

and W is obtained from Eq. (3.1).
Fig. 1a presents the weight index, W =�2pR2Lq�, as a function of the load index, N=�ER�, for the optimum

shells for two values of the relative core density and a yield stress representative of an aluminum structural
alloy, rY=E � 0:007. The curves for the sandwich shells are independent of the length of the shell, L. For

Fig. 1. (a) Weight index versus load index for metal foam core cylindrical sandwich shells under axial compression. For each value of

the load index, the shell's face sheet and core thicknesses have been chosen to minimize its weight at prescribed values of the relative

core density g. The curve for the axially sti�ened cylinder applies to an optimized hat-sti�ened shell buckling between rings spaced a

distance equal to the shell radius. (b) The parameter l which measures the shear compliance of the core. (c) Ratio of core weight to

total weight �a � 1; rY=Ef � 0:007; E0
c � Ef ; mf � mc � 1=3�.
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values of the load index above about 0:4� 10ÿ5, face sheet yielding coincides with overall elastic buckling.
Below this, overall elastic buckling is the sole determinant of strength. The parameter l de®ned in Eq.
(2.1b) is plotted in Fig. 1b. A small value of l pertains to the shell having the higher core density, g � 0:1,
implying that the compliance of the core does not signi®cantly reduce the buckling load below that for a
shell with a very sti� core. The lower density core, however, is associated with higher values of l. Only for
the load index less that 1:2� 10ÿ5 does the optimal solution above meet the condition l < 1=

���
2
p

, which
excludes localized shear kinking. At higher loads, the constraint l 6 1=

���
2
p

would be activated. The ratio of
the weight in the core to the total weight of the shell for the shells is plotted in Fig. 1c. In the middle of the
range of the load index, the core comprises about 25% the total weight of the shell. This is far below the
relative core weight predicted for the globally optimized elastic shell described later in this section.

These results in Fig. 1 have been plotted over the range of indices for which foam metal core sandwich
cylinders have a competitive advantage over conventional sti�ened shells. This assertion is illustrated by the
curve for a cylindrical shell of the same aluminum alloy with axial hat-shaped sti�eners which are located
on the inside of the shell. This shell has also been weight optimized subject to the prescribed N. Unlike the
sandwich shells, the weight index for the optimum sti�ened shell depends on the shell length, and the results
shown are for a shell whose buckle half-wavelength L in the axial direction is equal to R. This would
represent the case of a shell buckling between rings with a relatively low torsional sti�ness spaced a distance
R apart. Larger spacings would require a higher weight index and vice versa. A lower weight index is
obtained if the hat sti�eners are located on the outside of the cylinder rather than the inside, but outside
placement is often excluded for reasons having nothing to do with structural e�ciency. The optimized
axially sti�ened shell in Fig. 1 buckles in the elastic range for all values of the load index for which results
are plotted.

3.2. Globally optimal shells with a core density g as a variable in the weight minimization

Optimization with t; d and g as variables in the weight minimization process leads to the four possibilities
given below.

3.2.1. Overall buckling such that face sheet yielding and wrinkling do not occur
Index pairs �W ;N� are generated from Eqs. (2.1a), (2.1b) and (3.1) for each g, where t and d are given by

d
R
� 4a1g

3a2

;
t
R
� a1g2

3a2

: �3:6�

It is readily veri®ed that the elastic, globally optimized shell has two thirds of its weight in the core.
However, designs that account for yielding and wrinkling have signi®cantly lower relative core weight in the
load range for which the sandwich cylinders are competitive. For Eq. (3.6) to hold, the load index must be
such that face sheet yielding and wrinkling do not occur. Explicit expressions for the indices are

W
2pR2Lq

� 2a1g2

a2

;
N
ER
� 8a3

1g
3

27a2
2

: �3:7�

The relative reduction of the buckling load due to the shear compliance of the core is found to be
precisely 1=3 for shells optimized against elastic buckling, i.e. in Eqs. (2.1a) and (2.1b)

l � Ef t�������������������
2�1ÿ m2

f �
p

GcR
�

���
2
p

3
: �3:8�

In the terminology of Tennyson and Chan (1990), such shells have moderately sti� cores, and Eq. (3.8)
ensures that localized shear kinking mode is excluded.
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3.2.2. Overall buckling with face sheet yielding but no wrinkling
The weight (3.1) is generated in terms of N and the relations

g �
���������������
3a2N

2a1rYR

s
;

t
R
� a1g2

3a2

;
d
R
� N

ER
�a1t=Rÿ a2�t=R�2gÿ2�ÿ1 �3:9�

assuming that the condition for face sheet wrinkling is not violated.

3.2.3. Overall buckling with face sheet wrinkling but no yielding
The relative core density g is obtained in terms of N from the non-linear equation

N
ER
�2X 2gÿ1=3 � 5a2Ba2=3� ÿ 7�Ba2=3�2Xg10=3 � 0; where X � a1 ÿ a2Ngÿ10=3

2Ba2=3ER
: �3:10�

Then, t and d are given by

t
R
� Ngÿ4=3

2Ba2=3ER
;

d
R
� N

ER
�a1t=Rÿ a2�t=R�2gÿ2� �3:11�

and W is obtained from Eq. (3.1). Now, face sheet yielding must not occur.

3.2.4. Overall buckling with face sheet yielding and wrinkling
In this case,

g � rY

Ba2=3E

� �
;

t
R
� N

2rYR
;

d
R
� N

ER
�a1t=Rÿ a2�t=R�2gÿ2�ÿ1 �3:12�

with W given by Eq. (3.1).
The weight index of the globally optimized shell is plotted in Fig. 2a over the same range of the load

index used in the earlier plot, for the same value of the face sheet yield stress, rY=E � 0:007. The upper of

Fig. 2. (a) Weight index versus load index for globally optimized metal foam core cylindrical sandwich shells under axial compression.

For each value of the load index, the shell's face sheet thickness, core thickness, and relative density have been chosen to minimize its

weight. Results are shown for two values of the coe�cient a which determines the elastic shear sti�ness of the metal foam in the core.

The curve for the axially sti�ened cylinder applies to an optimized hat-sti�ened shell buckling between rings spaced a distance equal to

the shell radius. (b) Values of the relative core density g, and identi®cation of the operative constraints for the optimized shell

�rY=Ef � 0:007; E0
c � Ef ; mf � mc � 1=3�.
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the two curves for the sandwich shells for a � 1 corresponds to a foam manufactured by current standards
(cf. Eq. (1.1)). The same value of a was used in computing the results in Fig. 1. The lower of the two curves
�a � 4� illustrates the improved weight performance that can be expected from a foam with better sti�ness
properties. The relative core density is shown in the accompanying plot (Fig. 2b). In this plot, the con-
straints operating at each value of the load index are indicated. At the lowest values of the index overall
buckling is simultaneous with face sheet wrinkling, at intermediate values overall buckling occurs with both
face sheet yielding and wrinkling, whereas at the highest levels overall buckling occurs simultaneously with
face sheet yielding. This sequence follows the same trends Budiansky (1999) found for optimized ¯at
sandwich panels with foamed metal cores. The condition, l < 1=

���
2
p

, is met for all the shells in Fig. 2.
The curve for the optimized axially sti�ened cylindrical shell from Fig. 1 is replotted in Fig. 2. On the

basis of the results for perfect shells, one concludes that foamed metal sandwich cylinders have a potential
weight advantage of as much as a factor of two over their optimized axially sti�ened counterparts in the
lower range of the load index. As mentioned earlier, Agarwal and Sobel (1977) established the weight
advantage of honeycomb sandwich cylindrical shells over axially sti�ened cylinders, but honeycomb cores
are lighter than foamed metal cores and, therefore, constitute a smaller fraction of the total shell weight.
The fact that the foamed metal core sandwich shells have superior performance to axially sti�ened shells at
low values of the load index can be attributed to their biaxial bending and stretching sti�nesses.

4. In¯uence of imperfections on optimally designed shells

Sandwich shells designed optimally according to the speci®cations derived for the perfect shells in the
last section will be considered from the point of view of their sensitivity to geometric imperfections. Cy-
lindrical shells under axial compression are notorious for their buckling sensitivity. The load reduction due
to imperfections is commonly addressed by use of a multiplicative knock-down factor on the buckling load
of the perfect shell (NASA, 1965). The factor for cylindrical shells with large radius to thickness ratios can
be as small as 1=4 or even 1=5. The question posed in this section is whether the optimally designed shells
are unduly imperfection sensitive due to the fact that buckling and plastic yielding occur simultaneously
over most of the load index range of interest for the perfect realizations. In other words, do geometric
imperfections interact with plastic yielding to lower the buckling strength of the shells to a larger extent
than one would expect for shell designed to buckle elastically? Fortunately, the answer to the question
appears to be that they do not, at least not signi®cantly, as the results which follow reveal.

Structures are most susceptible to imperfections in the shape of their buckling modes (Koiter, 1945). For
the cylindrical sandwich shells, for which the critical buckling mode is axisymmetric, an axisymmetric
imperfection in the form of an initial normal displacement of the shell middle surface is considered:

w � n cos�kx1=R�; �4:1�
where n is the imperfection amplitude. Subsequently, k will be taken as kc, corresponding to the wave
number of the critical mode, cf. Eq. (A.16). The thicknesses of the core and face sheets are unchanged from
the values for the perfect shell. For geometric imperfections of the form (4.1), the shell equations (cf.
Appendix A, Eqs. (A.1)±(A.8)) admit an exact, closed form axisymmetric solution, as originally produced
for the monocoque shell by Koiter (1963) and as provided for sandwich shells by Tennyson and Chan
(1990). Algebraic steps in the solution process will be omitted here. Only solution quantities needed to
evaluate the onset of plastic yielding in the face sheets and the core will be presented.

As before, let N 0 be the applied compressive load per circumferential length. Let N 0
c �k� denote the ei-

genload N 0 de®ned by Eq. (A.14) in Appendix A with k � k1 and k2 � 0. Note that with k � kc; N 0
c �k�

becomes Eq. (2.1a). The additional normal displacement of the shell middle surface is
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w � nN 0

N 0
c �k� ÿ N 0

cos�kx1=R�: �4:2�

Tennyson and Chan (1990) investigated non-axisymmetric bifurcation from this axisymmetric state,
following the approach used by Koiter (1963) in his famous study of monocoque cylindrical shells under
axial compression. At small imperfection levels, the bifurcation load coincides with the maximum load the
shell can support. The results of Koiter and Tennyson and Chan are presented in Fig. 3 as the ratio of the
buckling load of the imperfect shell to that of the perfect shell, �N 0

c �imp=N 0
c , as a function of a normalized

imperfection amplitude. In the case of the monocoque shell, the imperfection amplitude n is normalized by
the shell thickness, t, whereas, for the sandwich shells it is normalized by an e�ective thickness de®ned by

teff �
���
3
p

d: �4:3�
A sandwich shell with a sti� core �l� 1=

���
2
p � is equivalent to a monocoque shell with e�ective thickness

(4.3) and e�ective modulus Eeff � 2�t=teff�Ef .
The choice of Eq. (4.3) necessarily brings the buckling loads of the imperfect sandwich shells with small

values of l into coincidence with those of the monocoque shell. It is evident from Fig. 3 that Eq. (4.3)
remains successful in this respect even for shells with relatively compliant cores, although there is some
amelioration of the knock-down from the imperfection as the core becomes more compliant. Thus, there
appears to be a strong case for taking R=� ���3p d� as the ``radius to thickness ratio'' of the sandwich shell in
the determination of the buckling knock-down factor from the large experimental data set collected by
NASA (1965).

4.1. Onset of yielding in the face sheets of the imperfect shell

Now, the e�ect of the imperfection on the stresses in the face sheets is investigated. Denote the axial
stress in each face sheet in the perfect shell at the eigenload, N 0 � N 0

c �k�; by r11 � ÿrc�k� � ÿN 0
c �k�=�2t�.

The stresses in the outer face sheet of the imperfect shell can be obtained from the same axisymmetric
solution. They are given by

Fig. 3. Ratio of the elastic buckling load of the imperfect shell to that of the perfect shell as a function of the amplitude of the axi-

symmetric imperfection, �n. For Koiter (1963) the result for the monocoque shell, the imperfection amplitude is normalized by the shell

thickness, t. For the results of Tennyson and Chan (1990) for sandwich shells, the imperfection amplitude is normalized by the e�ective

thickness, teff , de®ned by Eq. (4.3).
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r�11

rc�k� �
N 0

N 0
c �k�

(
ÿ 1�

���
3
p

b2

1� lb� b2=2

�n=teff�
�1ÿ N 0=N 0

c �k��
cos�kx1=R�

)
;

r�22

rc�k� �
N 0

N 0
c �k�

�������������������
6�1ÿ m2�p

b�1� lb� � m
���
3
p

b2

1� lb� b2=2

( )
�n=teff�

�1ÿ N 0=N 0
c �k��

cos�kx1=R�;
�4:4�

where

b � d�������������������
2�1ÿ m2

f �
p

R
k2: �4:5�

The stresses in the inside face sheet �rÿ11; r
ÿ
22� are also given by Eq. (4.4) if the ``+'' in front of the term

containing ``
���
3
p

'' in each of the two equations is replaced by ``ÿ'', e.g. in the second equation �m
���
3
p

b2 is
replaced by ÿm

���
3
p

b2.
For axisymmetric deformations, the Mises yield condition for the face sheets is re � rY; where the ef-

fective stress is given by

r2
e � r2

11 � r2
22 ÿ r11r22: �4:6�

Upon evaluating re for both the outside and inside sheets using Eq. (4.4), we ®nd that the maximum ef-
fective stress occurs in the inside sheet at points where cos�kx1=R� � 1, when �n > 0. The variation at these
points of re=rc�k� as a function of N 0=N 0

c �k� is shown in Fig. 4 for a selection of imperfection levels and for
two choices of the core compliance parameter, l. The lower value of l corresponds to that for an optimally
designed shell in the mid-range of the load index, while the higher value corresponds so that for a shell
designed according to Eqs. (3.7) and (3.8). In computing the results in these ®gures, k has been chosen as the
critical wave number of the perfect shell, kc, given by Eq. (A.16). However, the dependence of the e�ective
stress on k is relatively weak for values in the vicinity of kc.

The value of the abscissa, N 0=N 0
c �k�, at which the shell buckles (i.e. (N 0

c �imp=N 0
c taken from Fig. 3) is

marked by a solid dot on the curve for each imperfection level in Fig. 4a and b. The signi®cance of these

Fig. 4. Maximum e�ective stress in the face sheets of the imperfect shell as a function of applied load. The e�ective stress is normalized

by the e�ective stress in the face sheets of the perfect shell at the buckling load, and the applied load is normalized by the buckling load

of the perfect shell. On the curve for each imperfection amplitude, the value of the normalized applied load at which the shell buckles is

marked by a dot. (a) l � 0:13; k � kc: (b) l � ���
2
p

=3; k � kc.
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results for the onset of plastic yielding of the face sheet is as follows. Consider a perfect shell designed
according to the procedures of Section 2 such that plastic yielding is coincident with buckling, i.e.
rc�kc� � rY. An imperfect realization of the same shell will experience the onset of yielding in a face sheet
when the condition re � rY is ®rst reached. The point on a given curve in Fig. 4a and b where re=rc�kc� � 1
provides the value of N 0=N 0

c �kc� at which this condition will be met for a given imperfection level. One notes
immediately that the onset of yielding in an imperfect shell occurs at loads above the corresponding load at
which that shell will undergo non-axisymmetric buckling in the case where the core shear compliance is not
large (Fig. 4a). This means the shell would undergo non-axisymmetric buckling while it is still in the elastic
range. Plastic yielding will have no e�ect on the buckling load of these shells. Imperfect shells with the more
compliant cores as shown in Fig. 4b do yield prior to buckling, but only at loads slightly below the pre-
dictions for buckling of the elastic shell.

4.2. Onset of yielding in the core of the imperfect shell

The optimization of the perfect shell in Section 2 and the study of face sheet yielding of the imperfect
shell were carried out under the assumption that the core is elastic. The analysis of the stresses in the
imperfect shell just described can be extended to provide the stresses in the core prior to any yielding. In
particular, the onset of yielding in the core can be predicted, assuming the face sheets remain elastic.

For the imperfect elastic shell, the stresses in the core are given by

r11

rc
core�k�

� ÿ N 0

N 0
c �k�

1

(
ÿ 2

���
3
p

b2�z=d�
1� lb� b2=2

��n=teff�
�1ÿ N 0=N 0

c �k��
cos�kx1=R�

)
;

r22

rc
core�k�

� N 0

N 0
c �k�

�������������������
6�1ÿ v2�p

b�1� lb� � m2
���
3
p

b2�z=d�
1� lb� b2=2

( )
��n=teff�

�1ÿ N 0=N 0
c �k��

cos�kx1=R�; �4:7�

r13

rc
core�k�

� ÿ N 0

N 0
c �k�

�������������������
6�1ÿ m2�p �Gc=Ec�lb2k

1� lb� b2=2

( )
��n=teff�

�1ÿ N 0=N 0
c �k��

sin�kx1=R�;

where z is the coordinate measured along the normal from middle surface, taken positive outward, and

rc
core�k� �

EcN 0
c �k�

2Et
�4:8�

is the compressive stress in the core of the perfect shell at the eigenload N 0 � N 0
c �k�. The wave number k

appears as an additional parameter in the core shear stress. The e�ective stress at any point in the core is

r2
e � r2

11 � r2
22 ÿ r11r22 � 3r2

13: �4:9�
The maximum e�ective stress in the core for a representative shell with l � 0:13 and k � kc � 18:0 is

shown in Fig. 5 as a function of N 0=N 0
c �k� for various imperfection levels. This shell is the optimally de-

signed shell shown in Fig. 1 with g � 0:1 and N=�EfR� � 10ÿ5; it will also be used as an example in the
numerical study in Section 5. The plot has the same form as that employed for face sheet yielding, except
that here the e�ective stress is normalized by the compressive core stress of the perfect shell at buckling. The
maximum e�ective stress in the core is attained at points other than where the normal de¯ection is max-
imum or minimum; it has been obtained by examination of all points within the core. The loads at which
the shells buckle according to an elastic analysis are again indicated by a solid dot on each curve for each
imperfection level. The maximum e�ective stress in the core for the imperfect shells at buckling is only
slightly larger than its value at buckling in the perfect shell, rc

core�k�. It follows that the core will not yield
prior to buckling if its yield stress is chosen to be slightly above rc

core�k�. The requirement that the core
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remain elastic until buckling for the perfect shell, with a small extra margin of conservatism, guarantees
that the core of the imperfect shell remains elastic prior to buckling.

4.3. Conclusions from the analytic imperfection studies

The important conclusion to be drawn from the two parts of the imperfection study is as follows. A
sandwich shell optimally designed based on its perfect geometry is not expected to require a signi®cantly
larger knock-down factor than that expected for shells buckling elastically, even when, by optimal design,
buckling and yielding are coincident in the perfect shell. A similar conclusion was drawn by Hutchinson
(1974) for monocoque cylindrical shells under axial compression. At ®rst sight, these ®ndings seem un-
expected because the interaction between imperfections and plastic yielding is known to signi®cantly erode
the load carrying capacity of columns and plates. The anomaly for the cylindrical shell under axial com-
pression can be attributed to its exceptional geometric imperfection sensitivity in the elastic range. For the
shell, the imperfection reduces the overall load at buckling, and therefore the average axial stress, to an
extent which o�sets the increase in stresses due to bending de¯ections.

5. Numerical studies of imperfection sensitivity of optimally designed shells

A parallel numerical study of the buckling and postbuckling of the imperfect cylindrical shells has also
been carried out to substantiate and complement the analytical ®ndings reported above. Shells optimized in
Section 3 on the basis of the perfect geometry were considered. In particular, a cylinder from Fig. 1, op-
timized with ®xed relative core density, g � 0:1, and load index, N=�EfR� � 10ÿ5, was chosen for study. The
fully dense core material and the face sheet material are taken to be the same aluminum alloy. The face
sheet yield stress will be varied to explore its in¯uence on buckling. The elastic modulus of the core is
characterized by Eq. (1.1) with a � 1 and E0

c � Ef � E. The other parameters characterizing this shell are

mf � mc � 0:3; t=R � 7:14� 10ÿ4; d=R � 7:31� 10ÿ3; l � 0:13: �5:1�

Fig. 5. Maximum e�ective stress in the core of the imperfect shell as a function of applied load. The e�ective stress is normalized by the

e�ective stress in the core of the prefect shell at the buckling load, and the applied load is normalized by the buckling load of the perfect

shell. On the curve for each imperfection amplitude, the value of the normalized applied load at which the shell buckles is marked by a

dot. �l � 0:13; k � kc�.
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Recall that the optimal perfect shell is designed such that the face sheets yield at buckling. The com-
pressive yield stress of the core, rc

Y, is the other parameter which will be varied in this study. The core is
modeled as an elastic-perfectly plastic material with a Mises yield surface. Plastic compressibility of the
metal foam is thus ignored, but this e�ect is not believed to play a particularly important role in the present
application. Subsequent work using a more accurate constitutive characterization of the metal foam may be
required to verify this assertion.

A geometric shape imperfection in the location of the middle surface is assumed in the form

w � �n cos�kx1=R� � �n2 cos�kx1=2R� cos�kx2=2R�; �5:2�
where x2 is the circumferential coordinate. The amplitude of the non-axisymmetric imperfection is ®xed at a
small fraction of the axisymmetric contribution, �n2 � �n=10, in all the calculations presented below. The
wave number k is chosen to be that for the critical mode of the perfect shell (A.16), kc � 18:0, and the full
axial wavelength of the axisymmetric imperfection (A.17) is ` � 0:35R. The non-axisymmetric component
of the imperfection is included to trigger non-axisymmetric buckling in the numerical solution process.
Note that the wavelengths in the axial and circumferential directions of the non-axisymmetric imperfection
are exactly twice that of the axisymmetric component. (The number of the wavelengths around the cir-
cumference is 9.) This choice corresponds to the critical combination of modes which couple nonlinearly to
give the extreme imperfection-sensitivity of the axially compressed cylinder (Koiter, 1963).

A ®nite element model of the foam core sandwich shell was formulated using the commercial code
ABAQUS. Solutions are sought with periodicity in both the axial and circumferential directions of 2`. By
exploiting symmetry lines of the solution, in addition to the periodicity, one can reduce the region of
the shell which is meshed to a square region of dimension `� `, e.g. 0 6 x1 6 `; 0 6 x2 6 `. Symmetry
boundary conditions are imposed on the edges of the cell, and the axial end-shortening is prescribed with
the axial load computed as the corresponding work conjugate force quantity. Four-noded, doubly curved
layered shell elements are used. The speci®c designation for the element is S4R. These elements are designed
for sandwich construction of the type considered here with relatively low shear compliance in the core. The
contributions from the core to the bending and stretching sti�nesses, which were ignored in the analytic
part of the study, are accounted for in the ®nite element model, as is the small bending sti�ness contribution
of each of the face sheets about their own mid-plane. A convergence study showed that results using a 400-
element mesh were almost identical to those from an 800-element mesh. Most of the results presented below
have been obtained using the 400-element mesh.

Load-end shortening curves for sandwich shells with elastic cores are shown in Fig. 6 for an imperfection
amplitude, �n=teff � 0:1. Here, DL=L is the end shortening per unit length of the shell, P � 2pRN 0, is the total
load, Pc is the critical load of the perfect shell. The critical load is 13% higher than the result based on Eqs.
(2.1a) and (2.1b) (i.e. Pc � 1:13� 10ÿ5�2pR2E�), due to the fact that none of the approximations made in
simplifying Eqs. (2.1a) and (2.1b) are invoked in the ®nite element model (e.g. the contribution of the core
to the bending and stretching sti�nesses are included and the location of the distance between the face sheet
centers is d � t and not d). Curves 1 and 2 in Fig. 6 show strictly elastic response: curve 1 for the case of an
axisymmetric imperfection (�n2 � 0) with non-axisymmetric behavior suppressed, and curve 2 for the im-
perfection (5.2) showing the distinct departure from the axisymmetric response at P=Pc � 0:6. Curves 3±6
show the in¯uence of the face sheet yield stress. The choice rY=E � 0:00791 (13% higher than
rY=E � 0:007) corresponds to the optimum design of the perfect shell where the stress in the face sheets at
buckling coincides with the yield stress. It is clear in this case that plasticity only erodes the load carrying
capacity after the shell has begun to buckle and after the peak load has been attained. Lower values of the
face sheet yield stress do result in a lowering of the peak load. The results are completely in accord with the
analytical study in Section 3.1.

Load-end shortening curves for a shell with a somewhat larger imperfection are shown in Fig. 7, again,
for the case where the core is elastic. Included in this ®gure is the development of the non-axisymmetric
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response as measured by the di�erence between the largest and smallest values of the normal de¯ection in
the computational cell, Dw, around the circumference. At this imperfection level, the load of the elastic shell
does not have a local maximum as the non-axisymmetric de¯ections develop. This behavior is consistent
with that documented for the elastic monocoque cylindrical shell by Budiansky and Hutchinson (1972):
non-axisymmetric buckling from the axisymmetric state takes place under falling load for small imper-
fection amplitudes and under gradually increasing load for larger amplitudes. In the results which follow
for the e�ect of the imperfection amplitude on the buckling load, buckling is de®ned as the load at which
Dw=teff � 0:5.

Buckling loads are plotted as a function of the normalized axisymmetric imperfection amplitude, �n=teff ,
in Fig. 8 for various levels of the face sheet yield stress, where they can be compared with the result of
Koiter (1963) for the elastic monocoque shell. The elastic results for the sandwich shell are consistent with

Fig. 6. E�ect of face sheet yield stress on load versus end shortening for cylinders with �n=teff � 0:1. Curve 1 is the axisymmetric solution

with non-axisymmetric bifurcation excluded. The other curves have a very small non-axisymmetric imperfection component to trigger

the non-axisymmetric response. Curve 2 applies to the case where plastic yielding is suppressed. The yield stress of the face sheets for

the other curves are indicated. Curve 3 is the case where the yield stress of the face sheet coincides with the face sheet stress at buckling

for the perfect shell. The shell parameters are given in Eq. (5.1). The core is elastic.

Fig. 7. Load versus end shortening for both an elastic face sheets and face sheets with yield stress equal to the stress in the sheets at the

buckling load of the perfect shell. Also shown is the development of the amplitude of the non-axisymmetric de¯ection, Dw;. The

de®nition of the buckling load of the imperfect shells used here is that load associated with attainment of Dw=teff � 1=2. The shell

parameters are given in Eq. (5.1) and �n=teff � 0:3. The core is elastic.
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those of Tennyson and Chan (1990) in Fig. 3. It is seen that the face sheet yield stresses, rY=E � 0:0079 and
0:007, have almost no in¯uence on the buckling load. Only when the yield stress is signi®cantly lower than
the stress in the face sheets of the perfect elastic shell at buckling is there an appreciable lowering of the
knock-down factor below that predicted for elastic shells.

A series of numerical computations carried out to reveal the role of core yielding indicates an even
smaller degradation of the knock-down factor than seen for face sheet yielding. The calculations showed
that as long as the yield strain of the core, rc

Y=Ec, is greater than about 70% of the axial strain in the perfect
shell at buckling, yielding of the core has almost no e�ect on the buckling load. The analytical results in
Section 3.2 indicate that yielding will start in the core of the imperfect shell at buckling when rc

Y=Ec is
approximately the axial strain in the perfect shell at buckling. It seems plausible that yielding must spread
over an appreciable portion of the core before it has any signi®cant e�ect on the overall behavior. This may
be why the core yield strain need not be as large as the analysis of Section 3.2 suggests.

In conclusion, the analytical and numerical studies both suggest that sandwich shells designed on the
basis of the perfect geometry should not require larger buckling knock-down factors than elastic shells,
even when an optimal design leads to simultaneous buckling and yielding. This conclusion must be tem-
pered by the realization that this study has been restricted to idealized axisymmetric imperfections.
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Appendix A. Buckling analysis of sandwich shells

A brief synopsis of the classical buckling analysis of the axially compressed, perfect sandwich shell is
included here. The fact that the lowest buckling load is associated with the axisymmetric mode when the
shear compliance of the core is taken into account is attributed to Zahn and Kuenzi (1963) (cf. Tennyson

Fig. 8. In¯uence of face sheet yield stress on the relation between the buckling load and the imperfection amplitude. The amplitude for

the imperfection for the elastic monocoque shell is normalized by the shell thickness, while the e�ective thickness is used for the

sandwich shells. Plastic yielding of the face sheets has essentially no e�ect for yield stresses above rY=E � 0:007. The shell parameters

are given in Eq. (5.1). The core is elastic.
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and Chan, 1990). For completeness, a compact derivation of this result is given here. The shell theory
employed is the Donnell±Mushtari±Wlassow theory extended to include shear of the core. Young's
modulus of the core is assumed to be su�ciently low such that the core itself carries a negligible fraction of
the resultant membrane stress and bending moment. A parallel development of some of the aspects is given
in this article by Tennyson and Chan (1990).

Let ua and w be the tangential �xa� and normal �x3� displacements of the middle surface of the shell, and
let ca be the components of shear strain in the core in the two tangential directions. Let w be the initial
geometric imperfection such that w� w is the total normal displacement of the middle surface from that of
the unloaded perfect shell. The tangential displacements of the outer ��� and inner �ÿ� face sheets are

u�a � ua � d
2

xa; uÿa � ua ÿ d
2

xa; �A:1�

where d is the separation between the face sheets and x1 and x2 are the rotations of the core about the x2

and x1 axes, respectively. The shear components in the core are given by

ca � x;a�xa: �A:2�
The strains of the middle surface are

Eab � 1
2
�ua;b � ub;a� � babw� 1

2
w;a w;b�1

2
�w;a w;b�w;a w;b �; �A:3�

where the components of the curvature tensor of the undeformed middle surface of the perfect cylindrical
shell are �b11 � 0; b22 � 1=R; b12 � 0). The resultant membrane stresses are given by

Nab � 2Ef t
�1ÿ m2

f �
��1ÿ mf�Eab � mf Eccdab� �A:4�

and the bending moments are

Mab � Ef td2

2�1ÿ m2
f �
��1ÿ mf�Kab � mfKccdab�; �A:5�

where

Kab � 1
2
�xa;b � xa;b�: �A:6�

The stresses in the outside face sheet are given by r�ab � �Nab=2�Mab=c�=t, whereas the stresses in the inside
sheet are rÿab � �Nab=2ÿMab=c�=t. The resultant transverse shear stresses are related to the shear strains in
the core by

Qa � Gcdca: �A:7�
Equilibrium equations are derived from the principle of virtual work through the assumed strain dis-

placement equations:

Nab;b � 0;

Qa;a � Nab�ÿbab � w;ab�w;ab � � 0;

Mab;b ÿ Qa � 0:

�A:8�

A.1. The classical buckling problem for the perfect shell �w � 0�

The inplane equilibrium equations in (the ®rst equation in Eq. (A.8)) can be satis®ed by an Airy stress
function U with N11 � U;22 ;N22 � U;11 ;N12 � ÿU;12. The prebuckling solution for the in®nitely long perfect
shell is a state uniaxial compression with N11 � ÿN 0. The equation of inplane compatibility and the re-
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maining equilibrium equations are linearized about the uniform prebuckling state and expressed in terms of
U; w and xa. The resulting buckling equations are

1

2Ef t
r4Uÿ 1

R
w;11 � 0;

Gcd�r2w� xa;a� ÿ 1

R
U;11ÿN 0w;11 � 0;

2Ef td2

8�1ÿ m2
f �
��1ÿ mf�r2xa � �1� mf�xb;ba� ÿ Gcd�w;a�xa� � 0:

�A:9�

The eigenvalue is N 0: Periodic solutions to Eq. (A.9) are sought in the form

w � ŵt cos�k1x1=R� cos�k2x2=R�;
U � ÛEf tR2 cos�k1x1=R� cos�k2x2=R�;

x1 � x̂1�t=R� sin�k1x1=R� cos�k2x2=R�;
x2 � x̂2�t=R� cos�k1x1=R� sin�k2x2=R�:

�A:10�

Algebraic reduction of Eq. (A.9) provides the equation for the eigenvalue

N 0
�������������������
2�1ÿ m2

f �
p

R
Ef td

� 2

b1

� b1

�1� lb2� ; �A:11�

where

l � Ef t�������������������
2�1ÿ m2

f �
p

GcR
; �A:12�

b1 � d�������������������
2�1ÿ m2

f �
p

R

�k2
1 � k2

2�2
k2

1

; b2 � d�������������������
2�1ÿ m2

f �
p

R
�k2

1 � k2
2�: �A:13�

To establish the fact that an axisymmetric mode �k2 � 0� gives rise to the lowest eigenvalue and thus the
critical buckling load, rewrite Eq. (A.11) as

N 0
�������������������
2�1ÿ m2

f �
p

R
Ef td

� 2

b1

� b1

�1� lb1� �
b1

�1� lb2�
�

ÿ b1

�1� lb1�
�
: �A:14�

It is a simple matter to show that the sum of two terms within the square brackets on the right hand side
of this equation is non-negative, vanishing if and only if b1 � b2 � b, i.e. when k2 � 0. It follows imme-
diately that the minimum eigenvalue is associated with an axisymmetric mode. When Eq. (A.14) is mini-
mized with respect to b (with b1 � b2 � b�, one obtains b � ���

2
p

=�1ÿ ���
2
p

l� and

N 0
c

EfR
� 2td�������������

1ÿ m2
f

p
R2

1

�
ÿ l���

2
p
�
; �A:15�

which is Eq. (2.1a). The associated critical axisymmetric wave number is

k1 � kc � 2
�����������������1ÿ m2

f �
p
1ÿ ���

2
p

l

R
d

" #1=2

; �A:16�

and the wavelength of the critical mode is therefore
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`c � 2pR
kc1

� 2p
1ÿ ���

2
p

l

2
�����������������1ÿ m2

f �
p" #1=2 ������

Rd
p

� 2p
1ÿ ���

2
p

l

6
�����������������
�1ÿ m2

f �
q

264
375

1=2 ���������
Rteff

p
; �A:17�

where teff is de®ned in Eq. (4.3).
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