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Abstract

Delamination is considered for thin elastic 'lms that are bonded to cylindrical substrates and
subject to an equi-biaxial compressive pre-stress. Results for both positive and negative curvatures
are obtained. The 'lm buckles or de2ects (depending on the sign of the curvature) away from
the substrate inducing mixed mode stress intensities at the edge of the delamination. The energy
release rate and combination of modal stress intensities at the delamination edges are determined.
Steady-state propagation of delamination blisters is analyzed for both axial and circumferential
propagation directions. The results depend strongly on the substrate curvature. Circumferential
propagation is suppressed when the curvature is negative, but is favored when the curvature
is positive. Axial propagation can occur for both positive and negative curvature substrates.
? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Films under inplane compression that are bonded to 2at substrates can undergo
buckling-driven delamination when the combination of 'lm thickness and stress ex-
ceeds a critical value. Curvature of the substrate can enhance or suppress delamina-
tion, depending on the sign of the curvature and the direction of propagation. In this
paper, results for the steady-state propagation of delamination blisters on cylindrical
substrates will be determined. The steady-state results form the basis for robust cri-
teria which ensure delaminations will not spread. Delaminations are a primary failure
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Fig. 1. Energy release rates on the sides and curved front of a straight-sided blister on a 2at substrate.

mechanism for oxide 'lms on wire heating elements and for ceramic thermal barrier
coatings on turbine engine blades and other hot section components. Both applications
involve curved substrates.

We begin by reviewing the rationale behind the tendency for buckle-driven delamina-
tions on 2at substrates to grow at their curved front while their sides remain stationary.
This behavior is manifest in the propagation of a straight-sided blister (Fig. 1) and the
so-called telephone cord blister. The 'lm is modeled as a 2at plate that is clamped
along its edges (Chai et al., 1981; Evans and Hutchinson, 1984; Hutchinson et al.,
1992; Giola and Ortiz, 1997; Nilsson et al., 1993; Nilsson and Giannakopoulos, 1995).
The energy release rate and the mix of modes I and II stress intensity factors of the
interface crack can be obtained with the aid of a basic elasticity solution for a 'lm
on a substrate acted on by an edge moment and inplane force (Hutchinson and Suo,
1992). The energy release rate on the sides of the straight-sided blister well behind the
curved front is
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b0

b
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)2
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where

G0 =
1 − �2

2
�2

0t
E

; (2)

with �0 as the uniform equi-biaxial compressive stress in the unbuckled 'lm, t the 'lm
thickness, and E and � as the 'lm’s Young’s modulus and Poisson’s ratio, respectively.
In Eq. (1), b is the half-width of the blister and b0 is the value of the half-width at
which the onset of buckling will occur at the pre-stress �0:

b0 = t
�√

12(1 − �2)

√
E
�0

: (3)

The steady-state energy release rate averaged over the curved front of the straight-sided
blister is

Gss

G0
=

(
1 −

(
b0

b

)2
)2

: (4)

The two energy release rates are plotted in Fig. 1 where it is clearly seen that the
energy release rate along the sides signi'cantly exceeds that along the curved front.
Nevertheless, once a straight-sided blister has formed, propagation is observed to occur
along its front with no further advance along its sides. How is this possible? The reason
rests with the diJerent mode mixities along the sides and front, coupled with the strong
dependence of the toughness of most interfaces on the mixity.

The mode mixity,  = tan−1(KII=KI), associated with the sides and the front are
plotted in Fig. 2. These apply to the case where there is no elastic mismatch between
the 'lm and the substrate, but the mismatch eJect is not large unless the moduli
diJerences are extreme. The results for the sides is exact (Hutchinson and Suo, 1992),
while that for the curved end is approximated by using the result for a circular blister
with the same radius b and energy release rate G = Gss. The curves are terminated
at the value of b=b0 at which the sides attain pure mode II conditions. It is evident
that, at a given width, b, the sides have a sigini'cantly larger proportion of mode II
to mode I than the curved front. One can understand this physically in that buckling
along the sides enables the 'lm to undergo an inplane displacement away from the
edge, while such motion is much more constrained along the curved front. The inplane
displacement contributes signi'cantly to the mode II component of intensity. This is
the essence of the diJerence between a straight and curved front.

A phenomenological interface toughness law which re2ects the strong mode depen-
dence observed for some interfaces is (Hutchinson and Suo, 1992)

i( ) = (1)
i (1 + tan2(1 − �) ); (5)

where i( ) is the interface toughness and mode mix  , (1)
i is the mode I toughness

for  = 0, and � is a parameter that adjusts the mode dependence. If �= 1, there is no
mode dependence. Representative values for many interfaces appear to lie in the range
�6 0:3. The ratio of the mode II ( ±90◦) to mode I toughness is 1 + tan2(1−�)�=2,
which is 4.85 for � = 0:3.
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Fig. 2. Measure (in degrees) of the relative amount of mode II–I on the sides and curved front of a
straight-sided blister on a 2at substrate.

For the sides, the propagation condition can be stated as G = i( ) or, equivalently,
as F ≡ G=(1 + tan2(1− �) ) = (1)

i . Similarly, the condition for propagation along the
front is Fss ≡ Gss=(1 + tan2(1 − �) ss) = (1)

i . The ratio of the mode-adjusted energy
release rates,

Fss

F
=

Gss=(1 + tan2(1 − �) ss)
G=(1 + tan2(1 − �) )

; (6)

measures the tendency to propagate at the front or on the sides: if it is greater than
1 propagation along the front is favored, and vice versa. This ratio is plotted in
Fig. 3 for several values of �. If there is no mode dependence of the interface tough-
ness (�=1), propagation will always occur on the sides, implying straight-sided blisters
could not exist. However, when there is substantial interface toughness mode depen-
dence, propagation at the front is favored for blisters above a critical size. The fasci-
nating morphological shapes of buckle-driven delaminations derive from this coupling
of buckling nonlinearity with interfacial fracture mode dependence.

Motivated by the above discussion, our treatment of delamination on cylindrical
substrates will emphasize the energy release rate and mode mixity on both the sides
and the front of straight-sided delamination blisters. These results are obtained from the
analysis of a one dimensional problem characterizing behavior well behind the front.
We begin by giving two simple results which provide some insight into aspects of
the behavior. Then, in Section 3, delaminations propagating axially along a cylindrical
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Fig. 3. Ratio of the mode-adjusted crack driving forces on the sides and curved front for a straight-sided
blister on a 2at substrate. Above a critical size, propagation on the curved front is favored over that on the
straight sides, depending on the parameter � specifying the mode dependence of the interface toughness.

substrate will be considered, followed by circumferentially propagating delaminations in
Section 4. The four delamination cases to be studied are depicted in Fig. 4. Behaviors
and some implications will be summarized in the concluding section.

2. Governing equations and two elementary results

2.1. Governing equations

In the undeformed reference state, the 'lm is a thin cylindrical shell with radius R
and thickness t. It is subject to a uniform, equi-biaxial compressive pre-stress �0. The
displacement of the middle surface of the 'lm has tangential components, ua(x1; x2),
and outward normal component, w(x1; x2), where x1 = x is the axial coordinate and
x2 = y is the circumferential coordinate. The Donnell–Mushtari–Vlasov shell equations
are used to described the debonded 'lm. These equations, which generalize the von
Karman plate equations to include shell curvature, are accurate for the so-called shallow
deformation modes wherein the wavelength of the deformation mode is short compared
to R. They apply to the two classes of modes analyzed here. The equations are as
follows. The relations between the additional strains (in addition to the pre-strains)
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Fig. 4. Four types of straight-sided blisters considered in this paper.

and the displacements are (Sanders, 1963)

��� = (u�;� + u�;�)=2 + b��w + w;�w;�=2 (b11 = b12 = b21 = 0; b22 = 1=R); (7)

��� = w;��;

where ��� are the bending strains. The stress–strain relations are

N�� =
Et

1 − �2 [(1 − �)��� + �������] − �0t���;

M�� = D[(1 − �)��� + �������]; D = Et3=[12(1 − �2)]: (8)
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Fig. 5. Conventions for the local elasticity problem at the edge of the interface delamination.

Note that the resultant stresses, N��, measure the total stress so that in the reference
pre-stressed state N�� = −�0t���. The bending moments, M��, vanish in the reference
state. The equilibrium equations are

N��;� = 0;

M��;�� − N��w;�� + N��b�� = 0: (9)

The boundary conditions along the edge of the blister are taken to be fully clamped:
w = u1 = u2 = w;�n� = 0, where n� is the outward normal to the edge.

The most important quantities from the solution to the problem for the de2ected
'lm for the purposes of determining the energy release rate and mode mixity at any
point along the delamination edge are the local normal bending moment and normal
resultant stress change (measured from the reference state):

M = M��n�n�

and

ON = N��n�n� + �0t: (10)

The sign conventions for these quantities are indicated in Fig. 5. Both vanish in the
reference state. The elasticity problem depicting the local loading along the delamina-
tion edge in Fig. 5 has been solved by Suo and Hutchinson (1990). Of interest here
are the energy release rate

G =
(1 − �2)ON 2

2Et
+

6(1 − �2)M 2

Et3
(11)

and the mode measure

tan  =

√
12M + tON tan(!)

−√
12M tan(!) + tON

: (12)

Here, it has been assumed that the second Dundurs elastic mismatch parameter, �D,
can be ignored and taken to be zero. Elastic mismatch in2uences  through ! which
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Fig. 6. Two elementary axisymmetric problems: (a) steady-state delamination propagation of an axially
unconstrained 'lm, and (b) steady-state delamination of a 'lm constrained from net axial expansion.

depends on the 'rst Dundurs parameter,

�D =
E=(1 − �2) − E2=(1 − �2

2)
E=(1 − �2) + E2=(1 − �2

2)
; (13)

where E2 and �2 are Young’s modulus and Poisson’s ratio of the substrate, respectively.
Unless the mismatch is large, the in2uence of �D is relatively weak (Hutchinson and
Suo, 1992). For no mismatch (�D = 0); ! = 52:1◦, which will be used to compute
numerical results in this paper.

The energy release rate (11) neglects any inplane shear traction parallel to the crack
edge, which induces a mode III component. The focus here will be on the sides of
the straight-sided blister well behind the front, and on the center of the front itself,
neither of which have a mode III component. The clamped conditions used at the
delamination edges are an accurate approximation if there is no elastic mismatch or if
the substrate material is stiJer than the 'lm material. If, however, the 'lm modulus is
very large compared to that of the substrate, the fully clamped condition becomes a
poor approximation (Cotterell and Chen, 2001). Then, the deformation of the substrate
must be taken into account in setting the boundary conditions at the delamination edge.

2.2. Two elementary results

Consider the unconstrained delamination of the 6lm propagating in steady-state
along the cylinder as depicted in Fig. 6a, where the entire circumference of the 'lm
debonds. This is a simple axisymmetric problem. All the elastic energy stored in the
'lm is released. By elementary energy accounting, the energy release rate is therefore

Gss =
1 − �
E

�2
0t: (14)

At the delamination edge, ON =�0t and M =
√

(1 − �)=[12(1 + �)]�0t2. The expression
for M at the delamination front has been obtained by solving the governing equations
subject to axial symmetry and the clamped conditions, w=w;x = 0, at the delamination
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Table 1

�  ss (unconstrained)  ss (constrained)

0 −82:9
◦ −37:9

◦

1=5 −88:7
◦ −49:4

◦

1=3 (87:4
◦

) −57:3
◦

1=2 (82:1
◦

) −67:9
◦

edge. Substitution of ON and M into Eq. (11) gives Eq. (14), and substitution into
Eq. (12) gives

 ss =
1 +

√
(1 + �)=(1 − �) tan !

−tan ! +
√

(1 + �)=(1 − �)
: (15)

Numerical values of  ss are given in Table 1. For v = 1=5 the crack tip has a very
small positive value of mode I, but it is essentially subject to pure mode II (kII is
negative). For v¿ 1=5, the prediction from Eq. (15) is that there is a small negative
value of KI. This must be interpreted as a indication that the crack faces are in contact
immediately behind the tip, and that the crack tip is in a state of pure mode II. Then,
Eq. (14) remains valid if there are no frictional eJects between the crack faces.

Next, consider the constrained delamination of the 6lm. Suppose the 'lm again
completely debonds around the circumference but in such a way that the released 'lm
cannot expand axially. This would be the case if the axisymmetric interface crack
propagated at two ends as in Fig. 6b. Now, if buckling does not occur, the conditions
far behind the debond front are �xx = 0 and Nyy = 0. Together these imply ON = v�0t
and M =

√
(1 − �2)=12�0t2, where M is again obtained by solving the 'eld equations

subject to the clamped conditions at the delamination front (neglecting the buckling
term, Nxxw;xx). Substitution of these quantities into Eq. (11) and Eq. (12) gives

Gss =
1 − �2

2E
�2

0t (16)

and

 ss =

√
(1 − �2) + � tan !

−
√

(1 − �2) tan ! + �
: (17)

The energy release rate (16) is precisely that for a 'lm released subject to the plane
strain constraint in the axial direction (�xx = 0). Table 1 gives  ss. For this case, mixed
mode conditions prevail with roughly equal proportions of modes I–II. The signi'cant
diJerence in mode mix at the delamination front in the two cases arises from the
predominance of the inplane resultant stress change, ON , in the unconstrained case. It
is physically intuitive that ON in Fig. 5 produces mode II conditions. By itself, without
M , it produces a pure mode II loading and a closed crack tip. In the constrained case,
ON is relatively small and M has a larger in2uence, leading to the roughly equal
mix of modes I and II. For the problems analyzed below, the constrained case is the
more relevant of the two, because conditions behind the front of a straight-sided blister
experience a similar inplane constraint.
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Fig. 7. Conventions for the one-dimensional analyses: (a) axial blister, and (b) circumferential blister.

3. Axial blisters

In this section, straight-sided blisters propagating in the axial direction are considered.
The half-width of the blister is b and other features, including the positioning of the
coordinates, are shown in Fig. 7a. We 'rst carry out a one-dimensional analysis of
the blister far behind the front to obtain the conditions on the sides. Then, we go on
to make use of that result to compute the average energy release rate for the curved
front.

3.1. One-dimensional analysis: behavior on the blister sides

Far behind the front, u1 = 0; u2 = v(y); and w(y). The governing 'eld equations
reduce to

Dw′′′′ − Nw′′ + N=R = 0; (18)

N ′ = 0; (19)

where ( )′=d( )=dy and N ≡ N22. The second of the two equilibrium equations implies
that N is independent of y. The solution to Eq. (18) subject to symmetry about y = 0
and w = w′ = 0 at y = b is

w(y)=t = %
[

1
2

((y
b

)2
− 1
)

+
1

�
√
n sin(�

√
n)

(cos(�
√
ny=b) − cos(�

√
n))
]
;

(20)

where

% =
b2

Rt

and

n =
12(1 − �2)b2

�2Et3
(−N ): (21)
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In Eq. (20), n is as yet undetermined. It can be determined from the remaining
conditions on v(y): v(0) = 0 (by symmetry) and �(b) = 0 (clamped condition). The
stress–strain equation in the circumferential direction implies N = [Et=(1− �2)]�yy −�0t
or, by Eq. (7),

N = [Et=(1 − �2)][�′ + w=R + w′2=2] − �0t: (22)

Integrate Eq. (22) from y = 0 to y = b using the conditions on v(y) stated above to
obtain

Nb = −�0tb + [Et=(1 − �2)]
∫ b

0
[w=R + w′2=2] dy: (23)

Carrying out the integrations in Eq. (23) using Eq. (20) and casting into dimensionless
form, one obtains

n
s

= 1 − %2

�2s

{
−2 +

3

sin2(�
√
n)

[
1 − sin(2�

√
n)

2�
√
n

]}
; (24)

where

s =
12(1 − �2)b2

�2Et2
�0: (25)

Eq. (24) governs n. Only two dimensionless parameters specify the problem, s and %.
The following connections will be useful in the sequel. Continue with the de'nition in
Eq. (3) of b0 as the half-width of the blister at the onset of buckling for a 8at substrate.
Moreover, note that the critical stress for the onset of buckling of a 8at clamped plate
of half-width b is �c =�2Et2=[12(1− �2)b2]. Together, these two de'nitions imply that
s can be expressed in either of two ways:

s =
(

b
b0

)2

=
�0

�c
: (26)

Once n is determined, all the remaining details of the solution follow immediately.
In particular, the energy release rate and mode mix along the sides of the blister are

G
G0

=
[
1 −

(n
s

)]2
(

1 +
1
c2

)

and

 =
1 + c tan !
−tan ! + c

; (27)

where for M ¿ 0

c ≡ tON√
12M

=
�2s(1 − (n=s))√

12%(1 − �
√
n cot(�

√
n))

:

If M ¡ 0 (for negative curvature substrates), the 'lm is considered to be on the under-
side of the substrate and the sign of c in Eq. (27) must be switched. The normalizing
factor, G0, in Eq. (27) continues to be de'ned by Eq. (2). The de2ection at the center
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Fig. 8. Energy release rate (a) and mode mixity (b) along the sides of an axial blister.

of the blister is

w(0)=t = %
[
−1

2
+

1
�
√
n sin(�

√
n)

(1 − cos(�
√
n))
]
: (28)

It is positive for n¡ 1 and negative for 1¡n¡ 4. The solutions having n¡ 1 are,
therefore, associated with positive curvature substrates, while those having 1¡n¡ 4
apply to negative curvature substrates. The dependencies of G and  on b=b0 (c.f.
Eq. (26)) are displayed in Fig. 8a and b for both positive and negative curvature
substrates. With % speci'ed, it is simplest to plot the curves by specifying values of n
and then evaluating s trivially from Eq. (24). Also included are the curves for the 2at
substrate (b2=Rt=0). The various curves have been plotted over the range in which each
satis'es all the constraints required for a physically meaningful solution: (1) positive
KI; (2) one-signed de2ection w consistent with either positive or negative substrate
curvature; and (3) lower elastic energy in the de2ected state than in the reference state
(see Section 3.2).

The energy release rates for the positive curvature substrates are higher than that
for the 2at substrate at a given width, and they are signi'cant at values of b=b0 well
below unity. The substrate curvature plays the role of an imperfection in the sense that,
unlike that for the 2at or negative curvature substrate, the problem is not a buckling
problem, per se. Separations de2ect away from the substrate producing stress intensities
at even very low residual stress. The limit for G as b → 0 from the present model is
not physically correct. It is a result of using shell theory to model the 'lm, which is
necessarily limited to b=t�1. Accurate results for very small widths would require a
two-dimensional crack analysis.

Negative curvature substrates have delaminations with lower energy release rates
than those for the 2at substrate, but only slightly so. In this case, the delaminations
all have b=b0 ¿ 1. Apart from their somewhat lower magnitudes, the energy release
rates for negative curvature substrates are not appreciably diJerent from their positive
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Fig. 9. Average steady-state energy release rate along the curve front of a straight-sided blister propagating
in the axial direction.

curvature counterparts. The trends for the mode mix for these two types of substrates
are also similar, with mode II becoming dominant as the width increases.

3.2. Steady-state propagation; behavior on the curved front

The average energy release rate on the curved front of a straight-sided blister prop-
agating under steady-state conditions is the energy per unit width in the 'lm in the
unde2ected state minus from the average energy per unit width in the de2ected state
far behind the front. The latter is evaluated using the solution produced in Section 3.1.
A direct calculation of the diJerence between the two elastic energies gives

Gss =
1 − �2

E
1
b

∫ b

0
[�0(Nyy + �0t) + (Nyy + �0t)2=2] dy − D

2b

∫ b

0
w′′2 dy; (30)

where Nyy and w′′ are given in Section 3.1. Evaluation of Eq. (30) gives

Gss

G0
=
(

1 −
(n
s

)2
)

+
12%2

�4s2

[
1 − �2n2

2 sin2(�n)

(
1 +

sin(2�n)
2�n

)]
: (31)

The results are plotted in Fig. 9. The result for a 2at substrate coincides with Eq. (4),
and this is also included in the 'gure. The spread in Gss between positive and negative
curvature substrates is even less than that for the energy release rate on the sides of the
blister. As in that other case, the results become inaccurate when b becomes very small.
The mode mixity on the front cannot be estimated by any equally simple procedure.
It is expected to be roughly that presented for the 2at substrate in Fig. 2.

4. Circumferential blisters

The conventions are shown in Fig. 7b. We 'rst solve the problem for an axisym-
metric blister of width 2b. This problem represents the behavior of the propagating
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straight-sided blister well behind the curved front and provides the results for the
sides. Then, these results are used to determine the steady-state energy release rate for
the curved front.

4.1. Axisymmetric analysis: behavior on the blister sides

The axisymmetric blister has u2 = 0; u1 ≡ u(x) and w(x). The solution is symmetric
about x=0 with the clamped conditions at x=b: u=w=w′=0, where now ( )′=d( )=dx.
The governing equations reduce to

Dw′′′′ − Nw′′ + Etw=R2 + �N=R− (1 − �)�0t=R = 0; N ′ = 0; (32)

where now N ≡ N11. The second of the equilibrium equations implies N is independent
of x. Analogous to the step in the analysis of the axial blister, the conditions that u
vanish at the ends of the interval provide the additional equation

N = −�0t + [Et=((1 − �2)b)]
∫ b

0
[w′2=2 + �w=R] dx: (33)

The de'nitions introduced for n; s; %; �c and b0 in the previous section will all be
retained, where now N ≡ N11 in Eq. (21). The solution to the 'rst of the equations in
Eq. (32) is

w(x)=t = c1 cos(a1x=b) + c2 cos(a2x=b) + A; (34)

where

A =
�2s

12(1 + �)%
+

�2�n
12(1 − �2)%

;

c1 =
−a2 sin(a2)A

a2 cos(a1) sin(a2) − a1 sin(a1) cos(a2)
;

c2 =
a1 sin(a1)A

a2 cos(a1) sin(a2) − a1 sin(a1) cos(a2)
;

(a1; a2) = �
√

1
2n{1 ±

√
1 − *2}; * = 4

√
3(1 − �2)%n;

with the plus for a1 and the minus for a2. All quantities above will be real as long
as *¡ 1, and this holds over nearly the entire solution space of interest. There is a
small portion of the space wherein *¿ 1, and an alternative real representation has
been used. The solution steps are essentially the same as those for *¡ 1 and in the
interests of brevity will not be given.

Evaluation of Eq. (33) using Eq. (34) gives

n
s

= 1 − 12
�2s

{
1
4
B + �%

(
c1

sin a1

a1
+ c2

sin a2

a2
+ A

)}
; (35)
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Fig. 10. Energy release rate (a) and mode mixity (b) along the sides of a circumferential blister. Only results
for 2at and positive curvature substrates are shown. (v = 1=3)

where

B = c2
1a

2
1

(
1 − sin(2a1)

2a1

)
+ 2c1c2a1a2

(
sin(a1 − a2)

a1 − a2
− sin(a1 + a2)

a1 + a2

)

+ c2
2a

2
2

(
1 − sin(2a2)

2a2

)
:

In addition to the parameters, s and %, this problem requires that Possion’s ratio be
speci'ed. The numerical results presented below have been computed with �=1=3. The
de2ection at the center of the blister is w(0)=t = c1 + c2 + A. The energy release rate
and mode mixity along the sides of the blister are still given by Eq. (27), however,
now for M ¿ 0

c =
�2(n− s)√

12[c1a2
1 cos a1 + c2a2

2 cos a2]
: (36)

The 'rst step in the procedure to produce numerical results is the generation of
solutions to Eq. (35) for n. For any such n, the following conditions must be checked:
a positive KI, a one-signed de2ection, and less elastic energy in the de2ected state
than in the reference state. If these are satis'ed, the remaining quantities of inter-
est are readily obtained. Plots of G=G0 and  as a function of b=b0 are given in
Fig. 10. The same reference half-width, b0, de'ned in Eq. (3) is used here. Each curve
in Fig. 10 corresponds to positive curvature substrates, except the one for the 2at
substrate. Solutions for negative curvature substrates (w(0)¡ 0) were found, but in
all cases the energy release rates were far too small to be of physical interest. As a
practical matter, it appears that circumferential blisters are unlikely to form on negative
curvature substrates. As in the case of the axial blister, the present case for positive
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Fig. 11. Average steady-state energy release rate along the curve front of a straight-sided blister propagating
in the circumferential direction. Only results for 2at and positive curvature substrates are shown. (� = 1=3):

curvature substrates is not a bifurcation buckling problem, except in the limit of the 2at
substrate (b=

√
Rt = 0). A circumferential interface separation necessarily results in an

outward de2ection of the 'lm away from the substrate when the curvature is positive.
For negative curvature, the 'lm remains pressed against the substrate.

The energy release rates for the positive curvature substrates are somewhat higher
than those for the 2at substrate, and they again occur at values of b=b0 well below
unity because the curvature plays the role of an imperfection for the separated 'lm.
The measure of mode mix on the circumferential blister sides in Fig. 10b shows that
it is not signi'cantly diJerent from that for the 2at substrates. Mode-dependent inter-
face toughness is expected to provide the mechanism for arrest of the sides of the
circumferential blisters.

4.2. Steady-state propagation; behavior on the curved front

The average steady-state energy release rate, Gss, along the curved front of a straight-
sided, circumferentially propagating blister is obtained by calculating the diJerence in
the elastic energy in the 'lm well ahead of the blister front and that well behind. The
result of this calculation is

Gss

G0
= 1 −

(n
s

)2
+

2E
(1 − �2)�2

0tb

∫ b

0
[(1 − �)t�0w=R− Et(w=R)2=2 − Dw′′2=2] dx:

(37)

The Integral in Eq. (37) can be evaluated either analytically (the resulting expression
is lengthy) or numerically. When cast in dimensionless form, the right hand side of
Eq. (37) depends on n; s; % and �. Numerical results for Gss=G0 as a function of b=b0

are given in Fig. 11. They are roughly 20% higher than the corresponding quantities
for the axially propagating blister.
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5. Implications for blister propagation on curved substrates

A summary of the main 'ndings is as follows:
(1) Conditions for the propagation of straight-sided delamination blisters extending

circumferentially on negative curvature substrates are not favorable.
(2) Conditions are favorable for the propagation of straight-sided blisters in the

axial direction on negative curvature substrates. The steady-state energy release rates
are almost as large as those for propagation on positive curvature substrates.

(3) Interface separations on positive curvature substrates de2ect away from the sub-
strate even when they are small and do not require stresses to be at bucking levels. In
this sense they act as an initial imperfection.

(4) The energy release rates for circumferentially propagating straight-sides blisters
on a positive curvature substrate are somewhat larger than those for a axially propagat-
ing blister of comparable width. The mode mixity on the propagating fronts in these
two cases are likely to be comparable, but trustworthy estimates are not available.

An interesting illustration of the phenomena investigated in this paper has been com-
municated privately to the author by M.D. Thouless. He reports that, when one soaks
the label on a wine bottle to remove it, one almost always sees circumferential delam-
inations propagate from the edges of the label in the beginning stages of the removal
process. The label swells as it absorbs water and develops inplane bi-axial compression,
just as considered here. Intrigued by this eJect, Thouless pasted labels on the inside
of wide-mouth jars (the negative curvature case) and again observed their behavior
when soaked in water. Now, only axially propagating delaminations were observed.
The later observation is fully in accord with the present 'nding that circumferentially
propagating blisters are energetically unfavorable on negative curvature substrates. The
'rst of the observations might be explained by the fact that circumferentially propagat-
ing blisters have slightly larger energy release rates than their axial counterparts when
the curvature is positive. However, the diJerence is not that large, and from the present
study one could not argue that axially propagating blisters would not be observed.
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