
The in¯uence of imperfections on the
nucleation and propagation of buckling driven

delaminations

J.W. Hutchinsona,*, M.Y. Heb, A.G. Evansa

aDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
bMaterials Department, University of California, Santa Barbara, CA 93106, USA

Received 17 March 1999; received in revised form 5 July 1999

Abstract

The in¯uence of prototypical imperfections on the nucleation and propagation stages of
delamination of compressed thin ®lms has been analyzed. Energy release rates for

separations that develop from imperfections have been calculated. These demonstrate two
characteristic quantities: a peak that governs nucleation and a minimum that controls
propagation and failure. These quantities lead to two separate criteria that both need to be

satis®ed to cause failure. They involve a critical ®lm thickness for nucleation and a critical
imperfection wavelength for buckling. Implications for the avoidance of failure are
discussed. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: A. Buckling; Crack propagation and arrest; Fracture toughness; B. Coatings; Films; C.

Finite elements; Stability and bifurcation

1. Introduction

Compression in a ®lm on a substrate can arise during the deposition process or
due to temperature change when there is thermal expansion mismatch, or due to a
combination of the two. Ceramic ®lms or coatings on metal substrates will
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generally be in compression at room temperature if the ®lm is deposited at high
temperature. Oxidation and thermal barrier coatings are important examples
receiving attention at the present time. These are multilayer systems consisting of
at least one fully dense oxide layer (e.g. Al2O3) grown at high temperature on a
bond coating applied to the metal alloy substrate. The oxide layer is subject to
very large compressive stress when the system is cooled. Various failure modes
have been observed, but one of the most common is cracking at the oxide/bond
coat interface leading to buckling delamination and spalling.

Two competing failure mechanisms have been documented for compressed thin
®lms (Evans and Hutchinson, 1995; Gioia and Ortiz, 1997; Hutchinson and Suo,
1992; Hutchinson et al., 1992; Nilsson and Giannakopoulos, 1995; Thouless et al.,
1994; Wang and Evans, 1998). They comprise edge and buckle driven
delamination (Fig. 1). In this paper the emphasis will be on buckling
delaminations, but in this Section results for edge-delamination will be cited as
background to understand the primary issue of the initial ¯aw size needed to
nucleate failures. Films subject to an equi-biaxial compressive stress state, s0, will
be considered. When thermal expansion mis®t is responsible for the residual
compression, with a thick substrate having a higher coe�cient of thermal
expansion than the ®lm, Da>0, s0 is given by

s0 � EDaDT=�1ÿ n� �1�
when DT is drop in temperature from the state where the ®lm is stress-free. Here,
and throughout, E and n are the Young's modulus and Poisson's ratio of the ®lm.
The elastic energy per unit area stored in the attached ®lm is (1ÿn )hs 2/E, where h
is the ®lm thickness. The energy per unit area which becomes available when the
®lm is released from the substrate in a way such that it is still subject to a
constraint of in-plane plane strain is

G0 � �1ÿ n2�hs20
2E

�2�

Fig. 1. Two prevalent delamination mechanisms for compressed ®lms and coatings: edge delamination

and buckledriven delamination. The buckle delamination is shown spreading from an edge to reveal the

separation, but in most instances they initiate in the interior of the ®lm away from any edges.
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It will be seen that G0 ®gures prominently in the energy release rates for both edge
and buckle delaminations.

1.1. Edge delaminations

An initial edge ¯aw in the interface between ®lm and substrate of su�cient
magnitude can serve to nucleate an edge delamination which spreads as a plane
strain interface crack (Fig. 1). For a ®lm in compression, the interface crack is in
mode II such that the faces remain in contact behind the advancing tip
(Hutchinson and Suo, 1992). Under the idealized assumption that frictional sliding
plays a negligible role, the steady-state energy release rate of the crack when its
length is several times the ®lm thickness is given by Eq. (1): i.e. G=G0. Thus, if
the mode II toughness of the interface is GII

i (measured in units of energy per unit
area), then the critical combination of ®lm stress and thickness at which the edge-
delamination can spread without arrest is

s0 �
��������������������
2EGII

i

�1ÿ n2�h

s
�3�

Any frictional interaction of the crack faces will consume some of the energy
stored in the ®lm, and therefore Eq. (3) is necessarily an underestimate of the
critical stress or ®lm thickness.

The size of the interface edge ¯aws needed to nucleate a propagating edge-
delamination are relatively small, generally on the order of several ®lm
thicknesses. This point is revisited after the size of ¯aws needed to initiate
buckling delaminations has been discussed.

1.2. Buckling delamination

A buckling index is conveniently de®ned as

P � �1ÿ n2��s0=E ��L=h�2 �4�
Throughout the paper both plane strain and axisymmetric delaminations will be
considered to show that the behavioral features of interest are common to both.
It will be convenient to let L denote both the width of the separation in
plane strain and the diameter of a separation for axisymmetric geometries. For
buckling to initiate P must exceed a critical value Pc. For a plane strain buckle,
Pc=p 2/3=3.29, and for a circular buckle, Pc=4.89. The buckling condition may
be re-expressed in terms of the width or diameter of the delamination Lb at the
onset of buckling. This is accomplished upon equating L to Lb and P to Pc in Eq.
(4), such that

Lb=h � 1:81

�����������
�E=s0

q
�plane strain� � 2:21

�����������
�E=s0

q
�axisymmetric� �5�
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where E
-
is the plane strain modulus of the ®lm, E

-
=E/(1ÿn 2). These lengths

represent the smallest interface separations which give rise to buckling
delaminations absent any imperfections. For typical moduli and ®lm compression
levels, Lb will be about 20 h or more. These relatively large interface ¯aws
motivate the present investigation into the role of imperfections on the nucleation
of buckling delaminations.

Energy release rates, G, and mode mixities, c=tanÿ1 (KII, KI) (where KI and
KII are the mode I and II interface stress intensity factors), have been determined
for plane strain and circular buckle delaminations by Hutchinson and Suo (1992)
and Hutchinson et al. (1992). Plots of G/G0 and c as a function of L/Lb are
presented in Fig. 2 for circular delaminations. The energy release rate increases as
the buckle spreads to sizes larger than Lb, while the relative proportion of mode II
to mode I increases sharply.

The mode-dependence of the interface toughness Gi (c ) plays a critical role in
determining the sequence of events in the propagation of the delamination. The
following phenomenological interface toughness is adopted to model the
dependence (Hutchinson et al., 1992)

Fig. 2. Normalized energy release rate and mode mixity at the interface crack edge for circular

delaminations of diameter L. For a given pre-compression s0, Lb de®ned in Eq. (5) is the smallest

diameter for which the ®lm will buckle in the absence of an imperfection. (n=1/3 and no elastic

mismatch between ®lm and substrate in the determination of c.)
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Gi=GI
i � 1� tan 2�1ÿ l�c �6�

where GI
i is the mode I toughness and l is a mixity index lying between 0 and 1.

The interface toughness is mode independent in the limit l=1. Representative
values of l for metal±ceramic interfaces generally have l < 0.3. The criterion for
the buckle delamination to grow is G=Gi (c ), which can be implemented using
the results for G and c from Fig. 2 along with Eq. (6). Curves along which the
criterion is satis®ed for circular delaminations are plotted in Fig. 3 for four values
of l. The corresponding curves for plane strain delaminations are qualitatively
similar. The curves may be interpreted in the following way. Suppose an initial
separation of diameter L0 exists at the interface, and let the compressive stress in
the ®lm, s0, increase from zero. Two trajectories prior to propagation are
illustrated as dashed curves emanating from the origin in Fig. 3, with the one
connecting to A having a smaller L0 than that connecting to B. (Note that on the
dashed trajectories, L/Lb0L0/Lb increases from zero because of the dependence
of Lb on s0 in Eq. (5).) The condition for propagation is met when the dashed
trajectory intersects the solid curve, which in Fig. 3 is illustrated for l=0. If the
intersection occurs on a falling portion of the curve, as in the case at A, any
perturbed growth of the delamination will result in a state lying above the
propagation criterion such that advance will occur dynamically at ®xed stress until
it arrests at A '. It will then grow stably under increasing stress. For larger initial
separations, represented by the intersection at B, the advance is stable from the
start with the delamination growing under increasing stress. Experimental
observations and measurements have fully con®rmed the two types of
delamination growth: for a model system of mica bonded to an aluminum

Fig. 3. A buckling map for a compressed ®lm absent imperfections, with an initial separation, diameter

L, at the interface. The sequence of steps in the delamination process are described in the text. (n=1/3

and no elastic mismatch between ®lm and substrate in the determination of c.)
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substrate (Hutchinson et al., 1992) and for a thermally grown oxide ®lm (Al2O3)

on a Ni superalloy substrate with a bond coat (Wang and Evans, 2000).

The limitation at this level of analysis is that the failure process cannot be

activated until an interface separation has formed large enough to cause

buckling (namely, L0rLb). As already noted this requires, typically, L0 1 20 h.

Mechanisms responsible for creating separations this large have not been

addressed, except in a qualitative manner for thermal barrier coating systems

(Christensen et al., 1997; Evans et al., 1998; He et al., 1998; Wang and Evans,

1998, 2000). The intent of this article is to establish some of the mechanics

relevant to this nucleation stage of failure. One consequence will be a modi®ed

buckling map that incorporates nucleation and more fully represents the buckling

behavior found in practice. At this point it is also instructive to note from Eq. (2)

that the energy required to drive a steady-state edge delamination is comparable

to that for buckling delamination. Moreover, the size of an initial interface

separation at the edge needed to initiate a propagating edge delamination is much

smaller than 20 h. The question naturally arises as to why edge delaminations are

far less commonly observed as failure modes of compressed ®lms than buckle

delaminations. Part of the answer undoubtedly lies in the fact that edge

delaminations are controlled by the mode II interface toughness (cf Eq. (3)) and

must overcome frictional e�ects, if present. Although unresolved, the issue

highlights the importance of understanding how interface separations much

smaller than 20 h must in some way be able to nucleate buckle delaminations.

Two prototypical imperfections responsible for nucleation of interface

separations in thermal barrier coatings have been proposed in the references cited

above (Fig. 4): undulations and morphological heterogeneities. Both have the

underlying feature that they locally redistribute the residual stress such that

tensions develop normal to the interface (Evans et al., 1998; He et al., 1998), as

illustrated in Fig. 4. These tensions provide the motivation for interface

separations to nucleate and propagate. An analogous nucleation mechanism exists

at the interface between particles in ceramic matrices driven by thermal expansion

mismatch (e.g. Ito et al., 1981).

It has been possible to observe these processes in thermally grown thin ®lms of

a-Al2O3 (TGO) formed on Ni-based bond coat alloys, because of the translucency

of the oxide and the large re¯ectivity changes where the interface separates

(Christensen et al., 1997; Tolpygo and Clarke, 1998; Wang and Evans, 1998,

2000). However, a mechanics analysis of this phenomenon and its implications for

buckling delamination have yet to be provided. The intent of this article is to

develop such an analysis and to use the results to establish the characteristics of

imperfections that nucleate separations large enough to induce buckling and

failure. Such results identify a critical imperfection size needed to activate the

failure process.
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2. Basic concepts

2.1. Role of imperfections

Previous analyses of interface separations emanating from imperfections (Evans,
1972; Evans et al., 1998; RuÈ hle et al., 1987; Green, 1982; He et al., 1998; Ito et al.,
1981; Shum and Huang, 1990) have revealed that, absent buckling, the energy
release rate G exhibits a peak Gpeak and thereafter asymptotically approaches zero
(Fig. 5). Speci®c results are presented in Section 4. The consequence is that small
¯aws located near the regions of greatest tension can be activated, resulting in
cracks that ``pop-in'' and arrest. Their size is governed by the declining portion of
the energy release rate, with arrest occurring where G becomes coincident with the
fracture toughness, Gi. This is the behavior identi®ed on Fig. 5 as the nucleation
phase of ®lm failure.

As the separation becomes longer, it reaches a size large enough to buckle
(L3Lb). When this happens, the energy release rate increases again, and
approaches a value on the order of G0. This is the behavior identi®ed on Fig. 5 as
the propagation phase. Speci®c results are presented in Section 4.

The convolution of the opposing trends in G for nucleation and propagation
results in a minimum, designated Gmin. This minimum is one of the predominant

Fig. 4. Two types of imperfections that nucleate interface separations at the interface between the dense

ceramic layer (usually a form of Al2O3) and the metallic bond coating in multilayer thermal barrier

coatings.
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features governing ®lm failure. Once Gmin attains Gi, the buckle propagates and
reaches a size readily observable by optical microscopy.1

One objective is to characterize Gmin and to explore its potential as a failure
criterion for compressed thin ®lms. A second is to establish trends in Gpeak relevant
to nucleation.

2.2. Buckling at imperfections

The in¯uence of imperfections on ®lm buckling is addressed at two levels.
Analytical results are presented for a two-dimensional geometry, subject to plane
strain. The localized imperfections are in the form of undulations having
characteristic widths much smaller than the size of a buckled delamination (Fig.

Fig. 5. A schematic of variations in energy release rate with separation width or diameter for the

nucleation and propagation phases of failure. The critical quantities Gmin and Gpeak are identi®ed.

1 The subsequent approach to failure is dictated by e�ects of mode mixity and interface friction, dis-

cussed elsewhere (e.g. Wang and Evans, 1998).
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6). Corresponding results for axisymmetric buckles are analyzed numerically,
using key insights from the analytical formulae both to establish the scope and to
provide scaling relationships.

For the plane strain problem, the undulation, w0(x ), is taken to be symmetric
about x= 0. The ®lm is otherwise uniform. Under restrictions that the maximum
slope of the undulation should not exceed about 208 and that the ®lm thickness is
small compared with the delamination width, the von Karman nonlinear plate
equations incorporating the imperfection can be used to describe the behavior of
the delaminated ®lm. These equations are equivalent to the nonlinear shallow shell
equations (Koiter, 1966). They apply both when the delamination is too small to
buckle (whereupon propagation is driven by the undulation), as well as when the
debonded region is large enough to experience buckling driven delamination.
Under the same conditions required for applicability of the Karman equations,
the prestress in the attached ®lm due to thermal expansion mismatch can be taken
to be uniform and independent of the imperfection amplitude.2

The imperfection produces tensile stresses acting across the interface at points
where w 000 is negative. It is these stresses which promote imperfection-driven
delamination (Fig. 4). As the delamination spreads into regions where w 000 is
positive, the compressive stress across the interface retards interface crack
propagation, diminishing the energy release rate signi®cantly (Fig. 5).

With the width of the delamination as L, the governing equations for vxv R L/2

Fig. 6. A schematic of the undulation imperfection considered in the present analysis.

2 Neglecting terms of order w 0 20 compared to unity.
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can be reduced to the following system:

Dw 00 � shw � ÿshw0 �MA �7�

s � s0 ÿ
�E

L

�L=2
0

�w 0 2 � 2w 00w
0 �dx �8�

where ( ) '=d()/dx, E
-
=E/(1ÿn 2), D=E

-
h 3/12. The term

MA � Dw 00�L=2� � shw0�L=2� �9�

is an unknown quantity to be determined as part of the solution. The average
stress in the x-direction in the detached ®lm, s, is independent of x. It is
determined by condition (8) which has been obtained from the requirement that
the component of displacement in the x-direction is zero at the end of the
delamination. The boundary conditions accompanying Eqs. (7) and (8) are the
symmetry condition at x=0 and the clamped condition at x=L/2:

w 0�0� � 0, w�L=2� � 0, w 0�L=2� � 0 �10�

The imperfection used in most of the numerical studies comprises a single wave
having the shape (Fig. 6):

w0 �
�d
2

�
1� cos

2px
L0

�
j x jRL0

2

� 0 j x jrL0

2
�11�

Application of the von Karman equations requires that the maximum slope of the
imperfection not exceed about 1/5, limiting the amplitude of the imperfection to
approximately d- R L0/10. A family of extended imperfections (Fig. 7) illustrates
barriers to delamination spreading:

w0 �
�d
2

�
1� cos

2px
L0

�
eÿ�x=LD�2 �12�

where LD is a decay length illustrated on Fig. 7.
The two quantities determining the propagation of the interface crack are G

and c. These are determined from the solution to the governing equations using
(Hutchinson and Suo, 1992):

G � h

2 �E
��s0 ÿ s�2 � 12�M�L=2�=h2�2� �13�
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tan c �
�����
12
p �M�L=2�=h2� � �s0 ÿ s� tan o

ÿ �����
12
p �M�L=2�=h2� tan o� �s0 ÿ s� �14�

where M(L/2)=Dw0(L/2) is the moment at the right end of the delamination.
Elastic mismatch between the ®lm and substrate has some in¯uence on the mode
mixity, through o. Here, the second Dundurs' mismatch parameter has been
taken to be zero. The dependence of o on the ®rst parameter, aD=(E

-ÿE-s)/
(E
-
+E

-
s), is speci®ed in Hutchinson and Suo (1992). When there is no mismatch,

o=52.18.
For the single wave imperfection, Eq. (11), Eqs. (7) and (10) can be solved in

closed form, with s as an unknown variable. Then Eq. (8) can be reduced to a
single algebraic transcendental equation for s, completing the solution. The
resulting equation for s must be solved numerically for each set of parameters,
except in some special instances. Then, G and c are evaluated using Eqs. (13) and
(14).

For extended imperfections, Eq. (12), Eq. (7) requires numerical integration in
addition to a numerical solution procedure for s. Further details are given in
Appendix A.

In the following Sections, the preceding formulae are used to analyze various
e�ects of imperfections on plane strain buckling and buckle propagation.
Corresponding results for axisymmetric buckles are determined numerically. For
this purpose, axisymmetric separations are introduced at the interface and the
energy release rate, G, as well as mode mixity angle, c, calculated as a function of
the separation diameter, L, using procedures described elsewhere (Evans et al.,
1998; He et al., 1998). The commercial ®nite element code ABAQUS was

Fig. 7. The shapes of the extended imperfection used in the analysis.
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implemented in the nonlinear mode with updated geometry and employing eight-
noded axisymmetric elements with ®ve to ten elements through the thickness. For
the small imperfection cases, most computations were carried out using a ®nite
element mesh to represent the substrate. For larger detachments, most examples
were run taking the attached portions of the ®lm to be rigidly supported along the
bottom surface. In general, there was little di�erence in the predictions obtained
from these two ways of supporting the ®lm.

3. Initial buckling

3.1. Asymptotic behavior at small imperfections

The in¯uence of imperfections on initial buckling, expressed in terms of the
induced energy release rates, are examined in order to assess the imperfection-
sensitivity. This is done by imposing the initial condition that the separations be
large enough to satisfy buckling in an imperfection-free ®lm, L=Lb. Analytical
results are provided for plane strain delaminations as well as numerical results for
axisymmetric imperfections. The analytical results are asymptotically valid at
small imperfection amplitudes. They are based on Koiter's asymptotic theory of
post-buckling and imperfection-sensitivity for elastic structures (Koiter, 1945). A
more extensive study of the role of small imperfections on buckling delamination
has been conducted by StoraÊ kers and Nilsson (1993), and thus only the outcome
of the analysis will be presented here.

For L=Lb the buckling mode from Eq. (4) with w0=0 is

w � �b=2��1� cos�2px=L��, j x jRL=2 �15�
where b is the buckling de¯ection amplitude. For su�ciently small imperfections,
the de¯ection of the ®lm above the separation satis®es:

b

h
� s

s0 ÿ s
k �16�

with

k � 8

�L=2
0

�w0=h� cos�2px=L�dx

being a function of d-/h and L0/L. Moreover, in Eq. (8) the term w '2 is large
compared to w 00w

0 when d-/h is small such that

1ÿ s=s0 � 3�b=h�2=4 �17�
The preceding two equations can be solved for b and s/s0 in terms of k. For
su�ciently small d-/h, the asymptotic relations are
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b=h � �4k=3�1=3 and 1ÿ s=s0 � �
���
3
p

k=2�2=3 �18�
The limiting relation for the energy release rate from Eq. (13) is

G=G0 � 3�4k=3�2=3 �19�
where G0 is given by Eq. (2).

Because k is proportional to the imperfection amplitude d-, Eq. (19) dictates
that, when the imperfections are su�ciently small, the energy release rate scales as;
G0d-2/3. The 2/3 power law magni®es the e�ect of small imperfections, producing
an unusually large increase in G. Moreover, in the special case where the
imperfection is in the shape of the buckling mode with L=L0=Lb, k=d-/h,
revealing that small imperfections have an exceptionally large in¯uence. It must
again be noted that the asymptotic result, Eq. (19), is limited to behavior in the
vicinity of the onset of buckling, i.e. L3Lb.

3.2. Numerical results

The imperfection sensitivity of buckling for ``large'' imperfections has also been
calculated, numerically, for axisymmetric buckles (Fig. 8). These results were
determined for axisymmetric undulations in the same form as Eq. (11) with
diameter L0 taken to be equal to the diameter of the delamination L. Again, the
notable feature is that appreciable energy release rates develop when the
delamination diameter is a fraction of the diameter for the onset of buckling for

Fig. 8. The imperfection sensitivity of the energy release rate in the presence of an axisymmetric

imperfection undulation whose diameter is equal to the diameter of the separation. Note the signi®cant

elevation of the energy release rate at separation diameters which are much smaller than onset of

buckling for the perfect system (i.e. (s0/E
-
)(L/h )2=4.89).
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the perfectly ¯at ®lm, as has also been documented by StoraÊ kers and Nilsson
(1993). For example, when the imperfection amplitude is only, d-/h = 1, a
signi®cant energy release rate develops even at delamination diameters which are
only 1/3 the onset value.

4. Buckle propagation

4.1. Single wave imperfections

To highlight the strong nonlinear coupling between relatively small size
imperfections and buckling delaminations, results will ®rst be presented for
decoupled imperfection driven and buckle driven delamination in plane strain. The
buckling mode is given by Eq. (15).

An example, presented in Fig. 9, illustrates the behavior. It applies to the
following set of parameters:

s0
�E
� 0:005

�
Lb

h
� 25:7

�
,

L0

h
� 5

�
L0

Lb

� 0:195

�
, �Es � �E�aD � 0�

To decouple the two e�ects, ®rst the imperfection is taken to be zero for buckling
delamination, and thereafter, for the imperfection driven delamination, the

Fig. 9. Decoupled energy release rates associated with nucleation and buckle-driven delamination at

plane strain undulations.
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nonlinear de¯ections are deleted. When this is done (Fig. 9), it is found that, when
the wavelength of the imperfection, L0, is small compared with the onset buckling
wavelength, Lb(L0/Lb=0.195), there is little overlap in the energy release, with G
dropping to a small value well before the delamination is large enough to be
driven by buckling. These decoupled results a�rm that there exists a major barrier
impeding propagation of the delamination much beyond the width of the
imperfection itself.

The coupled results determined with the full nonlinear equations (Fig. 10a and
b), indicates a very di�erent picture, similar to that anticipated on Fig. 5. Now,
while the energy release rate decreases as the delamination spreads beyond the
imperfection, it begins to increase again well before its length attains Lb. As
already noted (Section 3), the in¯uence of the imperfection is particularly dramatic
for separation widths L 1 Lb, even though the imperfection width is less than Lb/
5.

The mode mixity c at the right hand tip of the interface delamination is plotted
in Fig. 11. There is signi®cant variation in c depending on both imperfection level
and delamination width. This variation exerts an important in¯uence on the
spread of the delamination. Note that su�ciently wide buckling-driven
delaminations always approach mode II conditions (at L/h 1 60 in this example).
The relative proportion of mode II is less for delaminations with curved fronts.
For this reason, delaminations tend to arrest at a characteristic width and then
continue spreading along their front (Hutchinson and Suo, 1992).

The strong interaction of the two types of delamination with disparate
wavelengths is a consequence of nonlinear coupling. In Fig. 10a the imperfection
width is only about one ®fth the width of the onset buckle, yet there is strong
coupling, such that Gmin is well above zero. For a somewhat longer imperfection,
but still short compared to Lb (Fig. 10b), the peak is about the same, but the
minimum is even larger. Accordingly, nucleation conditions are similar, but
propagation is facilitated.

To elaborate on nucleation and the barrier to propagation, plots of Gpeak/G0

and Gmin/G0 in plane strain are presented in Fig. 12, as a function of L0/Lb, for
two imperfection amplitudes. Presented this way, the results are independent of s0/
E
-
, as shown in Appendix A. This feature suggests introduction of another non-

dimensional index, referred to as the imperfection size index, R. It is given by:

R � �L0=Lb�2 � 0:305�s0= �E��L0=h�2 �plane strain�

� 0:204�s0= �E��L0=h�2 �axisymmetric�
�20�

The general form of the minimum is:

Gmin =G0 � F�L0=Lb, �d=h� �21�

where F is a function which could be obtained by ®tting to Fig. 12. Note,
however, that the dependence on L0/Lb is essentially linear and the dependence on
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Fig. 10. Energy release rates for plane strain undulations demonstrating the coupling between small

imperfections and large buckling de¯ections: (a) L0/Lb=0.195 (b) L0/Lb=0.39.
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d-/h is weak: features also found below for axisymmetric imperfections.
Consequently, Eq. (21) can be approximated by:

Gmin =G0 � c�L0=Lb� �22�
where c is in the range 0.8 to 1.0 (Fig. 12) for imperfections amplitudes in the
range 0.5 < d-/h < 1. This result and its axisymmetric analog are used in Section 5
to evaluate a critical imperfection wavelength for buckle propagation.

4.2. Extended imperfections

Extended oscillatory interface imperfections can trap a nascent delamination in
regions where w 000 is positive. The family of imperfections plotted in Fig. 7
provides an illustration of this e�ect. The nominal width of each undulation is
taken to be L0/h = 5. Numerical results for the energy release rate are shown in
Fig. 13 as a function of the delamination width, for four imperfection shapes. The
peak, Gpeak, is insensitive to the decay length, LD, but the minimum, Gmin, is a
strong function of LD. For LD/h=2, the behavior is similar to that shown in Fig.
10a for the single imperfection having the same amplitude (d-/h = 1/2). However,
at larger LD/h, trapping becomes a dominant feature, resulting in low Gmin. An
imperfection with LD/h=5 results in Gmin/Gpeak 1 1/10.

Two-dimensional variations of the surface imperfections may well provide
opportunities for the delaminations to spread around such ``traps''. Nevertheless,

Fig. 11. Variation in mode mixity angle with separation length for a plane strain buckle.
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the limited one-dimensional study presented here indicates that the nonlinear
coupling between small imperfection-driven delaminations and the larger buckling-
driven delaminations depends on details of the imperfection shape. The strong
coupling can be defeated by undulations which trap the delaminations while they
are still small.

4.3. Axisymmetric imperfections

Energy release rate results for axisymmetric undulations have been obtained
numerically for a range of undulation wavelengths and amplitudes. Typical results
are presented on Fig. 14 for a range of the imperfection size index, Eq. (20)
between 0.12 and 0.6. The features anticipated schematically on Fig. 5 are again
apparent.

The analytical results assert that when L0/Lb is used as the abscissa, Gmin/G0

should be independent of the residual strain, s0/E
-
f . This dependence is

Fig. 12. Non-dimensional plots illustrating the dependence of the peak and minimum energy release

rates in plane strain on the relative undulation wavelength L0/Lb.
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demonstrated on Fig. 15a. A ®t to these results in the range 0.5 < L0/Lb < 1 has
the same form found for plane strain delaminations, Eq. (22):

Gmin =G0 � c�L0=Lb� �23�
where now c30.4. Note that there is minimal e�ect of the undulation amplitude,
even less than that for plane strain delamination (Fig. 12).

5. Critical conditions

5.1. Buckle propagation

Upon equating Gmin to the interface fracture toughness at the associated mode
mixity, Gi, Eqs. (22) and (23) indicate that there is a critical imperfection
wavelength, Lc

00L0, given by:

Lc
0 � �GiLb=�cG0��

� 4

 
�EGi

s20

! ������
�E

s0

s
�plane strain�

Fig. 13. In¯uence of extended imperfections on the energy release rate in plane strain.
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s20

! ������
�E

s0

s
�axisymmetric� �24�

Note that Lc
0 is insensitive to the ®lm thickness, h, and imperfection amplitude, d-,

for the range 0.5< d-/h.
The signi®cance of this result is as follows. Imperfections having wavelength L0

smaller than Lc
0 will not give rise to energy release rates large enough to attain a

buckled state. Accordingly, such imperfections cannot cause failure. Conversely,
imperfections having larger wavelength could buckle and cause failure, subject to
the presence of a defect large enough to nucleate a separation.

A paradox with Eq. (24) envisaged as a sole failure criterion is that it has no
dependence on the ®lm thickness, inconsistent with practical experience (Wright,
1998). The ®lm thickness enters when a nucleation criterion is also imposed, based
on Gpeak, discussed next. Both criteria must be satis®ed to cause failure.

5.2. Nucleation

In crack nucleation problems in brittle systems (notably those for cracking at
indentations and inclusions) (Marshall et al., 1982; RuÈ hle et al., 1987; Shum and
Huang, 1990; Green, 1982; Ito et al., 1981; Evans, 1972), the correct scaling is

Fig. 14. Energy release rates calculated for axisymmetric undulations over the parameter range

indicated on the inset.
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Fig. 15. Non-dimensional minimum and peak energy release rates for axisymmetric undulations,

plotted as a function of imperfection index: (a) minimum, (b) peak.
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achieved upon equating Gpeak to the toughness, Gi. However, because of the
requirement that ¯aws be present to activate the nucleation process, nucleation
conditions must take into account representative initial ¯aws. This can be done
approximately by equating Gpeak/2 (rather than Gpeak) with Gi (Green, 1982; Ito et
al., 1981). In order to implement this approach in the present context, it is noted
that Gpeak for both plane strain (Fig. 12) and axial symmetry (Fig. 15b) are
reasonably approximated by G0 for moderate, but realistic, imperfection
amplitudes (e.g. d-/h 1 1). Recall that Gpeak has little dependence on the
imperfection size, L0. Imposition of Gpeak/2=Gi with Gpeak3G0 gives the critical
thickness hc at which the imperfections nucleate delaminations:

hc � 4 �EGi=s20 �25�
This result depends weakly on L0/h and only requires modest undulation
amplitudes. Note that, from Eq. (24), Lc

0 and hc are inter-related by

Lc
0=hc �

�����������
�E=s0

q
�plane strain�

� 2:7

�����������
�E=s0

q
�axisymmetric� �26�

For smaller imperfections than those assumed, hc will be larger than Eq. (25). It
can be obtained from the curves presented on Figs. 12 and 15b, with Eq. (26)
modi®ed accordingly.

The following interpretation should be given to the two critical lengths. The
combined inequalities h < hc and L0 < Lc

0 comprise a fail-safe condition. Film
thicknesses less than critical will not nucleate initial delaminations. Moreover,
even if initial delaminations develop equal in size to the undulations (L0), they will
arrest before they become unstable. Conversely, if both inequalities are reversed (h
> hc and L0 > Lc

0), delaminations would be expected to nucleate and grow
unstably, except that interfaces having high perfection (no defects) would still be
capable of resisting failure.

6. Implications

6.1. Revised buckling map

The in¯uence of the imperfections on ®lm failure can be visualized by
modifying the buckling map of Fig. 3 to include the energy release rate features
found in the nucleation phase. Such a map of S0s0[(1ÿn 2)h/(2EGI

i)]
1/2 vs L/Lb is

shown schematically in Fig. 16. The consequences for ®lm failure are illustrated
by the trajectory superposed on the buckling map. Present an initial interface
defect, size L0, a critical level is reached (position A) at which a separation pops-
in to a stable size (position B). As S further increases, the separation expands
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stably up to the maximum (point C). Here the separation buckles and abruptly
expands to size La (point D). At this stage, the buckle may either spall or arrest,
depending on conditions relative to the spall criterion (Hutchinson and Suo, 1992;
Wang and Evans, 2000). If it arrests, it can again expand stably as S increases
until spalling conditions are reached. The preceding energy release rate results can
be used to plot explicit buckling maps, as a function of imperfection size and
shape.

6.2. Critical sizes

Explicit failure conditions are found by determining the critical sizes, Lc
0 and hc.

They are illustrated for a thin thermally grown a-Al2O3 (TGO) on a superalloy.
The ®lm properties are quite well known (Table 1). The residual compression is

Fig. 16. A modi®ed buckling map that introduces a nucleation condition. The trajectories are described

in the text.

Table 1

Properties of a-Al2O3 thermally grown on Ni-based bond coats

E (GPa) 380±400

n 0.2

a (8Cÿ1) (ppm) 7±8

as (8C
ÿ1) (ppm)a 14±16

h (mm) 1±10

G0
i (J mÿ2) 5±20

DT (8C) 1000

l 0.1±0.3

a Ni based superalloy.
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about s0 1 3 GPa, while Gi varies from the low end of the range (5 J mÿ2) to an
upper level given by the TGO itself (G0 1 20 J mÿ2).

For axisymmetric undulations, neglecting mode mixity e�ects, the critical
imperfection wavelength Lc

0 needed to assure propagation and buckling ranges
from 20 to 100 mm; while the corresponding critical TGO thickness required for
nucleation, hc, varies from 1/2 to 3 mm. Note that the ratio Lc

0/hc 1 30 is large
enough to allow application of Eq. (26), provided that the amplitude, d-/L> 0.05.
Undulations having such magnitude are readily developed by wrinkling, etc.
(Tolpygo and Clarke, 1998). Hence, for this thin ®lm system, imperfections
comprising locally undulating surfaces provide an e�ective means for nucleating
and propagating failure whenever the TGO thickness exceeds 1/2±3 mm. Further
de®nition is dependent on speci®cs regarding the interface toughness.

When mode mixity e�ects are included, hc increases signi®cantly, dependent on
l, Eq. (6). Upon using the l measured for TGO (0.3) (Wang and Evans, 1998) in
conjunction with c calculated on Fig. 11, there is a factor 4 increase: such that Lc

0

now ranges from 80 to 400 mm.

7. Summary

Analysis of prototypical imperfections associated with thin compressed ®lms has
established criteria for failure by buckle driven delamination. Two basic
requirements must be satis®ed. One based on the nucleation of interface
separations. The other governed by buckling and buckle propagation.

For su�ciently large imperfections, these requirements can be expressed in
terms of ``critical sizes'', manifest as a critical ®lm thickness hc, and a critical
undulation wavelength, Lc

0: Values for these critical sizes determined for a thin
thermally grown oxide (TGP), have provided information that can be compared
with experimental ®ndings. Analogous results for other imperfections, such as
heterogeneities, remain to be determined.
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Appendix A. The plane strain model

Eq. (4) can be put in the following dimensionless form:
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W
�� � �2px�2W � ÿ�2px�2W0 �m �A1�

x2 � 1ÿ 3

Zp2

�Z=2
0

�W � 2 � 2W
�
0W
� �dX �A2�

where

x2 � s
s0

, Z � L

Lb

, Lb � p

����������
�E

3s0

s
h, X � x

Lb

, � �� � d� �
dX

,

W � w

h
, W0 � w0

h

�A3�

As de®ned in Eq. (5), Lb is the width of the delamination associated with the
onset of buckling in the perfect ®lm. The constant m = 4p 2MA/(s0h

2) is one of
the free variables required to meet the two boundary conditions: W=W

�
=0 at

X=Z/2.
Solutions to Eq. (A1) for symmetric imperfections are given by

W�X � � A cos�2pxX � � m

�2px�2 ÿ F�X, x� �A4�

where A is an undetermined coe�cient and

F�X, x� � �2px�2 cos�2pxX �
�X
0

"
1

cos�2pxf�2
�f
0

cos�2pxX 0 �W0�X 0 �dX 0
#

df

�A5�

Enforcement of the boundary conditions gives

m � 2pxF
� �Z=2, x�

tan�pxZ� � �2px�2F�Z=2, x�, A � ÿ F
� �Z=2, x�

2px sin�pxZ� �A6�

where F
� � dF=dX: By Eq. (A4),

W
� �X � � ÿF � �X, x� � F

� �Z=2, x� sin�2pxX �= sin�pxZ� �A7�
The use of Eq. (A7) in Eq. (A2) gives a single equation for x in terms of Z. Note
that this relation depends only on the dimensionless parameters specifying the
imperfection. Generally, x must be determined numerically. The solution is then
fully determined from Eq. (A7) and the other equations.

For the imperfection shape of Eq. (11), the two integrations de®ning F(X,x ) can
be carried out explicitly. The dimensionless imperfection parameters are d-/h and
L0/Lb. It is readily established that G/G0 and c depend only on Z, d-/h and L0/Lb.
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