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Abstract

Survival of a plate against an intense, short duration impulsive loading requires the circumvention of
failure modes, including those associated with excessive overall deflection and shear-off at supports and
webs. All-metal sandwich plates have distinct advantages over comparable weight monolithic plates,
especially for intense water loadings. A recently developed mechanics of dynamically loaded sandwich
plates by N. A. Fleck and V. S. Deshpande is extended and modified to address the problem of the
minimum weight design of plates of given span that must sustain a uniformly distributed impulsive wave in
air or water environments. Requirements for core crushing strength and energy absorption are discussed, as
are conditions governing shear-off of the face sheet. Dimensionless parameters governing optimal designs
are identified. Specific results are presented for plates with square honeycomb cores outlining trends for the
best performance that can be achieved and the optimal distribution of mass between faces and core.
Optimally designed sandwich plates can sustain water shocks that are two to three times as large monolithic
plates of the same mass and material. The model is used to discuss a number of issues relevant to the design
of effective metal sandwich plates, including differing requirements for air and water environments, face
sheet shear-off resistance, the role of core strength, and the relation between small-scale tests and full-scale
behavior.
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Nomenclature

B in-plane spacing of webs of square honeycomb core
cw sound speed in water
CL Eq. (23)
Dcrit maximum allowed normalized deflection, d=L
E Young’s modulus
f, f T ; f B; f F dimensionless functions defined in Section 2
h, hc; hf thickness of the solid plate, core webs and face sheets, respectively
H, H̄ thickness of undeformed and deformed core, respectively
I0 ¼ p0t0 momentum/area of incident pressure pulse
IT total momentum/area transmitted to sandwich plate and added water mass
IF momentum/area transmitted to front face and added water mass
IB momentum/area transmitted to core and back face
KEI ; KEII kinetic energy/area at end of Stages I and II
‘w ¼ cwt0 characteristic thickness of incident pressure pulse in water
L half-width of plate
m, mc; mf mass/area of solid plate, core and face sheet
mw mass/area of added water layer
M total mass/area of plate: m ¼ rh or 2mf þ mc ¼ rhf ð2þ mÞ
N strain hardening exponent in shear-off analysis
p, p0 pulse pressure, peak pressure of free-field pulse
rw ratio of mass/area of added water layer to face sheet, mw=mf

Rc relative density of core
t0 characteristic time of incident pressure pulse
tC time at the onset of cavitation and the end of Stage I
tII ; tIII time at the end of Stages II and III
V0 velocity of the solid plate (or top face) at end of Stage I
W P

c plastic work dissipated by core crushing in Stage II
W P

III plastic work dissipated in Stage III
b fluid-structure interaction parameter
GSH shear-off resistance
d; dfront deflection of plate or back face, deflection of front face
�̄c average crushing strain of core in Stage II
�P

eff effective plastic strain in shear-off analysis
lc; lS factors governing strength of core in crush and stretch
m measure of relative mass in core, mc=mf ;
r; rw density of base metal, density of water
sY yield strength of base metal
sc

Y yield strength of core in crush
sref reference strength in shear-off analysis, sY ðE=sY Þ

N
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1. Introduction

The superior performance of sandwich plates relative to solid plates of equal mass for
shock loading in water is due to three factors: (i) energy absorption by the sandwich core,
(ii) the substantial bending strength of a sandwich plate, and (iii) lower momentum trans-
fer to a sandwich plate from the water pulse. More than half of the kinetic energy initially
imparted to a sandwich plate by a uniformly distributed impulsive pressure loading must be
absorbed by the core, whether the pressure pulse is in air or water. Consequently, concepts
related to energy absorption in metal structural components [1] are central to the effective
design of sandwich plates against intense short duration pressure loadings. The major advan-
tage of sandwich plates relative to solid plates is against water pulses because signi-
ficantly less momentum is acquired by the sandwich due to wave interaction between the
water and the face sheet towards the pulse [2–7]. Recent theoretical work [4,5,7] has pro-
vided preliminary assessments of the benefits to be expected from sandwich design in a
water environment. Moreover, it has been demonstrated that finite element methods are
capable of accurately simulating most details of the structural response in a series of
experiments on sandwich plates with square honeycomb cores struck by metal foam
projectiles [8].

This paper continues the examination of all-metal sandwich plates by focusing on optimal
performance under uniform impulsive pressure loading. The primary purposes are to iden-
tify the dominant features governing the most effective designs and to provide in broad out-
line the best performance that can be expected. We adopt the approximate analytical approach
developed by Fleck and Deshpande [4] that separates the dynamic response of the plate into
three stages: Stage I, fluid-structure interaction; Stage II, core crushing; and Stage III, overall
bending and stretching. That analysis is extended in several respects. Most importantly,
an enhancement of Taylor’s [2] treatment of fluid-structure interaction is presented is
Section 2 that accounts for the yield strength of the core. It will be shown that the enhanced
fluid-structure interaction results become important when optimal designs are sought. Shear-
off of the face sheet (Section 4), either at the supports or at core webs, is an additional
failure mode that becomes important when optimal configurations are sought. The core of a
sandwich plate must absorb more than half of the initial kinetic energy imparted to the
plate (Section 3). For this reason, most attention here is directed towards square honey-
comb cores. Earlier work [5] has shown that these cores are particularly effective in this
application, combining high crushing strength and energy absorption with good in-plane stretch
resistance. Optimization of sandwich plates highlights a small set of dimensionless parameters
characterizing performance and design. Comparisons with equal mass solid plates will be made,
and outstanding issues concerning the design of plates against intense impulsive loads will be
discussed.

Overall trends relating the primary design variables for sandwich and solid plates to impulse
level for both air and water environments will be sought. Relatively simple analytical
approximations afforded by the neglect of strain hardening, material strain-rate effects, together
with simplifications of the deformation response of the type employed by Fleck and Deshpande,
allow this objective to be achieved. Full three-dimensional finite element simulations will be
required for more accurate refinements [5,7–9].



ARTICLE IN PRESS

J.W. Hutchinson, Z. Xue / International Journal of Mechanical Sciences 47 (2005) 545–569548
2. Extended fluid-structure interaction in Stage I

Taylor’s [2,3] one-dimensional analysis of the momentum transferred to a solid plate by a
pressure pulse propagating towards it through a fluid medium can be used to estimate the
momentum transferred to the face sheet of a sandwich plate towards the shock as long as the core
strength is small and the pulse time is sufficiently short. However, if the core offers significant
resistance to the motion of the face sheet, more momentum is transferred to the sandwich plate
than Taylor’s formula predicts. Moreover, the location of the plane where the onset of cavitation
occurs shifts from the fluid-plate interface to a point within the fluid, giving rise to a layer of
added water mass moving with the same velocity as the face sheet. Earlier efforts to seek the
optimal distribution of mass between faces and core for water pulses based on the Taylor formula
led to the conclusion that an optimal sandwich plate would have most of its mass in the core with
unacceptably thin faces [4]. The enhanced Taylor analysis presented below is one of the
ingredients essential to a more realistic optimization analysis, as will be illustrated.

The model analyzed in the Appendix idealizes the core as perfectly plastic with compressive
yield stress, sc

Y ; and the face sheet as a plane of concentrated mass per unit area, mf : The fluid has
density, rw; and wave speed, cw: As in Taylor’s analysis, the free-field pressure pulse approaching
the plate is of exponential form with time dependence, p ¼ p0e

�t=t0 where t0 will be referred to as
the pulse time and p0 as the peak pressure. With x measured from the face sheet and xo0 in the
fluid, the spatial dependence of the incident pulse at the instant it first hits the face is p ¼ p0e

x=‘w

with ‘w ¼ cwt0: The momentum/area of the free-field pulse is I0 ¼
R

pdt ¼ p0t0: The following
formulae provide the lowest order influence of sc

Y on the momentum transferred to the plate and
the other quantities of interest at the onset of cavitation when the plate and added water layer
separate from the bulk of the fluid.

The total momentum/area transferred to the sandwich plate (Fig. 1a), including the momentum
of the added water layer, is

IT

I0
� f T ¼ 2f ðbÞ þ 1:27

sc
Y

p0

ð1� f ðbÞÞ (1)

with

f ðbÞ ¼ bb=ð1�bÞ and b ¼ rw‘w=mf . (2)

The ratio, rw ¼ mw=mf ; (Fig. 1b) of the added layer of water mass/area, mw; to the mass/area of
the face sheet is

rw ¼ 0:71b
sc

Y

p0

. (3)

The momentum/area transferred to the core and the back face sheet (Fig. 1c) is

IB

I0
� f B ¼ 3:64

sc
Y

p0

f ðbÞ. (4)

Consequently, the momentum/area acquired by the front face sheet and the added water layer at
the onset of cavitation is IF=I0 � f F ¼ f T � f B: The time, tC ; at the onset of cavitation, measured
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Fig. 1. Extended fluid–structure interaction trends at onset of cavitation accounting for strength of the core. (a) Total

momentum/area acquired by sandwich plate, including added water mass. (b) Ratio of added water mass/area to mass/

area of face sheet. (c) Momentum/area acquired by core and back face.
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from the instant when the pulse first hits the front face, is given by tC=t0 ¼ ln b=ð1� bÞ when
sc

Y=p0 ¼ 0 and is only slightly altered for non-zero sc
Y=p0:

The above formulae, which include only linear terms in sc
Y=p0; provide highly accurate

approximations to the results for the model in the Appendix for sc
Y=p0o0:15: The formulas will

be used in the following sections to prescribe initial velocities for solid and sandwich plates.
Taylor’s result for a single solid plate (I=I0 � f T ¼ 2f ðbÞ with b ¼ rw‘w=m) is retrieved with
mf ¼ m; sc

Y=p0 ¼ 0 and rw ¼ 0: When the fluid transmitting the pulse is air, b is very small. Here,
for a sandwich plate in an air blast, the limit b ! 0 will be used such that IT ¼ 2I0 with f T ¼ 2;
f B ¼ 0; f F ¼ 2 and rw ¼ 0: For intense pulses these estimates are altered by nonlinear
compressibility of the air, not accounted for in either the Taylor analysis or the present analysis,
and the momentum/area acquired by a plate can be greater than 2I0: Nevertheless, these formulae
allow one to make meaningful comparisons of solid and sandwich plates. If desired, results
presented later for responses in air may be converted by replacing 2I0 with more accurate
estimates of the impulse/area transmitted to the plate by the pulse.
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Use of the above formulae rests on the tacit assumption that the cavitation plane continues to
separate the bulk of the fluid from the plate after the onset of cavitation. A more detailed analysis
[6] of the fluid response reveals that the cavitated region subsequently collapses resulting in
additional transfer of momentum by the bulk of the fluid to the plate. However, that analysis
indicates that this additional momentum is generally a small fraction of the momentum in the
plate at the onset of cavitation if sc

Y=p0o0:15 and if the free-field impulse level does not fully
compact the core (see Appendix). Both conditions are met for the sandwich plates considered
here, and, thus, the extended formulae, (1)–(4), are expected to provide reasonably accurate
approximations of fluid-structure interaction for partitioning the total momentum transferred to
the plate into the portion acquired by the front face sheet and added water layer and that acquired
by the core/face sheet combination behind it.
3. Energy absorption requirements of the core in Stage II

The elements of the plate are set into motion at the instant of cavitation with velocities that will
be derived from the results of Section 2. The analysis of the plate response employs the three
stages of response identified by Fleck and Deshpande [4]: Stage I ð0ototCÞ ending at the onset of
cavitation, Stage II ðtCototII Þ comprising the period of core crush and ending when all
components of the plate have acquired the same velocity, and Stage III ðtIIototIII Þ comprising
the period when energy not dissipated in Stage II is absorbed in overall bending and stretching of
the plate. The period, tC ; characterizing Stage I is on the order of the pulse time, t0: For stage II,
tII � IT=2sc

Y � ðp0=s
c
Y Þt0: The total response time for a heavy impulse is tIII � L

ffiffiffiffiffiffiffiffiffiffiffi
r=sY

p
where L

is an in-plane dimension of the plate with r and sY as the density and yield strength of the plate
material [9]. The three time scales are required to be well separated in the Fleck–Deshpande
approach. This appears to be a good assumption for large-scale plates (in-plane dimension on the
order of a meter) with relatively strong cores that are subject to loadings characteristic of air and
water pulses with t0 � 10�4 s [4,5,7].

At the end of Stage I, the kinetic energy/area in the front face sheet and the added water mass is
I2

F=½2ðmf þ mwÞ
; while that in the core and the back face sheet is I2
B=½2ðmf þ mcÞ
; where mc is the

mass/area of the core. Here, as an approximation, a uniform velocity in the core and the back face
sheet at cavitation has been assumed.1 Thus, the total kinetic energy/area at the end of Stage I is

KEI ¼
I2

F

2ðmf þ mwÞ
þ

I2
B

2ðmf þ mcÞ
. (5)

The response in the interior of the plate during Stages I and II is assumed to be unaffected by
supports at the perimeter of the plate, consistent with the supposition tII5tIII : Thus, under a
uniformly distributed pulse, motion away from the supports is one-dimensional and momentum is
conserved. When core crushing is complete at the end of Stage II, the faces sheets, core and added
water layer move at uniform velocity, neglecting elastic vibrations. By momentum conservation,
1Deshpande and Fleck’s [6] analysis accounts for non-uniform deformation of the core during Stages I and II. The

effect of assuming a uniform velocity in the core and the back face at the end of Stage I in the present analysis

introduces little error because most of kinetic energy is in the front face.
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the kinetic energy/area of the sandwich plate and added water mass at the end of Stage II is

KEII ¼
I2

T

2ð2mf þ mc þ mwÞ
. (6)

The kinetic energy dissipated in Stage II by core crushing, KEI � KEII ; is a large fraction of the
initial kinetic energy imparted to the plate. To see this, one can use the results of the previous
section to obtain

KEI � KEII

KEI

¼
f 2

F=ð1þ rwÞ þ f 2
B=ð1þ mÞ � f 2

T=ð2þ mþ rwÞ

f 2
F=ð1þ rwÞ þ f 2

B=ð1þ mÞ
. (7)

This ratio depends on three parameters:

sc
Y

p0

; m �
mc

mf

; b �
rw‘w

mf

¼ ð2þ mÞ
rw‘w

M
, (8)

where M ¼ 2mf þ mc is the total mass/area. The dimensionless parameter, M=rw‘w; is central in
the development which follows. For pulses with t0 ¼ 10�4 s in water, ‘w ffi 0:15m and rw‘w ffi

150 kg=m2 such that M=rw‘w ¼ 1 corresponds to a sandwich plate having the equivalent mass/
area of a 2 cm thick plate of steel. If the effect of sc

Y=p0 is neglected, such that f B ffi 0 and rw ffi 0;
ratio (7) becomes

KEI � KEII

KEI

ffi
1þ m
2þ m

, (9)

which is independent of M=rw‘w and thus valid in air or water. This estimate is approximately
valid for all sandwich plates (Fig. 2).

As noted above, the core must be designed to dissipate more than one-half, and, typically,
about two-thirds, of the initial kinetic energy imparted to the sandwich plate by a substantial
pulse. We continue with the idealized model of a perfectly plastic core with rate-independent yield
strength sc

Y : The average crushing strain of the core at the end of Stage II is denoted by �̄c ¼
Fig. 2. Ratio of kinetic energy/area absorbed in core in Stage II to kinetic energy/area acquired in Stage I.
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DH=H; with H and H̄ as the initial and deformed core thickness, respectively, and DH ¼ H � H̄:
The plastic energy/area dissipated by the core is W P

c ¼ sc
Y �̄cH: Introduce the relative density of

the core, Rc; defined as the fractional volume of the core occupied by the material, such that
mc ¼ rRcH where r is the base material density. It is convenient to introduce a ‘core compression
strength factor’, lc; defined in terms of the material yield strength, sY ; as

sc
Y ¼ lcRcsY . (10)

Assuming yielding occurs prior to elastic buckling in the core (see Section 8.5), a square
honeycomb core has lc ¼ 1; while a tetragonal truss core has lc ¼ 2=3: Weaker cores, such as
foam metal cores, can have lc � 0:1: This simple expression does not account for strength
variation as the core crushes, but they are adequate for present purposes.

The crushing strain is obtained by equating the plastic dissipation in the core W P
c to the kinetic

energy loss in Stage II, KEI � KEII : To obtain �̄c; note that W P
c ¼ sc

Y �̄cH can be written as
W P

c ¼ lcðMsY=rÞ�̄cm=ð2þ mÞ; and then express KEI � KEII in terms of the extended Taylor
formulae using Eqs. (5) and (6):

�̄c ¼
I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sY=rM
p

 !2

Q, (11)

where

Q ¼
ð2þ mÞ2

2mlc

f 2
F

1þ rw

þ
f 2

B

1þ m
�

f 2
T

2þ mþ rw

� �
. (12)

Eq. (11) for the crushing strain will be employed in the optimization of the square honeycomb
core sandwich plates and in Section 8 in connection with a general discussion of core strength
requirements.2
4. A criterion for face sheet shear-off

Among other failure concerns, the front face sheet (towards the pulse) must not shear-off, either
at the supports at the edge of the plate or where it is supported at the core webs. If shear-off
occurs, it does so very early in the history of the plate response prior to significant core crush and
overall bending and stretching. In this section, results on shear-off from Jones [10] and Xue [11]
will be used to identify a criterion governing shear-off. A solid plate or face sheet of thickness, h,
density, r; and tensile stress–strain behavior in the plastic range given by s ¼ sY ðE�=sY Þ

N
�

sref �N is considered. The plate is clamped at its supports and is set in motion at t ¼ 0 with uniform
velocity, V0:

An analysis of shear-off for a perfectly plastic plate ðN ¼ 0Þ has been presented [10] based on an
approximate yield condition for plates that decouples transverse shearing and bending. A finite
width plate was considered with simply supported end conditions. For the idealized yield model,
shear-off is measured by a shearing displacement normal to the beam at the support, wSH : For all
2The core strain occurring in Stage I is generally much smaller than Eq. (11), which applies to Stage II. It will be

neglected in determining the deformed thickness of the core, H̄; used in the Stage III analysis.
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but very narrow plates, the extent of shear-off is independent of the plate width since the
deformation is confined to the immediate vicinity of the end, as illustrated in the insert in Fig. 3.
Repeating the analysis in [10] for a clamped, semi-infinite plate, we find that the shear-off
displacement is wSH ¼ 9rhV2

0=8sY and that it is achieved at tSH ¼ 9rhV 0=sY : For t4tSH ; no
further shearing displacement occurs. For full-scale plates and velocities of interest here, tSH is on
the order of 10�4 s; and therefore on the order of the pulse time, t0: As mentioned earlier, if it
occurs, shear-off takes place early in the deformation history.

A finite strain analysis of shear-off using a finite element analysis with detailed meshing through
the thickness of the plate has been carried out [11] considering both elastic-perfectly plastic
behavior and the strain hardening behavior noted above for materials with a Mises yield surface.
In the refined analysis, no shear displacement at the support, wSH ; occurs even in the absence of
strain hardening. Instead, large plastic shear strains occur at the plate/support intersection as seen
Fig. 3. Shearing in solid plate at clamped support measured by effective plastic strain at the top corner as dependent on

initial velocity, V0; imparted to plate [11]. The inserts show deformation at the end of the period when the plate is

susceptible to intense shearing at the supports prior to any overall bending and stretching. Further details of the strain

distribution are discussed in the text.
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in the insert in Fig. 3. Across the plate thickness at the intersection there is about a factor of two
variation of the plastic shear strain. The largest strain occurs at the bottom corner where an acute
vertex develops under finite deformation, while the minimum strain occurs near the top where the
corner becomes obtuse with deformation. A selection of results [11] for the minimum shear strain
in the plate at the clamped support (the strain occurring near the top of the intersection) is
presented in Fig. 3. The shear strain, as measured by the effective plastic strain, �P

eff ; is plotted as a
function of V0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sref =r

p
for various values of the strain hardening exponent, N. The average

strain across the intersection is roughly 30% larger than the minimum strain plotted. In Ref. [11]
it is established that V0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sref =r

p
captures all the parametric dependence, and, specifically, it is

shown there is no additional dependence on h, sY or E. At small values of V0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sref =r

p
the

dependence on V0 is not linear. However, at larger strains of relevance to shear-off and for
moderate to heavy strain hardening, the plastic strain in Fig. 3 can be approximated as

�P
eff ffi 0:98V0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sref =r

q
. (13)

The condition used to exclude shear-off in the sequel is taken as

V0=
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
pGSH , (14)

where GSH is a parameter characterizing resistance to shear-off. Limited evidence available for
identifying GSH will be discussed in the next section. The extension of Jones’ analysis quoted
above would also lead to a criterion based on the combination V0=

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
if a value of wSH=h

were identified as being critical to shear-off.
Shear-off of the face sheet is also a possibility where it is attached to a core web, if the web is

sufficiently strong. For a specific example, consider a square honeycomb core (Fig. 4a) where the
core webs have thickness, hc; and in-plane spacing, B, equal to the core thickness, H. For webs
and faces made of a perfectly plastic material with a Mises yield surface, it is readily shown that
the core web will yield in compression before the face sheet can yield in shear if hcp2hf =

ffiffiffi
3

p
; or,

equivalently, if

m �
mc

mf

p
4ffiffiffi
3

p ðsquare honeycomb core; B ¼ HÞ. (15)

Thus, even if an end support is designed to avoid rigid clamping of the face sheet, the face may
shear-off where it is attached to the core webs if both Eqs. (14) and (15) are violated.
5. Equations governing bending and stretching of plates in Stage III

The kinetic energy/area of the plate at the end of Stage II, KEII in Eq. (6), must be dissipated by
bending and stretching of the plate in Stage III. Solid and sandwich construction will be compared
for plates of the same material and having the same mass/area, M. As already emphasized, the
base material is idealized to be rate-independent and perfectly plastic with yield stress, sY : The
plate has width 2L; is fully clamped at both ends, and is imagined to be of infinite extent in the y-
direction. The pulse hitting the plate is taken as uniform such that at the beginning of Stage III,
KEII is uniformly distributed over the plate. To estimate the deflection produced by this kinetic
energy, a relatively simple estimate of the energy dissipated in bending and stretching is obtained
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Fig. 4. (a) Sandwich plate with square honeycomb core. (b) Comparison of model predictions with results from three-

dimensional finite element computations [5]. An impulsive loading corresponding to an initial momentum/area, I, is

applied to each plate. See text for specification of details.
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using approximations for the deformation that neglect details of the dynamics. The energy
dissipated by plastic deformation is sought in terms of the center deflection of the plate.

A solid plate of thickness h and mass/area M ¼ rh is considered first. The limit bending
moment/length of the plate is mY ¼ sY h2=4: Under quasi-static uniform load, hinges form at each
end of the plate and at the center. The plastic work per length in the y-direction is 8mYd=L ¼

2sY h2d=L where d is the deflection at the center of the plate (sY h2d=L for a plate simply-
supported at it ends). Hinges relax the constraint on the slope at its ends when stretch becomes
dominant. To estimate the plastic work in stretching, assume a deflection shape w ¼ d½1� ðx=LÞ2


with x measured from the center of the plate. The average stretching strain in the plate is
�̄ ¼ 2ðd=LÞ2=3 and the plastic work/length dissipated in stretch is 2sY �̄hL: The average plastic
work per area dissipated in Stage III, W P

III ; is estimated by summing the two contributions given
above:

W P
III ¼

2

3
sY h

d
L

	 
2

þ sY h
h

L

d
L
. (16)
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Bending makes the dominant contribution for doh while stretch dominates for d4h: The present
estimate ignores details of the dynamic spread of plastic hinges during the bending phase of the
deformation accounted for in the estimate obtained by Fleck and Deshpande [4]. Nevertheless,
Eq. (16) provides a good approximation to the overall energy dissipation since it depends only
weakly on deformation history, as will be illustrated by comparisons with accurate numerical
results.

A similar analysis for the clamped sandwich plate gives 8sY H̄hf ðd=LÞ as the work/length
dissipated in bending (bending dissipation in the core is neglected and H̄ ¼ Hð1� �̄c) is the core
thickness at the end of Stage II), and 2sY hf ð2þ lSmÞ�̄L as the work/length dissipated in stretch.
Core dissipation in stretch is included through the factor lS that measures the fraction of the core
material aligned such that it resists stretch in the x-direction, i.e., sS

Y ¼ lSRcsY : A square
honeycomb core (Fig. 4a) has lS ¼ 1=2; while a truss core has lS ¼ 0: The plastic work/area
dissipated in Stage III in the sandwich plate is

W P
III ¼

2

3
sY hf ð2þ lSmÞ

d
L

	 
2

þ 4sY hf

H̄

L

d
L

(17)

with H̄ ¼ Hð1� �̄cÞ: For the sandwich plate, the deflections of the front (towards the shock) and
back faces are given by dfront ¼ dþ �̄cH and dback ¼ d; respectively.
5.1. Solid plate

The equation for the plate deflection is obtained by equating W P
III in Eq. (16) to KEII ;

accounting for an air or water environment in the evaluation of KEII ; i.e.,

1

8

d
L

	 
2

þ
1

2

h

L

d
L
¼ f ðbÞ2

I0

M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
 !2

(18)

with M ¼ rh; and where b ¼ rw‘w=M in water and b ¼ 0 in air. Condition (14) for avoiding
shear-off is re-written using rhV0 ¼ 2f ðbÞI0:

2f ðbÞ
I0

M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p pGSH . (19)

Plate deflection will be constrained such that

d=LpDcrit. (20)

Equivalently, the overall stretching strain is constrained by �̄p2D2
crit=3: In the numerical

examples, specific values of Dcrit and GSH will be prescribed. They must be chosen to avoid
stretching and shear fracture or, in the case of Dcrit; unacceptably large deflections.
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5.2. Sandwich plate

Equating W P
III in Eq. (17) to KEII gives the deflection of the back face sheet as

4ð2þ mþ rwÞ

ð2þ mÞ2
ð2þ lSmÞ

3

d
L

	 
2

þ 2
H

L
ð1� �̄cÞ

d
L

" #
¼ f T ðbÞ

2 I0

M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
 !2

(21)

with M ¼ rhf ð2þ mÞ and where b ¼ ð2þ mÞrw‘w=M in water and b ¼ 0 in air. The crushing
strain, �̄c; is given by Eqs. (11) and (12), and the deflection of the front face is dfront ¼ dþ �̄cH: The
shear-off constraint (14) is expressed using rhf ð1þ rwÞV0 ¼ IF :

2þ m
1þ rw

	 

f F ðbÞ

I0

M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p pGSH . (22)

The functions f T ; f F ; f B and rw defined in Section 2 depend on both b and sc
Y=p0: An expression

for sc
Y=p0 is obtained from Eq. (10) as

sc
Y

p0

¼
lcm

ð2þ mÞ
M

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
I0

 !
L

H
CL with CL ¼

ffiffiffiffiffiffi
sY

r

r
t0

L
. (23)

Here, L has been introduced since H=L is one of two design variables. The other is m; CL is fixed
in the optimization process. Limits on deflection and shear of the front face sheet, Dcrit and GSH ;
will be taken as the same as those for the solid plate.
5.3. Comparison with detailed finite element results

Fig. 4b presents a comparison of results for solid and sandwich plates with square honeycomb
cores from Eqs. (18) and (21), respectively, with full three-dimensional finite element simulations
for the same plates in Ref. [5]. The material has r ¼ 8000kg=m3 and sY ¼ 205MPa; and is taken
to be perfectly plastic in the present model but with moderate strain hardening (N ¼ 0:2) in the
finite element simulations. Both plates have L ¼ 1m and M=rL ¼ 0:02 (corresponding to M ¼

160 kg=m2 and h=L ¼ 0:02). The sandwich plate has m ¼ 1=2; H=L ¼ 0:1; and B=H ¼ 1
(corresponding to Rc ¼ 0:04). In the model, lc ¼ 1 and lS ¼ 1=2: The finite element simulations
were intended to model air pulses and they were carried out by imposing a momentum/area, I, at
t ¼ 0 as initial velocities V0 ¼ I=m on the solid plate and V0 ¼ I=mf on the top face sheet of the
sandwich plate. These initial conditions are reproduced in the present model in Eqs. (18) and (21)
by taking f T ¼ 2; f B ¼ 0; f F ¼ 2; rw ¼ 0 with I ¼ 2I0:

For an imposed momentum (Fig. 4b), the model underestimates the deflections in the lower
range of impulses and overestimates the deflections in the upper range for both the sandwich plate
and the solid plate. In the upper range impulse range, the model also overestimates the crushing of
the core. In both respects, the model results are similar to those in Ref. [4]. Two sources of
discrepancy are the neglect of strain hardening in the model, which becomes increasingly
important at larger deflections, and dynamic strengthening of the core due to inertial effects that is
also largest in the upper range of impulses [12]. For moderately large deflections, d=L � 0:2; of
primary interest in this paper, the model predictions are within 10% of the more accurate results.
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6. Optimal plates against impulses in air

The minimum weight/area of a solid plate required to sustain the free-field pulse I0 in air is
given by Eq. (18) subject to constraints specified by Eqs. (19)–(20). The only design parameter is
h=L: Curves of M=ðI0=

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
Þ versus Dcrit for three values of h=L are given in Fig. 5. The

influence of h=L; which is associated with the bending contribution to dissipation in Eq. (18), is
small. Consequently, to a first approximation, the half-width of the solid plate, L, is not a
significant factor in the dimensionless relation plotted.

Somewhat arbitrarily, the shear-off resistance in these simulations has been set at GSH ¼ 1;
corresponding to a critical effective plastic strain, ð�P

eff Þcrit � 1; at the supports. According to
Eq. (19), with f ¼ 1 and GSH ¼ 1; shear-off occurs if I0=ðM

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
ÞX1=2: The normalized

impulse required to produce Dcrit ¼ 0:2 is I0=ðM
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
Þ ffi 0:14 (c.f. Fig. 5), and this is only

about one third the impulse needed to cause shear-off. Impulsive tests conducted on high strength
aluminum strips [13] revealed that shear-off occurred only at impulses considerably higher than
those required to produce deflections with Dcrit ¼ 0:2: Higher ductility materials should be able to
sustain even larger initial impulses without shear-off. We have taken GSH ¼ 1 to be representative
of materials with ample ductility, but definitive experiments are essential to establish shear-off
resistance.

Results for sandwich plates with square honeycomb cores (lc ¼ 1; lS ¼ 0:5) evaluated using
Eqs. (21)–(23) are also included in Fig. 5. Calculations were carried out for three values of CL;
note that CL ¼ 0:0158 applies for a typical steel (sY ¼ 200MPa; r ¼ 8000kg=m3) with t0 ¼ 10�4 s
and L ¼ 1m: The results in Fig. 5 should be regarded as applicable to full-scale plates (i.e., meter
scale); results for small-scale specimens will be discussed in Section 8.3. One set of results in Fig. 5
was obtained by minimizing M with respect to m with H=L fixed at 0.1. The minimum has m ffi 0:5
over the entire range in good agreement with a more limited study [5]. Shear-off is not active. The
Fig. 5. Plot of normalized mass/area, M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
=I0; of solid and sandwich plates with square honeycomb cores subject

to pulses in air as a function maximum allowable normalized deflection. Two sets of results for the sandwich plates are

presented: (i) plates optimized for minimum weight with respect to both H=L and m with the result that H=L ffi 0:3 and

m ffi 1 over the entire range; and plates with H=L ¼ 0:1 optimized with respect to m; with m ffi 0:5 over the entire range.

The shear-off constraint is not active for any of these cases.
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lower set of results is for a fully optimized plate with M minimized with respect to both m and
H=L: In these cases, too, shear-off is not active. Over the whole range of parameters shown, the
fully optimized plates have m ffi 1 and H=L ffi 0:3: However, the minimum is very shallow, as
evident from the fact that plates with H=L ¼ 0:1 are only slightly heavier than fully optimal
plates. The influence of the half-width of the plate on optimal value of M

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
=I0 is only

through CL and is evidently relatively weak over the range of this parameter shown.
For air blasts, roughly one third of the mass of the plate is in the core (m ffi 1) in the case of the

optimally designed sandwich plate, while only about one fifth of the mass is in the core (m ffi 0:5)
of the minimum weight plates constrained to have H=L ¼ 0:1: The crushing strain, �̄c; varies over
the range considered, but is generally less than 20%. For maximum deflections less than Dcrit ¼

0:25; a well-designed sandwich plate outperforms a solid plate having the same mass in an air
blast. Moreover, the plate with H=L ¼ 0:1 is almost as effective as the optimal plate with the
much thicker core. If Dcril40:3; the advantage of the sandwich plate over the solid plate is lost in
an air environment, since stretch dominates energy dissipation and the solid plate is superior in
stretch to the sandwich. These trends are in good agreement with results from a three-dimensional
finite element analysis [5] covering a restricted range of parameters.
7. Optimal plates against impulses in water

Due to fluid-structure interaction, an additional parameter arises in characterizing the response
of plates in water: b ¼ rw‘w=M and b ¼ ð2þ mÞrw‘w=M for the solid and sandwich plates,
respectively. For a given free-field impulse, I0; the minimum weight plate is sought. This is
equivalent to seeking a plate of prescribed M that can sustain the largest free-field impulse. The
latter view is the more convenient one, as can be seen in connection with the problem for the solid
plate. With b ¼ rw‘w=M prescribed, it is straightforward to obtain the largest value of
I0=M

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
satisfying Eqs. (18)–(20). For the choices Dcrit ¼ 0:2 and GSH ¼ 1; the outcome is

plotted as M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
=I0 in Fig. 6a and as I0=ðrw‘w

ffiffiffiffiffiffiffiffiffiffiffi
‘Y=r

p
Þ in Fig. 6b, in each case for

0oM=rw‘wp3:
With M=rw‘w and CL prescribed, the two design parameters for the sandwich plate with a

square honeycomb core (lc ¼ 1; lS ¼ 0:5) are m and H=L: Eqs. (21)–(23) can be solved
numerically in a straightforward fashion for the maximum I0 for a given M with results plotted in
Fig. 6. Results optimized with respect to m for H=L fixed at 0.1 are shown along with results for
plates optimized with respect to both m and H=L: The values of CL represent full-scale plates. In
water blasts, the benefits of a well-designed sandwich plate over a solid plate of identical mass is
substantial, as noted in earlier work [4,5,7]. Sandwich plates having M=rw‘wp1 can sustain free-
field impulses about three times that of a comparable solid plate. As in the case for pulses in air,
plates having H=L ¼ 0:1 are also highly effective. This is significantly since other considerations
may exclude deployment of sandwich plates as thick as H=L ffi 0:3:

Optimal designs for water environments allocate somewhat more mass to the core than those
for air environments. The sandwich plates with H=L ¼ 0:1 have about one third of their mass in
the core ðm ffi 1Þ and undergo crushing strains, �̄c; that are less than 15%. The fully optimal plates
with H=L ffi 0:3 have about one half of their mass in the core ðm ffi 2Þ and have crushing strains
less than 25%. Only the deflection constraint is active for the plates with H=L ¼ 0:1; while both
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Fig. 6. Plots of (a) normalized mass/area and (b) normalized impulse for solid and sandwich plates with square

honeycomb cores subject to pulses in water as a function M=rw‘w for Dcrit ¼ 0:2 and GSH ¼ 1: Two sets of results for the

sandwich plates are presented. (i) Plates that are optimized for minimum weight with respect to both H=L and m that

have H=L ffi 0:3 and m ffi 2 over the entire range. Deflection and shear-off constraints are both active. (ii) Plates with

H=L ¼ 0:1 that are optimized with respect to m; with m ffi 1 over the entire range. In this case, the shear-off constraint is

not active.
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deflection and shear-off are active for the fully optimal plates. Curves computed with (H=L ¼ 0:1;
m ¼ 1) and with (H=L ¼ 0:3; m ¼ 2) are nearly indistinguishable from those in Fig. 6.

The finite impulse limit as M=rw‘w ! 0; as seen in Fig. 6b, is a consequence of fluid-structure
interaction. It requires explanation. According to the assumptions adopted here, plates of very
small mass are able to sustain free-field impulses, I0; below a critical level (c.f. Fig. 6b). This holds
for the original Taylor fluid-structure analysis or the extended analysis. Indeed, the two analyses
coincide for solid plates, and, for simplicity, behavior for the solid plate will be used to elucidate
this unusual limit. As M=rw‘w ! 0; the interaction parameter b becomes large such that the
momentum/area transmitted to the solid plate becomes I ! 2I0=b ¼ 2I0=bðrh=rw‘wÞ: Thus, for
very thin plates, the momentum/area acquired from a free-field impulse, I0; is proportional to h

and vanishes as h ! 0: The kinetic energy/area that must be dissipated also scales with h, as does
W P

III : Thus, very thin plates undergo a normalized deflection, d=L; (and shear strains at the
supports) which is independent of h. It follows, that as long as I0 is below the limiting value in
Fig. 6b, conditions for survival employed in this paper will be met even for very thin plates. Other
constraints on performance will clearly be required for plates having very small M=rw‘w: Elastic
buckling of the core prior to plastic yielding gives rise to another reason to question the validity of
the present predictions for small M=rw‘w; as will be discussed in Section 8.5.

It is possible to present the results for the air and water environments in a unified setting that
emphasizes the role of fluid-structure interaction in water blasts. To see this, replace the fluid-
structure interaction parameter for water, by M=rfluid‘fluid ; where now rfluid‘fluid applies to any
fluid medium. In Fig. 7, results, as measured by M=ðI0=

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
Þ; are plotted over an extensive
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Fig. 7. Normalized mass/area, M
ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
=I0; of solid and sandwich plates with square honeycomb cores subject to

pulses in an arbitrary fluid as a function M=rfluid‘fluid for Dcrit ¼ 0:2 and GSH ¼ 1: The results apply to water with

rfluid‘fluid ¼ rw‘w and to air for M=rfluid‘fluid ! 1:
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range of M=rfluid‘fluid : The curves apply to water with rfluid‘fluid ¼ rw‘w; while the asymptotes of
the same curves for large values of M=rfluid‘fluid apply to air.

To highlight the importance of the extended Taylor fluid–structure interaction formulae, we
digress to present optimization results obtained using Taylor’s original formula to determine the
momentum acquired by the front face sheet towards the blast. In this simpler approach, the
resistance of the core to the motion of the front face will be ignored and the core and back face
will be taken to be motionless in Stage I. The following modifications apply: f T ðbÞ is replaced by
2f ðbÞ in (21), f F ðbÞ is replaced by 2f ðbÞ in (22) with rw ¼ 0; and Q ¼ 2ð2þ mÞð1þ mÞf ðbÞ2=ðmlcÞ in
Eqs. (11) and (12). The half-width of the plate, L, is absent from these equations, apart from its
appearance in the design variable, H=L: The optimization process leads to the results in Fig. 8,
which have again been carried out both for H=L fixed at 0.1 and for full minimization with respect
to both H=L and m: The trends in Fig. 8 for the normalized mass of the plate, M

ffiffiffiffiffiffiffiffiffiffiffi
sY=r

p
=I0; are

not very different from those in Fig. 6a based on the extended Taylor formulae, although the plate
with H=L ¼ 0:1 is predicted to be somewhat lighter. The main differences are the predicted
optimal values of the design variables. For example, for plates with H=L ¼ 0:1; m ffi 2 for the
results in Fig. 8, while the prediction based on the extended Taylor formulae have m ffi 1:
Compared to the extended approach, the simplified approach predicts significantly thinner faces
counterbalanced by a heavier core. Moreover, both constraints, deflection and shear-off, are
active in the simplified approach, while only the deflection constraint is active in the extended
approach. If the shear-off constraint were removed, the simplified approach would predict even
thinner faces. Differences for the fully optimized plates are not as large. The simplified approach
has H=L ffi 0:35 and m ffi 1:5 compared with H=L ffi 0:3 and m ffi 2 for the extended approach,
with both deflection and shear-off active in each approach.

In summary, some important differences emerge between analyses based on the simplified
versus the extended Taylor fluid-structure interaction formulae, particularly with respect to the
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Fig. 8. Optimized square honeycomb core sandwich plates for water pulses based on the simplified approach that

neglects the effect of the core on the motion of the face sheet towards the pulse in Stage I. These results are independent

of the plate half-width, L. The plates with H=L ¼ 0:1 are optimized with respect to m with the result that m ffi 2 over the

range shown. Both H=L and m are varied in the full optimization with the result H=L ffi 0:35 and m ffi 1:5 over the

entire range. These results can be compared with those in Fig. 6a based on the extended approach that accounts for the

core in Stage I.
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optimal design variables. In Section 8.3, it will be shown that there are significant changes in the
optimal design variables when the plate dimension L is reduced by an order of magnitude. These
changes are missed altogether by the simplified approach since L does not appear in the
formulation, apart from its appearance in the dimensionless design variable. Nevertheless, overall
trends for the mass of a fully optimized plate as a function of the free-field momentum of the pulse
are reasonably well captured by the simplified Taylor analysis when shear-off is added as a
constraint, and the benefit of sandwich over monolithic construction is realistically revealed.
8. Additional trends and issues

The present approach, although based on relatively simple approximations governing the
deformation of the plates, has the advantage that it identifies a small set of dimensionless
parameters that characterize the performance and design of sandwich plates against impulse
loadings in water and air environments. The benefit of sandwich plates over equal mass solid
plates is clearly delineated by the study. Moreover, it is significant that sandwich plates with
square honeycomb cores with normalized thickness, H=L ¼ 0:1; can be almost as effective as
designs where no constraints are placed on core thickness. This is significant since fully optimized
plates have cores that are probably too thick for many applications. The present analysis implies
that minimum weight plates designed against impulses in water with square honeycomb cores and
H=L ¼ 0:1 have roughly one third of their mass allocated to the core. Additional parametric
trends and issues are readily explored, as will be illustrated below. Verification of predictions of
the approach will require finite element simulations that account for strain hardening, material
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rate dependence, fracture and detailed nonlinear response of the core, including inertial effects,
and fluid-structure interaction. Nevertheless, the measures of performance presented here and the
trends outlined should serve to guide more detailed studies. Further implications of the model are
discussed below.
8.1. The role of shear-off resistance, GSH

In the numerical examples presented above, the choice GSH ¼ 1 was made on the basis of
minimal empirical data, as noted in Section 6. The shear-off constraint comes into play in the
design of the fully optimized sandwich plates, but not for solid plates or sandwich plates with
H=L ¼ 0:1 (with Dcrit ¼ 0:2 and GSH ¼ 1). The effect of shear-off resistance, GSH ; on plates with
H=L ¼ 0:1 and m ¼ 1 is illustrated in Fig. 9. For GSH40:7; the shear-off constraint is inactive and
GSH has no influence. However, smaller GSH results in shear-off being the controlling constraint
with the consequence that the plates are heavier. Over the range of GSH in Fig. 9, the solid plate
remains unaffected by shear-off. The main conclusion to be drawn is that shear-off is likely to be
an important consideration in the design of sandwich plates against impulsive water loads because
optimization tends to favor sandwich plates with thin faces that are more susceptible to shear-off.
Basic experimental work is needed to establish shear-off resistance, GSH : Design of support
conditions to alleviate face sheet shear-off is possible, both at the ends of the plate and at the
junctions with core webs.
8.2. Designing for air or water environments

Some difference emerged between designs in air and water environments. For example, for
sandwich plates with normalized core thickness fixed at H=L ¼ 0:1; the best performing plates in
air have m ffi 0:5 while those in water have m ffi 1: Fortunately, each design is effective in both
Fig. 9. The effect of shear-off resistance, GSH ; on sandwich plates with square honeycomb cores with H=L ¼ 0:1; m ¼ 1

and CL ¼ 0:015:
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Fig. 10. An example demonstrating the good performance against impulses in air of sandwich plates with square

honeycomb cores designed for impulses in water (H=L ¼ 0:1 and m ¼ 1). The performance for plates specifically

designed for air impulses is plotted in Fig. 5.
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environments. For example, the performance of the plate with H=L ¼ 0:1 and m ¼ 1 subject to an
impulse in air (Fig. 10) is nearly as good as that of the optimized plate in air with H=L ¼ 0:1 in
Fig. 5.

8.3. Scaling considerations for small test specimens

The half-width of a sandwich plate, L, enters only through the parameter CL defined in
Eq. (23). As previously emphasized, the numerical values of CL used to generate the curves in
the figures presented thus far apply to plates whose half-widths lengths are typically on the order
of 1m for pulses with t0 ¼ 10�4 s: Suppose one is interested in conducting laboratory scale tests on
specimens of the same material as used in a full scale plate structure, but scaled down in all
dimensions by a factor often such that L is on the order of 0.1m. The most straightforward
procedure which preserves the applicability of all the curves plotted above is to reduce the pulse
time, t0; by a factor of ten. Doing so leaves CL unchanged, as well as the relative times associated
with the three stages: tC=t0; tII=t0 and tIII=t0: H. Espinosa and co-workers (private
communication) have reduced both size and pulse time in developing a laboratory-scale testing
facility. A drawback of this approach is that strain-rates increase in inverse proportion to the
reduction in size and pulse time. Thus, material strain rate dependence, which has not taken into
account in this paper, will not be scaled correctly.

Alternatively, if the pulse time t0 is unchanged and only dimensions are scaled down by a factor
of ten, the strain-rates in Stages I and II are unchanged but the curves presented in Figs. 4–8 are
invalid because CL in Eq. (23) is increased by a factor of ten. New results must be computed. An
example is presented in Fig. 11 for steel plates in water with L ¼ 0:1m; sY ¼ 200MPa; r ¼

8000kg=m3 and t0 ¼ 10�4 s (CL ¼ 0:158). The relevant range of normalized plate mass becomes
0oM=rw‘wo0:3: Qualitative trends seen for the full-scale plates persist, but quantitative
differences arise, particularly with respect to the distribution of mass in the faces and the core.
For small-scale plates with H=L ¼ 0:1; the minimum mass plates in Fig. 11 have m ffi 0:2
(with �̄c ffi 0:3), while those with H=L ¼ 0:3 have m ffi 0:7 (with �̄c ffi 0:2). Thus, a well-designed
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Fig. 11. Normalized mass of small-scale steel plates having half-width of L ¼ 0:1m designed against impulses in water

with t0 ¼ 10�4 s: Full details specified in the text. These predictions can be compared with the corresponding results for

full-scale plates (L ’ 1m) in Fig. 6.
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small-scale plate has a substantially lower fraction of its mass allocated to the core. In addition,
the benefit of the sandwich plate relative to the solid plate is not quite as large as for the full-scale
plate. Lastly, a clear separation of the time scales becomes questionable for these small scale
plates, since tIII�L=

ffiffiffiffiffiffiffiffiffiffiffi
r=sY

p
¼ 6:3� 10�4 s:

8.4. The role of core strength

As Deshpande and Fleck [6] have observed, the role of core strength on the performance of
sandwich plates is complicated in water blasts. High core strength limits core crush, enables
energy absorption, and maintains the bending strength of the plate, but it adversely results in
more momentum imparted to the plate (Fig. 1a). The trade-off between these two factors is not
obvious. Some insight into the competing effects can be obtained from Fig. 12a and b for full-
scale plates (L � 1m) designed against impulses in water. In Fig. 12a, both core thickness and
relative core mass are fixed at H=L ¼ 0:1 and m ¼ 1; respectively, but the pair of factors, lc and
lS; characterizing the crushing strength and in-plane stretching strength of the core are varied.
Recall that lc ¼ 1 and lS ¼ 1=2 for square honeycomb cores, which are generally regarded as the
strongest possible cores. Small reductions in lc and lS have fairly small effect on the minimum
weight, but a strength reduction with lc ¼ 1=4 and lS ¼ 1=8 starts to become significant, and
larger reductions reflecting the strength of foam metal cores would lead to even larger weight
increases.

The example in Fig. 12a is not conclusive since it does not consider any redesign of the
sandwich plate to take advantage of the lower strength of the core. Fig. 12b shows the outcome of
redesign for each pair of strength factors, lc and lS; for plates with H=L ¼ 0:1 but now having M
minimized with respect to m: The dependence of M for the redesigned plate on the core strength is
surprisingly weak, and, in fact, a range of M=rw‘w exists where cores with lower strength have
slightly lower weight than the high strength cores. There is, however, a significant hidden penalty
to be paid for this reduction in core strength. As noted earlier, plates with strong cores (lc ¼ 1;
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Fig. 12. The influence of core strength on normalized mass of the sandwich plates. The factors governing crushing

strength, lc; and stretching strength, lS ; are reduced in proportion. (a) Plates with H=L ¼ 0:1 and m ¼ 1: (b) Plates with

H=L ¼ 0:1 but redesigned with respect to m for each pair of strength factors. The plates with reduced core strength have

much larger proportion of mass allocated to the core.
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lS ¼ 1=2) have about 1
3
of their mass is in the core (m ffi 1). Sandwich plates with weaker cores in

Fig. 12b require a much higher fraction of their mass in the core. Plates with the weakest cores
(lc ¼ 1=4 and lS ¼ 1=8) have m between 4 and 6 such that the core comprises about 3

4
of the plate

mass. Even a modest reduction in strength to lc ¼ 3=4 and lS ¼ 3=8 significantly increases the
fraction of mass in the core required if the plate is to perform as well as the plate with the square
honeycomb core. Compared to plates with square honeycomb cores, plates with low strength
cores would necessarily have very thin face sheets. Considerations not envisioned in the design
constraints employed here may exclude very thin faces, such as a dramatically lowered overall
bending stiffness and strength as well as lower penetration resistance. In conclusion, while it
appears that a slight weight advantage for plates with lower core strength may be possible for
water blasts, the distribution of mass between core and faces probably make these designs
unacceptable.

The situation for air blasts is more clear-cut since the core has no effect on the momentum
transfer. Lower core strength results in decidedly higher plate weight.

8.5. Core yield versus elastic buckling

Although not stated explicitly, the model used above is premised on the assumption that plastic
yielding occurs prior to elastic bucking in the core in Stage II. Were that not the case, the
assumption underlying the determination of sc

Y in Eq. (23) would not be valid. The crushing strain
of the core would be underestimated, possibly significantly so, because cores that buckle
elastically are not nearly as effect in absorbing energy as those that yield plastically before
buckling [14]. To illustrate when this comes into play, consider square honeycomb cores with
B=H ¼ 1 and web thickness hc: A lower bound to the compressive bucking stress of the web is the
buckling stress of a simply supported square plate of width B: scr ¼ p2Eðhc=BÞ2=½3ð1� n2Þ
;
where E is Young’s modulus and n is Poisson’s ratio. The condition for yield to precede buckling
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is phc=B4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2ÞsY=E

p
or, equivalently, Rc4ð2=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2ÞsY=E

p
: This condition can be re-

expressed as

M

rw‘w

4
ð2þ mÞ
pm

rH

rw‘w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2ÞsY

E

r
ðsquare honeycomb core; B=H ¼ 1Þ. (24)

For steel plates with sY ¼ 200MPa; L ¼ 1m; H=L ¼ 0:1 and m ¼ 1; condition (24) for yield
before bucking is M=rw‘w40:3: Thus, the results in Fig. 5 for M=rw‘wo0:3 are likely to
underestimate the plate mass. Buckling versus yield is an additional consideration that should be
taken into account in the design process.
9. Concluding remarks

The trends presented in this paper are limited in several respects. Firstly, they are based on
simple approximations to the plate responses. Secondly, they ignore influences such as strain
hardening, material strain-rate effects, specific fracture modes and dynamic strengthening of the
core. To surmount these limitations, more elaborate, computationally intensive, finite element
simulations will be required. Nevertheless, the approach highlights trends that govern the design
of sandwich plates against dynamic impulsive loads. A small set of the most important
dimensionless parameters has been identified. In Section 8, the model has been employed to
explore a number of open issues related to the design of high performance metal sandwich plates.
Theoretical efforts directed at a better understanding of fracture and shear-off have been initiated
[11,15]. In addition to detailed numerical studies, experimental work is needed to establish
requirements that exclude face sheet shear-off. Finally, further large-scale calculations are needed
to provide confidence, or to improve, the fluid-structure interaction approximations employed
here. Much of the benefit of sandwich plates over solid plates in a water environment rests on
fluid-structure interaction and, as revealed by the present study, optimal designs depend on the
details of this interaction.
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Appendix A. Fluid–structure analysis for sandwich plates

The one-dimensional analysis of Taylor’s [2,3] acoustic model of fluid–plate interaction is
extended to sandwich plates with cores modeled as perfectly plastic with a compressive yield
stress, sc

Y : The solution is valid until the instant when cavitation first occurs in the fluid. At this
instant, the momentum/area in the faces and core are determined and subsequently used to
establish the initial conditions for Stages II and III, as described in the body of the paper. The face
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sheet impacted by the pulse is modeled as a plane of concentrated mass/area, mf ; whose motion is
resisted by the yielding core. Let rðx; tÞ be the pressure in the fluid and locate the plate at x ¼ 0;
with the pulse first impacting the face at t ¼ 0: The free-field pulse is that assumed by Taylor:
p ¼ p0e

x for x � ðx � cwtÞ=‘wp0; and p ¼ 0 for x40; with cw as the wave speed in the fluid,
‘w ¼ cwt0; and t0 as the pulse period. The displacement uðx; tÞ must satisfy the equation of motion
of the face ðx ¼ 0Þ

mf u;tt ¼ p � sc
Y . (A.1)

With z ¼ ðx þ cwtÞ=‘w; the solution is

u ¼
p0‘w

Ew

½ð1� exÞ þ gðzÞ
, (A.2)

where Ew is the modulus governing uniaxial compressive strains in the fluid such that cw ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ew=rw

p
: The reflected component of the wave is given by

gðzÞ ¼ 1þ
sc

Y

p0

1

b
� z

	 

�

2

1� b
þ

sc
Y

p0b

	 

e�bz þ

1þ b
1� b

	 

e�z; z40 (A.3)

and g ¼ 0; zo0 with b ¼ rw‘w=mf :
The onset of cavitation is assumed to occur when p first becomes negative. If sc

Y=p0 ¼ 0; onset
occurs at the fluid-face sheet interface (Taylor’s limit), while if sc

Y=p040; it occurs in the fluid at
ðxC ; tCÞ where simultaneously p ¼ 0 and p;x ¼ 0: With zC ¼ ðxC þ cwtCÞ=‘w and xC ¼ ðxC �

cwtCÞ=‘w;

ð1þ bÞ 2bþ ð1� bÞ
sc

Y

p0

	 

e�bzC � 2ð1þ bÞe�zC � ð1� bÞ

sc
Y

p0

¼ 0 (A.4)

and exC ¼ g0ðzCÞ: The mass/area of the fluid layer between the plane of cavitation and the face
sheet is mw ¼ rwjxCj from which it follows that rw ¼ mw=mf ¼ rwjxCj=rf hf which is displayed in
Fig. 1b. The velocity of the face at the onset of cavitation is

V0 ¼
p0cw

Ew

ðe�tC=t0 þ g0ðtC=t0ÞÞ. (A.5)

The velocity of the fluid in the added fluid layer, jxCjoxo0; is essentially uniform at t ¼ tC and
equal to V0: Assuming this, the momentum/area in the face and added layer at the onset of
cavitation is

IF

I0
¼

ð1þ rwÞ

b
ðe�tC=t0 þ g0ðtC=t0ÞÞ. (A.6)

The momentum/area, IB; transferred to the core and the back face sheet at cavitation is precisely
sc

Y tC ; such that IB=I0 ¼ ðsc
Y=p0ÞðtC=t0Þ; which is presented in Fig. 1c. The total momentum/area,

including that of the added water layer, is given by IT ¼ IF þ IB and is presented in Fig. 1a.
Formulae (1), which are linear in sc

Y=p0; are approximations obtained from the solution given
above. For the results in Fig. 1 with sc

Y=p0p0:15; the exact results from the above solution are
virtually indistinguishable from Eq. (1).

Assuming t0 is sufficiently small compared to the response time for bending and stretching of
the plate, there are two main reasons why the above model may not accurately capture the



ARTICLE IN PRESS

J.W. Hutchinson, Z. Xue / International Journal of Mechanical Sciences 47 (2005) 545–569 569
fluid–structure interaction. Firstly, dynamic effects associated with the mass of the core have been
neglected. A core with a compressive yield stress that is independent of the strain and strain-rate is
highly idealized. Deshpande and Fleck [6] adopted a perfectly plastic core with a compaction
limit, and they analyzed the progression of the plastic wave through the core during the
fluid–structure interaction. At large impulses, an additional parameter emerges associated with
full compaction of the core, depending nonlinearly on the amplitude of the free-field momentum
itself. A compaction limit is not accounted for in the present model. Another reason for error is
closure of the cavitation gap subsequent to the onset of cavitation. If the gap closes, additional
pressure will be exerted on the plate and more momentum will be transferred to it than the above
prediction at t ¼ tC : Analysis [6] reveals that the cavitation gap does close. However, except when
sc

Y=p0 is fairly large and/or when the nonlinear dependence on the impulse associated with full
compaction is important, the additional momentum imparted is small compared to IT given
above. Checks against the analysis in [6] indicate that the results presented in the body of the
paper fall within the range where the errors of the extended fluid–structure formulas (1) should be
small. In all cases presented, sc

Y=p0p0:15: Moreover, crushing strains in the square honeycomb
cores are not larger than 0.3, and in most instances even smaller, and therefore well below
compaction limits at least in an average sense.
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