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Abstract

By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that
employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified
conventional theories only to alter the tangent moduli governing increments of stress and strain. It is shown that the modification
is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of
localization that is at odds with what is expected from a strain gradient theory. The findings raise questions about the physical
acceptability of this class of strain gradient theories.
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Keywords: Strain gradient plasticity; Non-local mechanics

1. Introduction

Conventional continuum theories of plasticity have no constitutive length scale. Any size-dependence in the relationship
between load and deformation depends entirely on geometric dimensions. There is now ample experimental evidence that
geometric dimensions alone cannot account for observed size-dependence of the plastic response of micron-sized solid objects.
Typically, at a scale below tens of microns, but depending on object shape and the type of loading, departures are observed
which can only be interpreted within the confines of conventional theory as an apparent increase in flow strength. It is generally
accepted that this apparent increase in flow strength is due to the generation of geometrically necessary dislocations that
accompany non-uniform plastic straining. It is argued that micron-scale gradients produce geometrically necessary dislocations
at a density comparable to that of statistically stored dislocations, thereby increasing the total dislocation density and the
resistance to plastic flow.

Continuum theories have been proposed recently to extend the validity of conventional plasticity down to roughly the micron
scale. For a continuum theory to have validity, the number of dislocations within a typical representative volume element must be
sufficiently large such that meaningful averages over the dislocations can be taken, at least in principle. Based on experimental
observation of load-deformation responses, the apparent range of applicability of a continuum plasticity theory in most instances
appears likely to extend upward from the micron, or possibly sub-micron, scale. The limit of any such theory when the length
characterizing the deformation field becomes large compared to the constitutive length parameters should be the corresponding
conventional theory. Continuum strain gradient plasticity theories have been proposed for single crystals (e.g., Gurtin, 2000;
Arsenlis and Parks, 1999; Busso et al., 2000) and as extensions of the classical phenomenological theories of plasticity (e.g.,
de Borst and Mihlhaus, 1992; Gao et al., 1999; Bassani, 2001; Fleck and Hutchinson, 2001). These theories divide into two
classes: those with conventional stresses, equilibrium equations and boundary conditions (e.g., Bassani, 2001; Arsenlis and
Parks, 1999; Busso et al., 2000); and those having additional stress quantities and additional boundary conditions (e.g., de Borst
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and Mihlhaus, 1992; Gao et al., 1999; Gurtin, 2000; Fleck and Hutchinson, 2001). For want of a better terminology, a member
of the former class is referred to here as a lower order strain gradient theory, while a member of the latter is termed a higher
order gradient theory.

Lower order gradient theories are addressed in the present paper. These theories are intrinsically incremental in nature with
stresses, incremental equilibrium equations and boundary conditions that are taken to be the same as in conventional theory.
Only the incremental constitutive relation is different from conventional theory. In the rate-independent version of these theories,
which will be considered here, the constitutive relation is altered by incorporating a dependence on the gradient of plastic strain
in the tangent moduli, reflecting the increased flow resistance.

In the course of carrying out a numerical analysis of a basic boundary value problem with one particular version of the
lower order gradient theories, it was noticed that some seemingly anomalous behavior emerged in the form of an inexplicable
localization of flow. This lead us to step back and analyze several elementary problems with the aim of more clearly revealing
the nature of solutions to this class of theories. For the two problems explored here, it will be seen that solutions with an unusual
form of localization occurs that appears to be unphysical in nature. Contrary to a smoothing of steep gradients that is expected
to follow from the introduction of a gradient theory, the lower order gradient theory promotes the development of certain kinds
of discontinuities. These findings raise issues as to the soundness of this class of theories, which are discussed at the conclusion
of the paper.

2. Alower order strain gradient theory

A generalization ofJ,-flow theory proposed by Acharya and Bassani (1996) and Bassani (2001) to account for size
effects due to hardening by plastic strain gradients is employed here. This lower order isotropic hardening theory represents
the most direct and simplest generalization of classical theory that incorporates size-dependence associated with a material
length parameter. The version of the formulation introduced below assumes small strains and small rotations. The strain-
displacement relation is the conventional o5g= %(u,',j +u;;),as are the stresseg,; = o;, and the incremental equations
of equilibrium,d;; ; = 0 (no body forces). Plastic strain gradients are introduced through a positive invariahthe gradient

of the plastic strain tensmf; defined below. The constitutive relations are defined by (see Bassani, 2001)
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wheres;; is the stress deviator ang is the effective shear stress. The effective plastic strafh= f Zéf';. ef; is work
conjugate tar.. The isotropic elastic stiffness tensois;;; . The effect of plastic strain gradients are included through Eqg. (2),
where it is noted that the incremental hardening modutusiepends on the plastic strain gradient measuyén addition

to the effective plastic straip. The material length parametemust be included for dimensional consistency. The specific
definition of « used in the present work ie? = 20;ja;; Whereo;; = ejklsi[;,k' The expression fok is taken from Bassani

(2001), and can be written as
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whereg is the elastic shear modulug; is the initial yield strain in shear, andis an adjustable parameter taken to be unity in

the present work. In the limit when the combinatiof yq is small,h reduces to classicdb flow theory with a commonly used

strain hardening relation. Under uniform shearip§,/yo ~ (t./70)" as the stress becomes large, wigh= Gyg as the initial

yield stress in shear. The role of the gradient of plastic strain in (5) is to increase the incremental hardening modulus. It should
be emphasized that the specific form (5) is not critical to our discussion or qualitative findings, as will be discussed later.

3. Shear of an infinitelayer

Consider an infinitely long elastic—plastic layer of the material of Section 2 of thicknegsoaded to two rigid platens
whose surfaces coincide witty = —D andx1 = D, as in Fig. 1 withL = co. The platens are displaced parallel to one
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Fig. 1. A slab of material between rigid platens is analyzed under shear deformation. The elastic—plastic solid occupies the regipd L
and—D < x1 < D, and the platens are displaced the distari¢e@ative to each other in the direction of thg-axis.

another according top = U on xq = D anduy = —U on x1 = —D imposing an average shear strgin= 2812 = U/D on

the layer. In the absence of any initial non-uniformity the layer will undergo a uniform shear strain with uniform plastic strain
across the layer and no gradient of plastic strain. The conventional solution satisfies the field equationsisvemizero. To

activate gradient effects, one must consider some initial non-uniformity. For this purpose, the layer is assumed to have an initial
parabolic distribution of plastic strain across the width of the solid with (x1) =y (1 — (xl/D)z). This can be regarded

as a pre-existing, non-uniform dislocation density across the width of the layep itk 0 being the magnitude of the initial

plastic strain profile.

When the platens are displaced, the layer undergoes non-uniform shearing where the total str2in,, elastic strain,
y¢ =1/G (t =012), and plastic strainy” =y — y¢, depend only orr1. One can readily show that the problem for the plastic
strain reduces to solving the equatibr= h(y 7, l|y’i|))>l’ Wherey‘i is the derivative of the plastic shear strain. Equilibrium
dictates that the shear stressjs uniform througho’ut the layer, and hence so is the elastic shear stfain,

Two distributions of the initial yield stressy, will be considered, although it will be seen that the choice has little
effect on the essential outcome. The simplest choice is a uniform distributios; 1g = Gyg, taking no account of the
initial plastic strain on initial yield. The other choice accounts for an increase in the initial yield stress due to the initial
dislocation density through the hardness function. The material is assumed to have reached the initial distribution of plastic
strain proportionally such that initial distribution of plastic strain evolves according’ia) = ry?® (x1) with ¢ being a
parameter increasing from zero to unity. Using this assumption the initial yield stigss), can be obtained by integrating
the relationty (x1) = h(y?, l|y’[i|)yp(i)(x1)i.

Attention will be limited to initial distributions and solutions that are symmetric with respect to the mid-plane of the layer.
Numerical solutions are obtained through a finite-difference approach, where the half width of the layey, ##d@1ox, = D,
is modeled and discretized into 81 nodes. Load integration is performed using a Forward Euler method with load increments
equal to 10°7g. A central difference scheme is employed throughout the inner nodes to evaluate the gradient of the plastic
strain. Skew differences, also of second order accuracy, are emplayge-dt andxq; = D. The skew difference at; = 0 has
the effect of allowing for a non-smooth development of the plastic strain distribution at this point, which is indeed necessary to
obtain the correct solution for the problem.

The overall shear stress versus shear strain response is shown in Fig. 2 for the amplitude of the initial plastic strain distribution
given byy @) = 19 = 19/ G and the associated non-uniform initial yield stress distribution. The curves in the figure correspond
to different values of the material length scélavith n = 5. As expected, an increaseligives an increase in the predicted
overall stress—strain response. For the curve corresponding @ profiles of plastic shear strain fof between 0 and are
shown for different values of the overall shear strain in Fig. 3. Since the initial yield stress and the plastic strain are exactly
matched, a constant level of plastic strain develops, and for overall strainsabaye- 1.5 the plastic strain profile is constant
across the entire layer. Before yield occurs across the layer, the derivative of the plastic strain has a discontinuity at the current
elastic—plastic boundary. For materials with 0 this presents a problem for the finite difference scheme. To circumvent this
problem, the derivative of the plastic strain is interpolated between values of the derivative at a distgd@enfeach side of
the elastic—plastic boundary. Specifically, if the coordinate of the current elastic—plastic boundary is dgntitegradient of
plastic strain is interpolated linearly between the values of the gradieqtatr, — /40 and that at, = x, +1/40, for nodes
within the intervallx, —[/40; x,, +1/40].

In Figs. 4(a) and 4(b) profiles of the plastic shear strain are shown for various levels of overall deforfpatignyhen
the internal material length scalelisD = 3. The solid curves correspond to a material where the initial yield stress has been
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Fig. 2. Shear stress as a function of shear strain, for differdfig. 3. Development of the plastic strain profile for a conventional

values of the intemal material length scale, dith = oo. material, with an initial imperfection of plastic strain, ahdD = co.
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Fig. 4. The development of the profiles of effective plastic strain, along tkexis, for an infinite slab of materidlL / D = oo) with an initial
distribution of plastic strain, and an internal material length scale gively By= 3. The solid curves show results for a material where the
initial yield stress distribution is matched to the initial plastic strain distribution, while the dashed curves show results for a material with a
constant yield stress,, = 7, which is independent of the initial plastic strain profile. In figure (a) the profiles of plastic strain are shown for an
overall deformation level of up t9 /yg = 10, and in figure (b) the profiles are shown for an overall deformation level of upg= 2.

matched to the initial level of plastic strain as described earlier, while the dashed curves show results for a material where the
initial yield stress is assumed to be constant and equaj.tdhe lower curve in each of these figures shows the initial plastic
strain profile corresponding to loading below initial yield, while the curves above correspond to an overall shear strain that
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gives rise to additional plastic straining. The difference between the plastic strain distributions for the two choices of initial
yield stress at relatively small levels of overall plastic strain is due to the way plastic yielding spreads across the layer. However,
the difference becomes insignificant as the overall shear increases.

The essential feature of the solution that emerges in Fig. 4 is the development of a vertex in the plastic strain distribution
corresponding to a discontinuous derivative of the plastic strain at the center of the layeedt This unusual form of
shear localization is unexpected because the incorporation of strain gradients is generally expected to smooth plastic strain
distributions. Indeed, the firstintroduction of a gradient theory of plasticity by Aifantis (1984) was for the purpose of smoothing
abrupt shear locations leading to finite width shear bands. It has become common practice to employ strain gradient dependence
as a localization limiter in the analysis of materials prone to localization (e.g., Jirasek and BazantB2@0&f{rast, the lower
order strain gradient theory appears to promote an unusual formof localization. The occurrence of the plastic strain vertex in the
present context is particularly troubling from a physical standpoint because the conventional solution to the shearing problem
with £ = 0 is perfectly smooth. Shear localization is excluded in the small strain formulation for a conventional hardening
material(h > 0).

The shear problem is sufficiently simple that the reason for the development of the vertex localization is transparent. Consider
the equation governing the plastic strains h(y ?, l|y”i|)3}1’. In the lower order gradient theory, for fixed’, & is necessarily

a minimum with respect tpli aty’i =0, since itis essential to this class of theories that gradients increase the tangent modulus.

This is the case in (5). Moreover, for fIX@Cﬁ h decreases with increasingd’. It follows that any smooth distribution @fwith

a local maximum iny? will have the lowest tangent modulus at the maximum. Becauseauniform, it follows thaty 7 must

also be maximum at that point. MoreoverylfL 0 were to be maintained at this point, the plastic strain in the vicinity of that
point would “run away” becausk decreases most rapidly at this point. Instead, as seen in Fig. 4, a vertex in the distribution of
plastic strain develops at the point with a dlscontlnunyﬁl Whent # 0, the combined roles gf? and;{1 allow the balance

required for satisfaction of a constant valueto& h(y?, l|y’i|);'/l’ to be achieved at the mid-point. The above argument is
quite general suggesting that any hardening relation proposed for this class of lower order theories would lead to vertex-type
localizations given an initial non-uniformity with a region that is locally hard.

The same qualitative reasoning can be applied to a situation where the plastic strain distribution begins with a smooth
minimum such that the material is locally soft at the mid-point. Now, in the absence of any effyzﬁt, af would have a

maximum at the point angt” a minimum. However, the two contributions to the tangent modulus, from p&tand y’i, no
longer both conspire to depreg$ at the mid-point. Now, they work to opposite effect. Numerical calculations similar to those
described above with?® (x1) = y @ (x1/D)? indeed revealed that no vertex development occurs &t0 if the initial plastic
strain distribution has a smooth minimum at the mid-point.

The existence of solutions to the lower order theory such as those in Fig. 4 is related to the findings reported by Volokh and
Hutchinson (2002) on a similar infinite layer problem in the absence of any initial non-uniformity. These authors have shown
that the solution to the lower order formulation for the elementary shear problem is not unique for a material with continuous
tangent modulus at the onset of yield. They produced a family of solutions, including members that are similar to those that
emerge in Fig. 4. The existence of multiple solutions to the lower order theory arises from the fact that higher order terms have
been introduced into the theory without an increase in the number of boundary conditions. In any problem, such as the shear
problem, where initial yield occurs simultaneously over all or part of the body and where the tangent modulus is continuous
at yield, the emergence of the gradient of plastic strain at the onset of yielding is indeterminate. The initial tangent modulus
is also indeterminate. Multiple solutions are possible depending on how the initial gradient is specified. In the shear problem,
it is possible to specify the initial gradient by requiring that an extra boundary condition be satisfied. Alternatively, an initial
non-uniformity has the effect of “selecting” one of the many possible solutions. Although we have not attempted to do so, it
would be interesting to conduct a systematic study to relate the initial imperfection to solution selection.

Finally, it should be mentioned that a well-formulated higher order gradient theory of plasticity does not admit multiple
solutions to problems like the shear problem, nor does it lead to localization. If constraints to plastic flow at the interface with
the platens are not imposed, these theories predict uniform shearing across the layer as in the case of the conventional solution.
However, if the additional boundary conditions associated with the theory are used to impose constraints at the platens, non-
uniform plastic flow results. For example, Fleck and Hutchinson (2001) and Bittencourt et al. (2003) model blocked dislocations
at an interface by an additional boundary condition requiring the plastic strain to vanish at the platens. Even if the layer is initially
uniform, non-uniform plastic deformation develops due to the boundary constraint.

4. Shear of afinitelayer

In the problem analyzed thus far, strain gradients are triggered by an initial non-uniformity. For problems where conventional
theory predicts an inhomogeneous plastic strain distribution, due to object shape or to spatial variation of the applied loads,
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gradients of plastic strain develop naturally. For these problems, gradient effects will be predicted by both classes of gradient
theories. A problem of this type will be studied in this section.

A finite slab of elastic—plastic material between to rigid platens is considered as depicted in Fig. 1. The slab has the thickness
2D and the length 2, and it occupies the regiorD < x1 < D and—L < xp < L. As before, atcq = £D displacements
up = +U, respectively, are prescribed with no displacement in the other two directions. The ends of the elastic—plastic slab
at xp = £L are traction free. Now, the requiremesfo = 0 on the ends results in distinctly non-uniform behavior. Initial
non-uniformity is not considered. The problem has a plane strain solutior, et/3z, ande? = (1/+/3)y/ . Replace (2) by

Ge=h(el la)il, (6)
where instead of (5), let

E (" )1/"—1[1 N (la/(ﬁsO»ZT/%

(el o)== +1
(ec’ o) n \ &g 1+ c(el /eg)?

Now, E is Young's modulusy is Poisson’s ratiogg = oy, /E is the uniaxial yield strain, and, is the initial yield stress in
uniaxial tension. (There is a slight difference from the constitutive relation in the last section, but they coincigelf(2.)

Numerical solutions are obtained by use of the Finite Element Method with quadrilateral elements each subdivided into 4
linear displacement triangles. The gradient of the plastic strain tensor is found by assigning nodal values of the plastic strain
tensor as the average of the plastic strain tensors in the elements connected to a node. Then, the gradient is evaluated for each
guadrilateral at the center point by interpolating the components of the plastic strain tensors from the four nodal values of the
guadrilateral using bilinear shape functions. This procedure rests on the assumption that the plastic strain field is smooth. As
shown in the previous section, this will not necessarily be true for the gradient dependent solids, even though the initial plastic
strain field is smooth. Load integration is performed using the Forward Euler method.

A slab of material with aspect ratib/ D = 1 is analyzed. The material parametersaye- 0.01, v =0.3 andrn = 5. This
problem corresponds to the shear problem analyzed by Niordson and Hutchinson (2003), within the framework of the higher
order strain gradient plasticity theory proposed by Fleck and Hutchinson (2001). In Fig. 5 the normalized average traction,
7/oy, as computed from the lower order gradient theory under consideration here is shown as a funetiol ¢t Deg) for
different values of the internal material length scale. The figure illustrates the predicted strengthening effect due to plastic strain
gradients. Fof/D = 0.25 an increase in the average traction of around 7% relative to the conventional response is found at the
overall deformatiorl/ /(Deg) = 20, while forl//D = 0.5 the increase is approximately 16%. These results are obtained using
20 times 20 quadratic quadrilaterals covering one fourth of the slab, enabled by the double symmetry of the problem.

In Fig. 6 the development of the effective plastic strain profile alongejhaxis is shown. In each sub-figure the profile of
the effective plastic straim,f, is shown for five overall deformation level8;/(Degg) = 4, 8, 12, 16, and 20. Each row of sub-
figures shows results for different mesh refinements; the first row shows results for 10 times 10 elements covering one fourth
of the slab, and the second and third row show results for 20 times 20 and 40 times 40 elements, respectively. Each column
shows the development of the effective plastic strain profile for a different value of the internal material length scale normalized
with respect to the half width of the slab. The first column shows the conventional predictions, while the second and third
column show results fat/ D = 0.25 andl/D = 0.5, respectively. For a given spatial discretization it is seen from Fig. 6, that

@)

2.5

0.5
201

L5¢
0.25

/D=0

@q |*\|

1.0r

0.5r

0 5 10 15 20
U/D
€0
Fig. 5. Average shear stress as a function of the overall deformation, for a rectangular slab of material between rigid pldt¢fs=-withThe
curves show results for different values of the internal material length scale.
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Fig. 6. Plastic strain profiles along tle-axis for a rectangular slall. /D = 1), at different levels of overall deformation. The figure illustrates
how the plastic strain profiles are predicted for different values of the internal material length scale, and for different mesh refinements.

the predicted peak value of effective plastic strain alongrthexis increases with an increasing internal material length scale.
Furthermore, the peak, which remains quite smooth for the conventional solid, becomes more pronounced as the deformation
progresses and increasingly narrower the lafgér. It is evident that a vertex in the plastic strain distribution is developing
for the solids with//D > 0. The vertex is located along the ridge where the effective plastic strain has a local maximum in
the conventional solution. The tangent modulus develops a significant deficit along the ridge for reasons analogous to those
discussed in the previous section, leading to the vertex localization. We note in passing that the problem for same geometry and
loading but characterized by a higher order strain gradient theory gives rise to smooth distributions of plastic strain (Niordson
and Hutchinson, 2003).

The evolution of the effective plastic strain profile is rather insensitive to mesh refinement for the conventional material with
[/D = 0. By contrast, the peak value of effective plastic strain increases significantly upon mesh refinemehtinaen25,
and even more so wheiD = 0.5. Furthermore, for the most highly refined meshfab = 0.5, it is evident that the plastic
strain profile becomes increasingly non-smooth with increasing deformation. As the vertex develops, the numerical method has
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increasing difficulty rendering an accurate solution. If one were interested in following the development much further than that
shown, a method specialized to cope with vertex-like behavior would have to be developed, but that is not our objective.

5. Conclusions

Both examples studied here reveal that vertex-type shear localization develops as deformation proceeds in a hardening
material characterized by a lower order, strain gradient theory of plasticity. In the infinite layer subject to shear, strain gradients
are triggered by an initial non-uniformity, while in the finite layer gradients are present from the start. The vertex distribution
of plastic strain is unusual and it is our belief that it is unlikely to have any physical basis. Indeed, in these examples, rather
than smoothing the plastic strain distribution as would normally be expected of a strain gradient theory, the lower order gradient
theory has the opposite effect. A qualitative explanation of the emergence of vertex localization is given for the infinite layer.
The vertex develops at locations where the effective plastic strain is a maximum and its gradients vanish.

Although the two problems investigated here are fairly simple, it is unlikely that they are exceptional as far as the behavior
they reveal. The unusual behavior is a consequence of the mathematical formulation of the lower order gradient theories. On the
face of it, the modification introduced to create the lower order theory would appear to leave the mathematical character of the
field equations unchanged. The order of the field equations for the incremental quantities is the same as for conventional theory.
However, the strain gradients introduced into the tangent moduli result in terms in the total (or integrated) quantities appearing
in these equations that are more highly differentiated than any that appear in conventional theory. The presence of these terms
is directly related to existence of a multiplicity of solutions in problems such as that studied by Volokh and Hutchinson (2002).
The present examples provide further evidence that modifying the tangent moduli by a dependence on strain gradients is not
necessarily a benign process from a mathematical point of view.

In conclusion, it is worth viewing lower order theories in light of strain gradient elasticity theory, which is a simpler system
to envision. If one postulates that the strain energy density of an elastic solid depends on both the strains and gradient of strains,
then the resulting theory is inescapably higher order with additional stress quantities and boundary conditions (Mindlin, 1964).
The lower order gradient plasticity theory retains the order of conventional theory because only the tangent moduli that appear
in the field equations for the incremental quantities are modified using strain gradients in the current state. Additional stress
guantities never arise, and, in general, additional boundary conditions for the incremental boundary value problem are neither
required nor allowed. The seductive simplicity of this lower order modification strategy would not work for elasticity. Whether
it can be justified from a physical standpoint for plasticity remains an open question. The examples presented here indicate that
there exist solutions to the lower order formulation that are unexpected and, probably, unphysical.
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