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Abstract

The topology of the telephone cord buckling of compressed diamond-like carbon (lms (DLC)
on glass substrates has been characterized with atomic force microscopy (AFM) and with the
focused ion beam (FIB) imaging system. The pro(les of the several buckles have been measured
by AFM to establish the symmetry of each repeat unit, revealing similarity with a circular buckle
pinned at its center. By making parallel cuts through the buckle in small, de(ned locations,
straight-sided buckles have been created on the identical (lms, enabling the residual stress in
the (lm to be determined from the pro(le.

It has been shown that the telephone cord topology can be e;ectively modeled as a series
of pinned circular buckles along its length, with an unpinned circular buckle at its front. The
unit segment comprises a section of a full circular buckle, pinned to the substrate at its center.
The model is validated by comparing radial pro(les measured for the telephone cord with those
calculated for the pinned buckle, upon using the residual stress in the (lm, determined as above.
Once validated, the model has been used to determine the energy release rate and mode mixity,
G( ).

The results for G( ) indicate that the telephone cord con(guration is preferred when the resid-
ual stress in the DLC is large, consistent with observations that straight-sided buckles are rarely
observed, and, when they occur, are generally narrower than telephone cords. Telephone cords
are observed in many systems, and can be regarded as the generic morphology. Nevertheless,
they exist subject to a limited set of conditions, residing within the margin between complete
adherence and complete delamination, provided that the interface has a mode II toughness low
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enough to ensure that the buckle crack does not kink into the substrate. ? 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Residually compressed thin (lms on thick substrates may buckle. The buckles prop-
agate beneath the (lm if the induced energy release rate exceeds the interface fracture
toughness. The associated mechanics has been documented (Evans and Hutchinson,
1984; Hutchinson et al., 1992; Hutchinson and Suo, 1992; Thouless et al., 1992; Jensen
and Thouless, 1995; Evans et al., 1997; Chai, 1998; Hutchinson et al., 2000; Audoly,
2000; Hutchinson, 2001). The buckles exhibit several con(gurations: ranging from cir-
cular, to linear to telephone cord (Fig. 1) (Matuda et al., 1981; Gille and Rau, 1984;
Lee et al., 1993; Colin et al., 2000; Moon et al., 2002). Straight buckles propagate with
a curved front. The conditions at the stationary side and the circular front have been

Fig. 1. Illustrations of straight-sided, circular, and telephone cord buckles (Moon et al., 2002).
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modeled and rationalized in terms of mode mixity and energy release rate (Hutchinson
and Suo, 1992; Hutchinson, 2001; Jensen and Sheinman, 2001). The corresponding me-
chanics for telephone cord buckles are less well developed. The purpose of this study is
to gain some insight by performing measurements on thin (lms of diamond-like carbon
(DLC) deposited onto nominally Gat glass substrates and conducting a corresponding
mechanics assessment. Such systems are typically subject to high residual compres-
sion (1–4 GPa) and modest adhesion, causing them to be susceptible to telephone cord
buckles.

The pro(les of telephone cord buckles are characterized along di;erent chords, by
using the atomic force microscope (AFM). To make a direct comparison between tele-
phone cord and (the more completely understood) straight-sided buckles, the focused
ion beam (FIB) imaging system has been used to create two parallel (damage free)
cuts, converting a section of the former into the latter. Changes in the pro(le before
and after cutting can be used to correlate the two con(gurations, with all other vari-
ables (xed. The ensuing measurements provide a direct assessment of the mechanics
of telephone cord buckling.

2. Measurements

2.1. Procedures

Diamond-like carbon (lms were deposited on glass microscope slides by using a
capacitively coupled glow discharge of CH4 and C6H6 plus N2, at a deposition pressure
of 1:33 Pa, with negative self-bias voltage controlled in the range from −100 to −700 V
by adjusting the r.f. power (Cho et al., 1999). For these conditions, the (lm thickness
is in the range, 0.13–0:47 �m, and the residual compression between 1 and 3 GPa,
resulting in telephone cord buckles with a wide range of wavelengths between 1.5 and
25 �m.

Images of representative buckles have been obtained by using the AFM in tap-
ping mode (Digital Instrument company) while also obtaining information about their
pro(les. Sections through the buckle were made by using the Dual-Beam FIB (FEI
Company, DB235). The change in pro(le caused by cutting was determined with the
AFM. Multiple sections were cut and analyzed in the same manner.

2.2. Buckling pro:les

Images of the telephone cord buckles (Fig. 2) suggest that each repeated unit has a
center of symmetry, denoted O in the (gure, and that the circumference around that
point, denoted by the arc XY , has constant curvature. The adjacent units have the
inverse symmetry. Each repeated unit occupies roughly a 90◦ angular domain.

AFM pro(les measured along representative trajectories for a DLC (lm (thickness,
h=0:13 �m) aJrm the overall characteristics (Figs. 3 and 4). All the radial trajectories
originating at O have essentially the same asymmetric pro(le, exempli(ed by that
shown in Figs. 3a, b. Note the small deviations from constancy within the four radial
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Fig. 2. Plan view of a telephone cord buckle, used to highlight a unit segment with center of curvature at
O and arc length XY .

trajectories, KC; KC1; KC2; KC3, as well as the mirror symmetry between KA( KE) and KC. Pro(les
along the medians between adjacent units [lines KB( KD) on Fig. 3a] are symmetric (Fig.
3c). The wavelengths b1; b2 and b3 measured for (lms with a range of thickness (Fig.
5) reveal a linear dependence on h. Moreover, the ratio of wavelengths, bi=b1 (i=2; 3),
is essential invariant with (lm thickness, expressing the self-similarity of the buckle
pro(les.

Pro(les at the front, along lines KF ( KF1 and KF2) on Fig. 3a, are compared with those
along the center of the unit segment, KC, on Fig. 3d. Note that the peak amplitude
diminishes as the tip is approached and that the pro(le becomes more symmetric.

2.3. Sectional pro:les

The e;ects of FIB cutting straight-sided sections from the telephone cord are vi-
sualized in Fig. 6. Measurements of pro(les before and after cutting are presented in
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Fig. 3. (a) Image of a telephone cord buckle indicating the radial trajectories used for pro(le characterization
(C, A and E), as well as the medians (B and D), and locations at the front (F). (b) The pro(les along the
radial trajectories, obtained using the AFM. Note that the trajectories KA and KE lie on top of each other.
(c) The pro(le along the medians. (d) The pro(les measured near the front compared with a radial
pro(le.

Fig. 7 (thickness, h = 0:47 �m). The two sections closest to the center (B and C)
reveal that the initial asymmetric pro(les become symmetric with essentially the same
overall wavelength (58 and 58 �m, respectively), Table 1. That is, the buckles do not
extend laterally when sectioned. This (nding has implications for the energy release
rate, elaborated below. The sections at the sides (A and D) become more symmetric,
but there are “tails” (arrowed) at one side, suggestive of contact between the (lm and
substrate within the buckle.

3. Associated mechanics

3.1. Straight-sided buckles

For thin (lms, thickness h, subject to equi-biaxial compression, �0, the surface dis-
placement w normal to the substrate of a straight sided buckle (Figs. 8a, b), as a
function of distance y measured from the middle of the buckle well behind the curved
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Fig. 4. Schematics of symmetric and asymmetric pro(les de(ning the wavelengths: (a) the symmetric medians
(B and D) and (b) the asymmetric radial pro(le (C).

front, is given by (Hutchinson and Suo, 1992)
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with E and � being Young’s modulus and Poisson’s ratio of the (lm, respectively.
The energy release rate and phase angle, tan  s ≡ KII=KI, on the sides, well behind the
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Fig. 5. Experimental measurements of the wavelength b1; b2 and b3 for a range of (lm thickness. (a) The
wavelength obtained on symmetric sections increases proportionally with thickness of (lm. (b) The ratios
of the asymmetric to symmetric wavelengths, bi=b1 (i = 2; 3) are invariant with (lm thickness.

curved front, are:

Gs=G0 =
(

1 − �c

�0

)(
1 + 3

�c

�0

)
; (4)

tan  s =
4 cos! +

√
3� sin !

−4 sin ! +
√

3� cos!
; (5)

where the energy release rate has been normalized by the strain energy per unit area
when the (lm is released in plane strain (Hutchinson and Suo, 1992):

G0 = (1 − �2)h�2
0=2E: (6)

Note that the normalized energy release rate, G=G0, and the maximum deGection,
wmax=h, depend only on the normalized stress, �0=�c. The phase angle,  , while also a
function of the Dundurs’ parameters (Hutchinson and Suo, 1992; Suo and Hutchinson,
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Fig. 6. Images of the cuts produced with the FIB. Note the change of buckle geometry and the discontinuity.

1990), for present purposes is set to the value absent elastic mismatch, whereupon
!=52:1◦. The energy release rate and phase angle along the sides of the straight-sided
buckle are plotted on Figs. 9 and 10, respectively.

The steady-state energy release rate averaged over the curved front is (Hutchinson
and Suo, 1992)

Gss=G0 = (1 − �c=�0)2: (7)

The energy release rate along the sides exceeds that along the front at all �0=�c

(Hutchinson, 2001). Yet, the front propagates because it experiences a signi(cant open-
ing mode, while the sides become exclusively mode II, once the buckle attains a char-
acteristic width (associated with �0=�c = 7:54). Full details will be presented below.

3.2. The sides of telephone cord buckles

Given the symmetry of each unit of the telephone cord buckle, described above (Figs.
2 and 3), it is assumed that the energy release rate and the pro(le can be modeled
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Fig. 7. A comparison of pro(les of buckles before and after cutting.

as a full circular buckle, radius r = R ≡ 2b, with pinned center (Figs. 8c, d). This
assumption is validated below by using the measurements and analysis conducted for
the straight-sided buckle created by the FIB. For a circular plate of radius 2b pinned to
the substrate at the center, the corresponding critical stress is (Evans and Hutchinson,
1984) �∗ = 1:081�c, and therefore only slightly greater than that of the straight-sided
buckle, width 2b.

Solutions for the circular, pinned buckle are obtained by numerical integration of
the non-linear, axi-symmetric von Karman equations. The equations are written using
non-dimensional quantities (∼) upon introducing:

r̃ =
r
R
; w̃ =

√
6(1 − �2)(w=h); �̃ = 12(1 − �2)

�0R2

Eh2 ;

Ñ = 12(1 − �2)
NR2

Eh3 : (8)

The normal deGection is denoted as w, and N is the radial membrane force in the
plate.
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Table 1
The pro(les before and after cutting: Amplitudes and wavelengths (thickness, h = 0:47 �m)

Wmax (�m) b2 (�m) b3 (�m) R(=b2 + b34) (�m)

Before cutting 3.6–3.8 40 18 58
After cutting 4.0–4.1 29 29 58

The two coupled non-linear plate equations are given by

d
dr̃

(
d
dr̃

(
r̃

d2w̃

dr̃2

)
− dw̃

dr̃

(
r̃Ñ +

1
r̃

))
= p̃r̃;

d
dr̃

(
r̃3 dÑ

dr̃

)
+ r̃

(
dw̃
dr̃

)2

= 0: (9)

Here, p̃ is a normal pressure imposed to initially lift the delaminated region from the
substrate, chosen to be suJciently small as not to a;ect the accuracy of the numerical
solution for the residual stresses of interest.

The edges of the delaminated region are taken to be fully clamped to the substrate
both at the exterior (r̃ = 1) and interior (r̃ = 1=20) crack front:

w = 0;
dw
dr

= 0;
d
dr̃

(r̃Ñ ) − �Ñ + (1 − �)�̃ = 0: (10)

A (nite radius of the interior crack front has been taken, r̃ = 1=20, suJciently small
as not to inGuence the results at the exterior front, but suJciently large to ensure nu-
merical stability, consistent with Fig. 6. The plate equations are integrated numerically
in a number of increments, as the residual stress is gradually increased. Equilibrium
iterations are performed in each increment to ensure that Eq. (9) is satis(ed to a high
degree of accuracy.

The energy release rate and the phase angle are calculated using:

G =
1 − �2

2Eh3 (12M 2 + h2(N + �0h)2) (11)

and

tan  =
KII

KI
=

√
12M cos! + h(N + �0h) sin !

−√
12M sin ! + h(N + �0h) cos!

; (12)

where the bending moment is M = [Eh3=(12(1 − �2))] d2w=dr2.

3.3. Comparison of three buckles

Computed results for G=G0 and  for the pinned circular buckle used to model
the sides of the telephone cord are presented in Figs. 9 and 10 as a function of
�0=�c. The buckling stress, �c, for the straight sided buckle, width 2b, de(ned in
Eq. (3) is used throughout to normalize the stresses. Included in Figs. 9 and 10 are
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Fig. 8. (a) Images of a short straight-sided buckle and circular buckle. (b) The geometry used for analysis.
(c) A unit segment of a telephone cord buckle and (d) the geometry used for analysis.

the corresponding results for an unpinned circular buckle, radius b, obtained by numer-
ical analysis (Hutchinson et al., 1992; Hutchinson and Suo, 1992). The buckling stress
is 1:488�c. To understand the trends at large �0=�c in Fig. 9, it is useful to identify
the total elastic energy per unit area stored in the biaxially stressed (lm:

G∗
0 = (1 − �)h�2

0=E: (13)

Note that G∗
0 =G0 = 1:54 for a (lm with � = 0:3. As �0=�c becomes large, equivalent to

a large diameter buckle, the energy release rate slowly approaches G∗
0 , asymptotically

releasing all the stored energy in the (lm. The corresponding limit for the straight-sided
buckle approaches G0 because the released (lm remains subject to plane strain con-
straint parallel to the sides. For further assessment, it becomes convenient to express
�0=�c in terms of the buckle size, b. For this purpose, a reference length is de(ned as
the half-width of the straight-sided con(guration at the onset of buckling,

b0 ≡ (�=
√

12(1 − �2))h
√

E=�0; (14)

whereupon

b=b0 =
√

�0=�c: (15)
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The energy release rates for the straight-sided, pinned and circular buckles, summarized
on Fig. 9, indicate that G and  for the circular buckle and at the sides of the telephone
cord are similar. By comparison, G at the sides of the straight buckle is smaller, at
least when the stress is large, �0=�c¿ 9 (as in the present case, addressed below).
Moreover, when �0=�c¿ 7:5, the sides of the straight buckle experience pure mode II,
while the circular buckles retain a substantial component of mode I.

The normal deGections for the straight-sided and pinned buckles calculated at three
levels of residual stress are compared in Fig. 11. Note the asymmetry of the pinned
con(guration, which increases as the stress increases. The peak displacement for the
pinned con(guration is a little lower than that of straight-sided con(guration.

4. Analysis of the telephone cord morphology

The existence of the telephone cord morphology is intimately related to interfaces
having toughness that increases with increasing proportion of mode II to mode I.
Indeed, as revealed in earlier work (Hutchinson et al., 1992; Hutchinson and Suo,
1992; Hutchinson, 2001), the occurrence of stable propagation owes its existence to
this mode dependence. The tendency to develop a curved delamination front is tied
to the larger proportion of mode I relative to mode II as the buckle enlarges. The
proclivity for mode II behavior along straight edges is evident from Fig. 10.

To simulate features of telephone cords with the solutions for circular and pinned
circular buckles, it is useful to introduce a phenomenological representation of a family
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of interface toughness dependencies (Hutchinson and Suo, 1992)

�c( ) = �lcf( );

f( ) = (1 + tan2((1 − !) )); (16)
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where �c( ) is the mode-dependent interface toughness, �Ic the mode I toughness and
! is a mode-sensitivity parameter that sets the strength of the mode dependence (Fig.
12). The criterion for propagation of a crack in the interface is G=�c( ). The ratio of
mode II to mode I toughness of the interface is �IIc=�Ic=1+tan2((1−!)�=2). Interfaces
with moderately strong dependence typically have !¡ 0:3 (Evans et al., 1990).

A mode-adjusted energy release rate, F , provides insight into the tendency of buckles
to propagate on curved rather than straight edges (Hutchinson, 2001). With �c( ) =
�Icf( ), let

F ≡ G=f( ); (17)

such that the criterion for propagation of the interface crack becomes F=�c. The trends
(Fig. 13) have been determined from the results for G=G0 and  in Figs. 9 and 10,
upon using (16) with !=0:25. Note that, when �0=�c exceeds about 3 (or, equivalently,
when b=b0 ¿

√
3), the mode adjusted energy release rate on the straight edge is lower

than that on curved sides. This behavior underlies the tendency of highly stressed (lms
to display curved buckle morphologies. It also explains why a straight-sided buckle
propagates at its curved front rather than spreads from its straight sides.

The stabilization of the sides of telephone cords and their dimensions can be ad-
dressed by imposing G = �c( ) (equivalently, F = �c) on the solution for the pinned
circular buckle, upon using the results from Figs. 9 and 10 and the interface toughness
function (16). The results yield the total elastic energy G∗

0 = (1 − �)h�2
0=E, needed to

satisfy the fracture criterion. The energy is normalized by the mode II toughness (Fig.
14), motivated by the knowledge that as the buckle becomes large it approaches mode
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II. Note that, if the GriJth criterion (! = 1) were in e;ect, the energy G∗
0 needed to

propagate the interface crack would diminish as b increases: whereupon, once initiated,
the interface crack would delaminate the (lm dynamically. Stabilization requires in-
creasing G∗

0 with increasing b. This occurs when !¡ 0:5 (�IIc=�Ic ¿ 2, Fig. 12), once
b=b0 exceeds about 2. To estimate the dimension, 2b, of the telephone cord from the
solution for the pinned circular plate (Fig. 14), it is necessary to know both �IIc and
!, in addition to the stress in the (lm and its thickness. These quantities are assessed
in Section 5.

To further illuminate the morphology, curves for G∗
0 =�II for the pinned circular buck-

les, radius 2b, from Fig. 14 are presented in Fig. 15. Corresponding curves are shown
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for G∗
0 =�II required to maintain the condition G=�c( ) at the edge of an unconstrained

circular buckle, radius R. The sides of the telephone cord are represented by the edge
of the pinned circular buckle, radius 2b, as already discussed. The energy release rate
at the propagating front (see inset in Fig. 15) has been approximated by that for an
unconstrained circular buckle, radius R = b. The lower energy density, G∗

0 , required to
extend the front relative to the sides is consistent with the sides remaining stationary.

5. Interpretation of the measurements

The preceding analysis is used in conjunction with the measurements and observa-
tions, before and after FIB cutting, in the following manner. (i) The pro(le of the cut,
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straight-sided buckle is used with Eq. (1) to determine the unknown residual stress in
the DLC (lm, �0. (ii) This stress is used with the solution to Eq. (10), as illustrated
in Fig. 11, to predict the radial pro(les for the unit segment of the telephone cord
buckle. (iii) The calculated pro(les are compared with the measurements to assess the
validity of the pinned, circular buckle assumption. (iv) Once validated, to gain some
understanding about buckle formation and propagation, the model is used to calculate
energy release rates at the sides of the telephone cord as well as at the front.

Ascertaining the width (b=29 �m) and amplitude (wmax=h=8:5) of the straight-sided
buckles from Fig. 7 (Table 1), and inserting into the solution for the pro(le, along
with the (lm thickness (h = 0:47 �) and the DLC properties (E = 120 GPa; � = 0:3
(Cho et al., 1999)), the stress ratio is determined as �0=�c = 55. Upon using Eq. (3)
to obtain �c, the residual stress becomes �0 = 1:6 GPa (Cho et al., 1999).

The pro(les of pinned buckles are now compared with the radial trajectories mea-
sured experimentally (Fig. 7b). The wavelengths indicated in Table 1 (b2+b3=58 �m),
with the residual stress, �0=�c = 55, predict an amplitude maximum, wmax=h= 7:9. This
amplitude is essentially the same as the measured value (Table 1). The full pro(les
are compared in Fig. 16. Note the accuracy with which the pinned circular buckle
solution captures the radial pro(les measured on the telephone cords. The closeness of
this comparison validates the use of the pinned, full circular buckle as a model for a
unit segment of the telephone cord.

With these stresses and dimensions, the energy release rate at the side of a telephone
cord buckle is calculated as G = 1:34G0 = 6:1 J=m2, primarily in mode II, with a small
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extend the buckle at the front than along the sides.

component of mode I (Fig. 10). Note that this G is similar to the interface toughness
ascertained in a previous study (Moon et al., 2002). The corresponding energy release
rate after cutting, obtained by using the pro(les from Fig. 7 (b=29 �m, wmax=h=8:5),
with the same residual stress (�=�c = 55 (Eq. (3))) is, G = 1:04G0 = 4:7 J=m2, in pure
mode II (Fig. 10). The lower value at comparable mode mixity is consistent with
the observation that the buckle does not extend laterally after cutting (Fig. 7). To
estimate the energy release rate at front, the solution for a circular buckle has been
used (Hutchinson, 2001). The measured frontal radius, R = 20 �m, when used with
the same residual stress gives �0=�c = 67, such that, G = 1:11G0 = 5:1 J=m2. These
measurements provide G∗

0 = 7:0 J m−2 and b=b0 =
√

�0=�c = 7:4, enabling the results
in Fig. 14 to be used to estimate �IIc. For ! = 0:25, �IIc = 8:1 Jm−2 (�Ic=�IIc = 0:146),
while for != 0:1, �IIc = 12:2 Jm−2 (�Ic=�IIc = 0:024). The estimate �IIc = 8:1 Jm−2 for
! = 0:25 is probably the more realistic.
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Finally, note that the energy release rates at the sides and the front are all lower than
the mode I toughness of the substrate, �sub ≈ 8 J=m2 (Weiderhorn, 1967). The kinking
of a crack out of the interface into the substrate would require a larger interface
toughness (He and Hutchinson, 1989a, b; He et al., 1991) in accordance with the
ratio plotted on Fig. 17 (He et al., 1991). According to this criterion, a mode II
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interface crack would only deviate into the substrate when the interface toughness
satis(es �int ¿ 0:78�sub

∼= 6 J=m2. This assessment aJrms that the buckle is only
marginally stable at the interface.

6. Competition between telephone cord and straight-sided morphologies

The preceding analysis and interpretation allow new insights to be gained about the
competition between the telephone cord and straight-sided con(gurations. Based on the
energy per area in the (lm associated with the telephone cord (Fig. 15), together with
corresponding results for the straight-sided blister, from (4)–(7), the normalized energy
per area, G∗

0 =�IIc, required to satisfy the fracture criterion along the sides and front of
both telephone cord and straight-sided buckles may be deduced (Fig. 18). Here, b=b0

refers to the telephone cord (see Fig. 15), while b is the half-width of the straight-sided
buckle. The mode mix,  , associated with the curved front of the straight-sided buckle
is obtained from Fig. 10b, upon using Gss=G0 from (7). A detailed numerical analysis
(Jensen and Sheinman, 2002) has established the accuracy of this approximation.

The curved front of the straight-sided con(guration propagates at G∗
0 =�IIc

∼= 0:6,
essentially independent of the width, provided that b=b0 ¿ 1:5. Stable straight-sided
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buckles would not be possible when G∗
0 =�IIc ¿ 0:6 since the front would propagate

dynamically. Two other results are consistent with this (nding. (i) Straight sides be-
come unstable to sinusoidal shape perturbations when b=b0 exceeds a critical value
(Jensen, 1993). For the present interface fracture criterion (16), this occurs at b=b0 ≈ 2
if !¡ 0:3. (ii) The straight-sided con(guration undergoes a secondary bifurcation that
promotes side undulations at b=b0 ≈ 2:5 (Audoly, 1999; Jensen and Sheinman, 2001).
In summary, the combined results suggest that straight-sided buckles can only be
expected in a narrow range of G∗

0 , when b=b0 ≈ 2, consistent with their rarity.
The range of G∗

0 wherein the telephone cord morphology can exist is distinctly
greater. A domain map is plotted in Fig. 19 in dimensional space G∗

0 =�IIc versus
�IIc=�Ic = 1 + tan2((1 − !)�=2). Telephone cords cannot form below the lowest curve,
b=b0

∼= 2. Conversely, at large G∗
0 =�IIc the entire interface delaminates (the upper limit

has not been determined, but is unlikely to be much larger than that for b=b0 = 8).
Straight-sided buckles are only preferred within a narrow domain near the dotted curve.
Their half-width is b=b0

∼= 2 for all �IIc=�Ic.
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7. Summary

Telephone cord buckles that form beneath a highly compressed DLC (lm on a
glass substrate have been analyzed. Pro(les have been measured by AFM along radial
and median trajectories. These suggest that each unit segment might be modeled as a
segment of a circular buckle pinned at its center. The mechanics of this model have
been presented. The results reveal that the telephone cord topology can be e;ectively
modeled as a series of pinned circular buckles along its length, with an unpinned
circular buckle at its front.

To calibrate the system, the FIB has been used to create short, straight-sided buckles
from unit segments of the telephone cord and the new pro(les measured by AFM. By
(tting these pro(les to well-established mechanics solutions, the residual compression in
the DLC has been ascertained as 1:6 GPa. This stress is used with the pinned, circular
buckle solutions to compare measured and predicted pro(les. The close coincidence
validates the model and allows energy release rates and mode mixities to be determined
for the telephone cord.

The theoretical (ndings are consistent with the observation that telephone cords are
observed in many systems, while straight sided buckles are rare.
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