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Abstract

A model for the axisymmetric growth and coalescence of small internal voids in elastoplastic
solids is proposed and assessed using void cell computations. Two contributions existing in
the literature have been integrated into the enhanced model. The first is the model of Golo-
ganu–Leblond–Devaux, extending the Gurson model to void shape effects. The second is the
approach of Thomason for the onset of void coalescence. Each of these has been extended
heuristically to account for strain hardening. In addition, a micromechanically-based simple
constitutive model for the void coalescence stage is proposed to supplement the criterion for
the onset of coalescence. The fully enhanced Gurson model depends on the flow properties
of the material and the dimensional ratios of the void-cell representative volume element.
Phenomenological parameters such as critical porosities are not employed in the enhanced
model. It incorporates the effect of void shape, relative void spacing, strain hardening, and
porosity. The effect of the relative void spacing on void coalescence, which has not yet been
carefully addressed in the literature, has received special attention. Using cell model compu-
tations, accurate predictions through final fracture have been obtained for a wide range of
porosity, void spacing, initial void shape, strain hardening, and stress triaxiality. These predic-
tions have been used to assess the enhanced model. 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

1.1. Preliminaries

Recent efforts in the development of computational models incorporating the void
growth process has given rise to robust predictive methods for crack propagation in
ductile solids (e.g. Needleman and Tvergaard, 1987; Rousselier et al., 1989; Mudry
et al., 1989; Bethmont et al., 1990; Bilby et al., 1993; Xia et al., 1995; Xia and
Shih, 1995a,b; Brocks et al., 1995a; Ruggieri et al., 1996; Gao et al., 1998). Most
strikingly, the strong geometry dependence of crack growth resistance curves
emerges without the introduction of phenomenological parameters for the charac-
terization of crack tip constraint. Most of these works employed the constitutive
model initially proposed by Gurson (1977), improved by Tvergaard (1981, 1982),
and finally extended by Needleman and Tvergaard (1984) to account for the rapid
loss of load carrying capacity during void coalescence. It has also been supplemented
by various kinds of void nucleation criteria (e.g. Chu and Needleman, 1980; Saje et
al., 1982; Pineau, 1992). Although good agreement with a range of experiments and
void cell computations has been observed, the model as it currently stands still suffers
from significant limitations:

O The transfer of experimental data obtained from non-cracked specimens for the
modeling of cracked structures, and vice versa, is not yet successful. In order to
quantitatively reproduce experimentalJR curves, parameters of the model must
be identified by fitting to test data taken under high stress triaxiality conditions
such as from a cracked specimen (e.g. Gao et al., 1998). Many problems of ductile
fracture in non-cracked structures occur at low to intermediate stress triaxiality,
e.g. during metal forming processes like die-extrusion or in structures containing
sharp or smooth notches. In such applications, the model does not reliably predict
fracture using a set of parameters identified at high triaxiality.

O In the context of the model as it now stands, non-spherical voids can only be
accounted for in an ad hoc manner by introduction of an effective porosity. Even
when cavities are initially spherical, void shape effects can be significant upon
growth, especially at low stress triaxiality.

O The criteria currently employed to signal the void coalescence stage of defor-
mation are limited to a restricted range of conditions, which are not easily meas-
ured experimentally. In particular, the significant stress triaxiality dependence of
the coalescence condition is not captured by current models.

These limitations, and others, are thought to arise mainly because (i)void shape
is not directly accounted for and (ii)void coalescenceis not properly modeled. The
objective of the present paper is to extend the Gurson model to include these effects
and to assess the enhanced model to ascertain whether, in principle, it will be able
to overcome the aforementioned limitations. To put the challenge in the simplest
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terms, it is hoped that an extended void growth model can be developed which is
capable of simultaneously providing accurate predictions for bothcrack formation
prior to the existence of a crack andcrack growthfrom pre-existing cracks. A suc-
cessful extension along these lines would represent a major step towards attainment
of a complete model for failure due to the ductile failure mechanism of void
nucleation, growth and coalescence.

In extending the Gurson model it is inevitable that a more complicated model will
emerge. Nevertheless, every effort has been made to retain the original structure of
the model and to introduce a minimum of new parameters, mainly those which
characterize void shape and relative spacing. It is recognized that the model is almost
exclusively used in numerical computations, and thus certain modifications in the
extended model, such as more complicated functional behaviors, will not necessarily
cause any fundamental difficulty in its implementation. In the present work, we have
borrowed heavily from two contributions existing in the literature, and have inte-
grated them into the enhanced model. The first contribution is the model of Golo-
ganu–Leblond–Devaux (Gologanu et al., 1995), extending the Gurson model to void
shape effects. The second is the approach of Thomason (1990) for the onset of
void coalescence. Each of these has been extended heuristically to account for strain
hardening. In addition, a micromechanically-based simple constitutive model for the
void coalescence stage is proposed to supplement the criterion for the onset of void
coalescence. The various parts of the enhanced model are assessed using void cell
computations. General discussion about void shape effects in elastoplastic or viscopl-
astic materials can be found elsewhere (e.g. Budiansky et al., 1982; Lee and Mear,
1992; Gologanu et al., 1995; Sovik and Thaulow, 1997; Benzerga et al., 1999).
Emphasis will be put in this paper on some of the details of void coalescence because
they are less well understood.

1.2. Organization of the paper

Since there is a multitude of aspects in this enhanced model, reflected in the para-
meters of the void growth/coalescence model, a synoptic overview of the full model
will be presented in the Introduction following some background about the coalesc-
ence of voids. The synopsis will be limited to a schematic description of the main
equations of the model without details of the explicit forms for the equations, which
are contained in the body and Appendix A of the paper. Following the Introduction,
the paper begins by describing the phenomenology of tensile void coalescence from
results obtained using void cell computations. Then, the coalescence model is
presented and assessed. The fully enhanced model follows.

The sections are organized as follows: Section 2, Computational void cell model;
Section 3, Void cell results; Section 4, Void coalescence model; Section 5, Analysis
of the full model for void growth and coalescence; Section 6, Conclusions and per-
spectives; Appendix A, details of the equations of the void growth model.
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1.3. Background about void coalescence

Void coalescence is the final stage in the failure mode of ductile materials. It
consists in the localization of plastic deformation at the microscale inside the
intervoid ligament between neighboring voids, with material off the localization
plane usually undergoing elastic unloading. Localization can occur at any orientation
relative to the principal straining axis, depending on the orientation of the ligament
between the two coalescing voids: tensile (i.e. normal separations) or shear localiza-
tions are possible.

The tensile void coalescencemechanism implies a transition to a uniaxial straining
mode of the representative volume element, as shown by Koplik and Needleman
(1988). It is a diffuse localization at the microscale. Experimentally, the tensile
coalescence mode brings about the flat dimpled fracture morphology widely observed
in an enormous range of ductile materials under a wide range of stress states. After
the onset of void coalescence, voids grow rapidly until final impingement. To estab-
lish precise terminology, in this paper “void coalescence” has been reserved for the
part of the void enlargement evolution after the transition to the uniaxial straining
mode, and “void growth” is used to characterize void enlargement before localiz-
ation. “Shear” coalescence(e.g. Tvergaard, 1981; Faleskog and Shih, 1997) is fav-
ored by low stress triaxiality, low strain biaxiality and low strain-hardening. This
mode of coalescence is similar to shear banding but at the scale of the voids. Overall
axisymmetric deformations bring about a kinematic constraint, which tends to
exclude localization in shear bands.

In practice, the nucleation and rapid growth of a second population of smaller
voids inside the intervoid ligament has been observed in several steels and aluminum
alloys (Rogers, 1960; Cox and Low, 1974; Hancock and Mackenzie, 1977; Achon,
1994) and is recognized to precipitate ligament failure (Tvergaard, 1981; Brocks et
al., 1995b; Faleskog and Shih, 1997) well before impingement of the large voids.
When a second, smaller population of voids intervenes, the coalescence mechanism
is called a “void sheet”.

The void coalescence mechanism is a localization mechanism at the scale of the
void size that must thus be distinguished from the localization in a band at the
“mesoscopic” scale with a width typically of the order of one or more void spacings
(e.g. Tvergaard, 1981). The confusion can arise because of the fact that when such
a mesoscopic localized band develops, coalescence usually follows soon after leading
to fracture with a small additional increase in remote displacements. Inside the band,
the cavities grow very rapidly due to the large mesoscopic strain rates. Void coalesc-
ence, in the sense defined here, follows the onset of the mesoscopic plastic localiz-
ation when one occurs. For practical purposes, mesoscopic localization can be
regarded as the onset of fracture, even though the distinct micromechanism of
coalescence will develop somewhat later within the band.

Modeling of void coalescence has received far less attention in the literature than
void growth. The most widely employed criterion for the onset of void coalescence
states that void coalescence starts at a critical porosity which has tended to be
regarded as a material constant (McClintock, 1968b; d’Escatha and Devaux, 1979).
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Several numerical (e.g. Koplik and Needleman, 1988; Tvergaard, 1990; Brocks et
al., 1995b) and experimental/numerical works (e.g. Marini et al., 1985; Becker, 1987;
Pardoen et al., 1998) have assessed the validity of this attractive but overly simplified
fracture criterion. For a well defined material (and microstructure) and a fairly limited
range of thermomechanical loading, this criterion appears to be acceptable from a
practical standpoint. However, it will be demonstrated that any general void coalesc-
ence model requires the introduction of at least some microstructural information
related to the void/ligament dimensions and geometry. This fact was recognized by
McClintock (1968b) in his original study and has been discussed in detail by Thoma-
son (1990, 1993).

1.4. Synopsis of the model

The parameters characterizing a representative volume element (RVE) are defined
in Fig. 1. Throughout the paper, subscripts “0” and “c” indicate initial values and
values at the onset of void coalescence, respectively. The extension of the Gurson
model due to Gologanu et al. (1995), which has been adopted here to describe
behavior prior to void coalescence, gives a constitutive relation for a porous elastopl-
astic material containing (axisymmetric) spheroidal voids. This particular model,
extended for strain-hardening, contains nine state variables: the six components of
the mesoscopic stress tensor,S, the porosity,f, the void aspect ratio,S, and an
average yield stress for the matrix material,sm. The void aspect ratio is defined by
S=ln(W) while W=Rz/Rr. The functional form of model prior to coalescence is:

Fig. 1. Representative volume element, with the geometric parameters, symmetry lines, and boundary
conditions.
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F;F(S, f, S, sm)50, (1)

ḟ5(12f)Ėp
kk, (2)

Ṡ;Ṡ(f, S, T), (3)
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Ėp
ij 5g

dF

dSij

, (6)

whereF is the flow potential;Ep is the mesoscopic plastic strain tensor; (2) and (3)
are the evolution laws forf and S, respectively, withT being a stress triaxiality
measure defined as the ratio of the hydrostatic stress by the effective stress,Sh/Se;
(4) is the simple Gurson (1977) energy balance for the plastic work allowing compu-
tation of sm using the effective stress–strain curve for the parent material (5); and
(6) is the flow rule. As already emphasized, the structure of the original Gurson
model has been retained. Explicit expressions for the functions such asF andṠwill
be given elsewhere in the paper.

A criterion for the onset of tensile localization in the ligaments between the voids
is obtained in the spirit of Thomason’s approach (1990). This criterion requires the
introduction of an additional variable,A, characterizing the void distribution and
defined asA=ln(Lz/Lr) (see Fig. 1). Its evolution law is simply

Ȧ5Ėz2Ėr. (7)

The criterion for the onset of void coalescence is a function of the current RVE
geometry and hardening of the matrix material with the general form

Sz

s0
5F1Ssm

s0
, A, S, fD. (8)

This equation results from the condition that the applied stress component normal
to the localization plane (left-hand side) must give rise to an average mean tensile
stress in the intervoid ligament allowing the transition to a localized yielding mode
in the current RVE geometry. The evolution of the mesoscopic stress after the onset
of coalescence is then determined by the localization process. Localization brings
about uniaxial straining of the RVE which permits simple expressions to be derived
for the evolution ofsm, A, f and S during void coalescence (see Section 4.2). The
evolution of the stress continues to be expressed as (8), andf andA are still derived
from the incompressibility rule (2) and Eq. (7) (withĖr =0 if elasticity is neglected),
respectively. Eq. (4) ceases to be relevant after the onset of coalescence, and the
evolution ofsm is deduced from an approximate equation for the average effective
strain rate in the localized band,eloc

e , and the uniaxial flow properties of the sound
material (5):

ėloc
e 5F2(f, S, A)Ėz. (9)
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Finally, Ṡ is determined from

Ṡ5
3
2
F3(f, a, S)Ėz. (10)

The functionsF1, F2 andF3 are derived in Sections 4.1 and 4.2.
Table 1 gathers the material and “tuning” parameters (theq factor) which must

be specified in the model.

Table 1
Comparison between the version of the Gurson model enhanced by Needleman and Tvergaard (1984)
and the version of the model proposed in the present paper. The comparison is made in terms of the
parameters of both models

(A) Gurson model (B) New model Comments
enhanced by
Tvergaard and
Needleman

Flow properties s0, E, n, n
Microstructural f0 f0 in (A) is an effective porosity
features when used to model non-spherical

voids
S0=ln(Rz0/Rr0)
l0=Lz0/Lr0

L0 Lr0 When used to model crack
propagation, both models will
require a material length: in
principle, the void spacing.
Adjusting this length is the simplest
way to account for heterogeneous
void distributions

Void nucleation Not addressed in
this work; existing
nucleation models
could identically be
applied with (A) or
(B)

Void growth q (or q1), (q2) q An heuristic parameterq is required
in both models to accurately predict
the void growth rates. It is
generally a function ofn, f0, T and
S, determined from cell
computations. In (A), a second
parameterq2 is sometimes
introduced to account for the void
shape

Void coalescence fc, fE The critical porosities in (A)
depend on the stress triaxiality, on
the microstructure (f0, …), and on
the flow properties
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2. Computational void cell model

The void cell method (Needleman, 1972) is revisited in order to address in a
comprehensive way the effect of initial porosity, strain hardening exponent, stress
triaxiality, void shape, and void distribution on void coalescence. Following earlier
efforts, the continuum analyzed in the present work is imagined as a periodic array
of hexagonal cylindrical unit cells, each containing an aligned spheroidal void. For
the sake of simplicity, this assemblage is approximated by circular cylinders allowing
axisymmetric calculations which have been shown to provide a good approximation
to the hexagonal cells (e.g. Worswick and Pick, 1990). More complex assemblages
or stress states have been analyzed by several authors (e.g. for 3D computations,
Hom and McMeeking, 1989; Richelsen and Tvergaard, 1994; Kuna and Sun, 1996;
Thomson et al., 1999). A cell is characterized by three parameters: the initial
porosity,f0, the initial aspect ratio of the void,W0, and the initial aspect ratio of the
cell, l0. These parameters are defined from the characteristic dimensions of the void
cell in Fig. 1 as:

f05
2
3
R2

r0Rz0

L2
r0Lz0

, (11)

W05exp(S0)5
Rz0

Rr0
, (12)

l05exp(A0)5
Lz0

Lr0

, (13)

whereRr0, Rz0, Lr0, Lz0 are the radial and axial half-lengths of the spheroidal void
and cell, respectively. The parametersSandW will be called “aspect ratio” or “void
shape” for short. The two limiting cases,W→0 and W→` correspond, when the
porosity goes to zero, to the penny-shape crack and the infinitely thin needle, respect-
ively, and, when the porosity is kept constant, to a “sandwich” and the infinitely
long hollow cylinder, respectively.

The mesoscopic principal strains and a special “effective” strain measure are
given by

Er5lnS Lr

Lr0
D; Ez5lnS Lz

Lz0
D; Ee5

2
3
|Ez2Er|. (14)

The mesoscopic true principal stresses are the average forces at the cell boundary
per current area. The effective stress and hydrostatic stress are

Se5|Sz2Sr|; Sh5
1
3
(Sz12Sr). (15)

The current porosityf is computed via the condition of plastic incompressibility of
the material surrounding the void. Based on the approximation of Koplik and Needle-
man (1988) for the elastic dilatation, one has
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f512(12f0)
V0

VS11
3(1−2n)

E
ShD, (16)

whereV0 andV are the initial and current volume of the cell, respectively;n is the
Poisson ratio andE is the Young’s modulus of the matrix material.

The computations were performed within the finite strain setting using the general-
purpose finite element program ABAQUS Version 5.7 (1997). Computations have
been carried out at a prescribed fixed triaxiality,. Several methods can be used to
impose constant stress triaxiality on the cell. In the present work, a constant axial
increment of displacement is prescribed while the radial increment is adjusted using
an iterative method until the desiredT is attained. Axisymmetric nine-node isopara-
metric elements with reduced integration were chosen. As shown in Fig. 2, the mesh
was highly refined close to the void surface with nearly flat elements to preserve
a reasonable aspect ratio for these elements when deformed to very large strains.
Convergence analyses were systematically performed by examining the effect of both
mesh refinement and smaller applied displacement increments. Convergence was
considered as being attained when no change in the strain at the onset of void
coalescence was observed. After the onset of void coalescence the effective stress
drops rapidly due to localization in the ligament. The validity of the numerical results
is expected to rapidly deteriorate after the onset of void coalescence because of mesh
distortion. However, convergence was observed for a portion of theSe–Ee curve
after the onset of void coalescence. It is worth mentioning that the region in which

Fig. 2. Finite element mesh for an initially prolate void (W0=6) in 1:1 cell (l0=1).
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plastic deformations localize during void coalescence is not restricted to a single
row of elements located in the minimum section of the intervoid ligament. When
the mesh is sufficiently refined, localization is diffusely spread over several rows of
elements. Thus, intrinsic mesh sensitivity did not affect the present results.

The constitutive behavior of the matrix material is the rate independent J2 elastopl-
astic model. The specific uniaxial true stress–true strain curve is:

s
s0

5
Ee
s0

whens,s0, (17a)

s
s0

5S11
Eep

s0
Dn

whens.s0, (17b)

wheres0 is the initial yield stress andn is the strain-hardening exponent.
The parameter choices used in the computations in this work are listed below,

along with some comments as to their relevance. All possible combinations have
not been investigated, and the parameters which have been addressed in only a lim-
ited number of void cell computations are included within parentheses.

O f0=1024, 1022, (2×1022) and (6×1022): a wide range of typical materials contain
initial porosity between 1024 and 1022 (i.e. void volume fraction of potential
nucleation sites as inclusions or precipitates). Nowadays, steels and aluminum
alloys are processed having effective initial porosities well below 1024, but even
smaller porosity would require remeshing techniques to obtain results valid at the
onset of void coalescence.

O T=1/3, (0.5), 2/3, 1, 2, 3, 4, (5): this covers the range of stress states encountered
in nearly all structural applications of interest here, from uniaxial tensile loading
to high triaxiality crack tip fracture process zones.

O n =0.1 and 0.3.
O W0=1/6, 1, 6: this range of parameters may seem quite large, but it is important

to recall that in rolled steel plates, for example, MnS particles (the void nucleation
sites) with aspect ratios larger than 20 can be found. Consideration of large and
small aspect ratio clearly illuminates void shape effects. Numerical analyses of
aspect ratios larger than 6 or smaller than 1/6 are more complex and less accurate
because of the marked strain gradients which develop at the regions of high curva-
ture of the void surface.

O l0=(1/2), 1, (2), 4, (6), (8), 16.
O s0/E=0.002: this parameter plays a secondary role in the phenomena of interest.

3. Void cell results

3.1. Role of the primary parameters

This presentation focuses on void coalescence. Specific considerations regarding
the effect of the void shape on the void growth phase for initially non-spherical
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voids can be found in recent papers by Gologanu et al. (1993, 1994, 1995) and Sovik
and Thaulow (1997).

3.1.1. Influence of W0 and T
Fig. 3(a–d) gathers results for the entire process from the void growth stage

through void coalescence in a material withn=0.1, f0=1022, andl0=1. Three stress
triaxialities and three initial void shapes are considered:T=1/3, 1 and 3 andW0=1/6,
1, and 6. Fig. 3(a) displays variations of the axial stressSz as a function of the axial
strainEz. The onset of void coalescence corresponds to a marked change of the slope
of the curves. The transition is most sharp at low stress triaxiality. The effect of
void shape is very marked at low stress triaxiality. Coalescence is observed in uniax-
ial tension, i.e.T=1/3, for initially oblate voids (W0=1/6), but no void coalescence
is observed forW0=1 and 6. The void shape effect on the onset of coalescence is
still pronounced atT=1, but decreases with increasing stress triaxiality. After the
onset of void coalescence the falling stress–strain curve is nearly linear, except after
the voids have become so large that the validity of the numerics begins to deteriorate.
In an analysis using remeshing techniques for extreme void expansion at an interface
between a metal and a ceramic, Tvergaard (1997) has shown that the overall stress
drop remains linear until the load becomes nearly zero.

Fig. 3(b, c) exhibits the variations of, respectively,f and S=ln(W) as a function
of Ez. The effect of stress triaxiality on the rates off andW has been well covered
in the literature (e.g. McClintock, 1968a; Budiansky et al., 1982; Koplik and Needle-
man, 1988; Gologanu et al., 1995). Void coalescence induces an increase in the void
growth rate and a transition in the void shape evolution. After the onset of void
coalescence, the radial growth is significantly larger than the axial growth (except
for the caseW0=1/6 at T=3). The end of the coalescence process in a real material
usually consists of the failure of the remaining ligament (by microcleavage, crystallo-
graphic shearing, or with the help of second population of smaller voids) rather than
radial void growth until impingement. Thus, after the onset of void coalescence, the
void expands rapidly in the radial direction until the final failure of the ligament.
During this process, axial void growth remains small. Consequently,Rz measured
on the fracture profile is a good approximation of the void half-height at the onset
of void coalescence.The most pertinent dimension to measure on a fracture profile
to gain information about void coalescence is Rz.

Fig. 3(d) shows the variation in the radial strainEr as a function of the axial
strain Ez. The transition to a uniaxial straining mode is nearly always essentially
instantaneous (see also Koplik and Needleman, 1988; Becker et al., 1989 for initially
oblate voids, Brocks et al., 1995b, and Richelsen and Tvergaard (1994) for 3D
computations). This transition constitutes a direct indicator of localization and is
effective in quantifying the strain at the onset of void coalescence. Exceptionally,
at high stress triaxiality and for highly elongated cells (l..1) (not shown in Fig.
3(d)), the transition is not so marked due to elastic effects onEr. In that case, accurate
detection of the transition to localization requires examination of the radial strain
rate variation as a function ofEz.
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Fig. 3. Void cell results forf0=1022, l0=1, s0/E=0.002,n=0.1 andW0=1/6, 1, 6, atT=1/3, 1, 3; (a) (true)
axial stress vs (true) axial strain; (b) porosity vs axial strain; (c) void shape vs axial strain; (d) true radial
strain vs axial strain.



2479T. Pardoen, J.W. Hutchinson / Journal of the Mechanics and Physics of Solids 48 (2000) 2467–2512

Fig. 3. (continued)
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3.1.2. Influence of f0 and n
Although quantitative differences in the predictions were observed for a material

with n=0.3 or f0=1024, the general trends due to variations inT andW0 are similar
to those just discussed. A selection of these results will be presented in the last
section of the paper. Larger ductilities are predicted for decreasingf0 or increasing
n. The most striking difference is the following: whenn=0.1 andf0=1024, no void
coalescence is observed for the initially oblate void (W0=1/6) at T=1/3, whereas it
is observed forf0=1022 (see Fig. 3). The increase in porosity is found to arrest when
f<6×1024 (for f0=1024).

3.1.3. Influence of the void distribution
Fig. 4 summarizes the effects of the various geometrical parameters on void

coalescence by gathering results for the following void cells: (1)f0=1022, W0=1,
l0=1; (2) f0=1022, W0=1/6, l0=1; (3) f0=6×1022, W0=1, l0=1; (4) f0=1022, W0=1,
l0=6. The cells were chosen such that the parameterLx0/Rx0, which measures the
relative radial void spacing, is equal to the same value 2.2 in cells (2), (3), and (4)

Fig. 4. Four void cell results for a stress triaxiality equal to 1 andn=0.1, displaying the effects of void
shape, porosity, and void spacing.
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whereas it is equal to 4.05 in cell (1). All the cells were loaded with a prescribed
triaxiality T=1. Several comments can be made concerning the void coalescence:

(i) The onset of void coalescence depends strongly on relative void spacing as
can be discerned by comparing cells (1) and (4), which have identical void
shapes and initial porosity. The effect can be seen in another way by compar-
ing cells (2) and (3), which have been chosen with roughly similar void
spacing: the cells have roughly similar coalescence strains, even though the
initial void volume fractions and shapes are very different. The conclusion
to be drawn is that heterogeneity in the void distribution inherited from prior
working or processing plays a major role in the fracture resistance. This
specific aspect of void distribution has already been investigated by several
authors (e.g. Bourcier et al., 1986; Becker, 1987; Dubensky and Koss, 1987;
Magnusen et al. 1988, 1990; Needleman and Kushner, 1990; Huang, 1993;
Becker and Smelser, 1994; Leblond and Perrin, 1999; Thomson et al., 1999),
although in most instances within the context of porosity-induced mesos-
copic plastic localization, and not void coalescence.

(ii) Void spacing is not the only influential parameter as can be seen when
comparing cells (4) and (3) or (4) and (2). In these two comparisons, a
higher level of mean stress builds up in the ligament of cell (4) accelerat-
ing localization.

(iii) Very elongated cells (4) have steeper unloading curves due to the contri-
bution from elastic unloading in the zone outside the ligament. For a similar
cell aspect ratio, cells (2) and (3) also have significant differences between
the slopes after the onset of void coalescence, in this case due to differing
initial porosity and void shape.

As the effects of cell aspect ratio and void spacing have not received much atten-
tion in the literature (except for a few results by Koplik and Needleman, 1988;
Tvergaard, 1998), some systematic trends are revealed in Figs. 5 and 6 and com-
mented on in the next section.

3.2. Influences of the cell geometry

The effect of the initial cell aspect ratiol0 on void coalescence is depicted in Fig.
5(a), which presentsSe vs Ee for n=0.1, W0=1, T=1 andLr0/Rr0 fixed at 3.22. The
true stress–true strain curve of the matrix material is also plotted (f0=0). The peak
stresses converge to a well defined point on the curve corresponding tof0=0 asl0

increases. Forl0=16, there is nearly no departure from the curvef0=0 prior to localiz-
ation. The limit,l0→`, corresponds to a single plane of voids in an infinite solid.
The transition to a uniaxial straining mode is observed for all values ofl0. For large
l0, the onset of void coalescence coincides with the peak stress, which, consequently,
is due to the onset of the void coalescence localization process and not due to the
competition between the hardening of the matrix and the softening due to void
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Fig. 5. Sz vs Ez curves forn=0.1, W0=1, a constantLr0/Rr0 ratio equal to 3.22, andT=1 (a) orT=3 (b),
showing the effect of the cell aspect ratio (or, alternatively, of the porosity).
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Fig. 6. Variations in the radial strain as a function of axial strain from void cells with identical void
spacing, spherical voids,n=0.1, andT=3. The effect of the porosity, or, alternatively, of the cell aspect
ratio, is very marked.

growth. The slope of the curve after the onset of coalescence increases withl0 as
a result of an increasingly larger zone of elastic unloading.

Fig. 5(b) presents analogous results for the caseT=3, with all other parameters as
before. Now, it is first interesting to note that in none of the void cells does the peak
effective stress reach the yield stress of the matrix material. As forT=1, void coalesc-
ence imposes the attainment of the maximum stress whenl0 is increased. Further-
more, for l0=4, there is almost no plastic void growth prior to coalescence. The
initial configuration and the stress triaxiality are such that localization in the intervoid
ligament is favored over homogenous straining outside the ligament almost from the
beginning of loading. Such a combination (T=3, n=0.1, f0=5×1023, W0=1 andl0=4)
could correspond to the situation at a crack tip in a real material with an anisotropic
initial distribution of inclusions. If the initial porosity is reduced, while maintaining
l0>4, some plastic void growth again becomes necessary before the onset of coalesc-
ence. The variation inEr corresponding to the results of Fig. 5(b) provides additional
insights. Fig. 6 shows the variation inEr as a function ofEz for T=3, n=0.1, W0=1,
and Lr0/Rr0 fixed at 3.22. Forl0.2, the transition in the radial strain ratesĖr is
observed at coalescence, but is far from being equal to zero and remains significantly
negative (a uniaxial straining mode is thus not observed). As a matter of fact, radial
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elastic unloading of the cell becomes less and less negligible for increasing stress
triaxiality, especially whenl0 increases. It is worth mentioning that the plastic part
of Ėr is also not equal to zero implying that some reverse plasticity occurs.

Fig. 7 shows results forn=0.1, W0=1, and a constantl0=16, while Lr0/Rr0 varies
between 3.2 and 12.8, with Fig. 7(a) forT=1 and Fig. 7(b) forT=3. These results
isolate the effect of void spacing in the localization plane. Indeed, the void evolution
is almost the same in each of the three cells (but different for the two triaxialities).
The porosity is so low in each of these cases that the stress states are similar in the
vicinity of the voids. Coalescence sets in abruptly and is a very strong function of
Lr0/Rr0 or, equivalently, off0 given fixedl0, as well as the triaxialityT.

3.3. The RVE at the onset of void coalescence

The analysis of the stress and strain fields inside several void cells has shown that
voids start interacting with each other well before the onset of void coalescence.
Once localization of deformation within the ligament sets in, coalescence is fully
underway. Fig. 8 depicts the differences observed between the localization zone dur-
ing coalescence at low and large stress triaxiality. The height of the localization zone
roughly corresponds toRz at large stress triaxiality, while, at low stress triaxiality
(T,1–1.5), it is only a fraction ofRz. Detailed analyses have shown that this fraction
is fairly independent of the void shape for a given stress triaxiality.

Fig. 9(a) gathers the critical porosity of void cells characterized byn=0.1, l0=1
with f0=1022 or 1024 as a function of the stress triaxiality, for variousW0 (1/6, 1,
6). As frequently mentioned in the literature (e.g. Koplik and Needleman, 1988;
Brocks et al., 1995b; Pardoen et al., 1998), the critical porosity at the onset of
coalescence significantly varies withT. These variations are such that a constant
critical porosity is not an accurate criterion at low to intermediate stress triaxiality.
However, at large stress triaxiality void growth rates are high enough before void
coalescence such that the prediction of strain at coalescence based on a constant
critical porosity may provide a reasonable approximation. The effect ofT on fc is
not significantly more marked for initially prolate or oblate voids. The dependence
of fc on T varies withf0: the maximum value offc is attained for smaller triaxialities
when f0 increases (see also Benzerga et al., 1999). For large porosity (f0=1022), the
value of fc is influenced by the void shape at low stress triaxiality, whereasfc for
low porosity (f0=1024) is relatively independent ofW. At T=5, a transition in the
radial strain rate evolution becomes hardly detectable. For stress triaxiality larger
than 5, unstable void growth has been found by several authors to be the central
issue for the prediction of ductile failure (Ashby et al., 1989; Huang, 1991). Such
high stress triaxiality is encountered only in very constrained problems, typically, a
ductile thin metal layer between ceramic blocks (Tvergaard, 1991). Thus, forT.5
the distinction between void growth and void coalescence process becomes harder
and harder to discern and the notion of critical porosity no longer meaningful.

For the same set of void cell parameters, Fig. 9(b) shows the critical values of
the normalized radial radius of the void at the onset of void coalescence, denoted
by Rrc/Rr0, whereRr0 is the initial value. One might intuitively regardRrc as a more
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Fig. 7. Effective stress vs effective strain curves displaying the effect of the void spacing on elongated
cells (l0=16), for n=0.1 andW0=1; (a) T=1; (b) T=3.
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Fig. 8. Sketch of the zone of localized plastic straining during void coalescence, for two different
stress triaxialities.

meaningful parameter for characterizing transverse void coalescence. However, Fig.
9(b) dispels that notion by virtue of the significant dependencies ofRrc on all of T,
f0 andW.

Fig. 10(a) compares the critical porosityfc obtained for the two different strain-
hardening exponentsn=0.1 and 0.3, in all cases withf0=1022. Except for low triaxial-
ity, where the critical porosity depends only weakly onn, a larger strain-hardening
exponent improves the resistance to the onset of void coalescence (i.e. largerfc)
resulting in a larger equivalent strain at the onset of coalescence. Fig. 10(b) compares
the Rrc/Rr0 obtained for the two strain hardening exponentsn=0.1 and 0.3,f0=1022.
Rrc/Rr0 lower than 1 at low stress triaxialities results from the void contraction. In
real materials, the presence of a rigid inclusion can hinder this contraction resulting
in a smaller void coalescence strain (e.g. Steglich and Brocks, 1997).

Fig. 11(a, b) shows the variations infc/f0 andW at void coalescence, respectively,
as a function of ln(l0). They provide good estimates of the asymptotic values offc/f0
and W whenl0→`, i.e. the limit when all the voids are confined to one plane.
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Fig. 9. Stress triaxiality dependence of critical damage parameters at the onset of coalescence, for differ-
ent initial porosity and void shapes, withn=0.1 andl0=1; (a) critical porosity; (b) critical void radius (in
the radial direction).
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Fig. 10. Role of strain hardening on critical damage parameters at the onset of coalescence, for different
initial porosity and void shapes,l0=1; (a) critical porosity; (b) critical void radius (in the radial direction).
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Fig. 11. Variation as a function of the elongation of the cell of (a) the critical porosity normalized by
the initial porosity, and of (b) the void shape at the onset of coalescence, for cells with a constant void
spacing,n=0.1, W0=1, T=1 and 3.
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4. Void coalescence model

4.1. A criterion for the onset of void coalescence

The results presented in Section 3 have demonstrated the onset of coalescence,
whether measured byfc or Rrc, generally depends onf0, T, W0, l0 andn. For practical
purposes, a criterion based on eitherfc or Rrc might be attractive but, in principle,
would require identification offc or Rrc as a function ofT for each material. This
identification process would have to be repeated each time the microstructure of a
given material is modified (shape and volume fraction of inclusions, distribution,
hardening of the matrix, etc.). For these reasons, a criterion based on the mechanism
of plastic localization in the intervoid ligament, which was introduced in the Synop-
sis, is much preferred to unify the aforementioned dependencies. Details of the devel-
opment of this criterion are now presented.

To motivate the model, a relatively elementary approximation is given that directly
addresses the mechanism of tensile plastic localization in the intervoid ligaments.
This is followed by our adoption, with minor modification, of the functional form
of the void coalescence model of Thomason (1985a,b, 1990).

Diffuse plasticity throughout the cell gives way to localized deformation within
the ligament with the material outside the ligament unloading elastically, as discussed
in connection with Fig. 8. Consider a thin annular cylindrical disk of elastic-perfectly
plastic material welded to rigid platens and constrained against flow at the outer
radius, as shown in its current geometry in Fig. 12. An approximate analysis for the
limit load of this configuration, with associated average true stressSz, can be carried
out along the lines of Hill’s (1950) plane strain analysis of a thin plastic layer welded
to and squeezed by two rigid platens. The analysis assumes the material in the disk
moves outward flowing in shear and otherwise supporting only hydrostatic tension
such that the three normal stresses are approximately equal. Radial equilibrium (with
the approximation that the normal stresses at the void are zero) provides the applied
stress as a function of the current geometry

Sz

s0

5
2

3Î3

Lr

Rz
S12

Rr

Lr
D2S21

Rr

Lr
D. (18a)

The condition of zero material volume change (elastic deformations neglected) pro-
vides the relation between the current geometry and the initial geometry

Rz

Rz0

5
1−(Rr0/Lr)2

1−(Rr/Lr)2 . (18b)

The relation betweenSz/s0 and the overall strainEz=ln[(Rz2Rz0/Lz0] based on the
full cell length is sketched qualitatively in Fig. 12. At low overall strain,Sz/s0 from
(18a) is far greater than the actual value from the cell. However, the actual solution
peaks and falls (with the cell still deforming in a diffuse manner) until localization
sets in, and then the actual solution merges with the artificially constrained localized
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Fig. 12. Qualitative sketch of the axial stress vs axial strain curves predicted by the constrained localized
solution and by the full cell solution; the transition to localization sets in when the solution for diffuse
plasticity merges with the solution for a localized plastic flow.

solution. This is the transition point, and from this point on, the solution is localized
within the ligament. Localization in the full cell solution is not a bifurcation phenom-
enon. Nevertheless, the transition to localization occurs sharply, and the competition
depicted in Fig. 12 is an aid to thinking about the transition condition.

More accurate representations have been developed by Thomason (1990), who
extensively studied the transition to localization for elastic-perfectly plastic solids
using slip-line solutions. For axisymmetric geometries, he has proposed that the aver-
age normal stress acting on the cell at the onset of localization occurs whenSz

attainsSloc
z where

Sloc
z

s0

5F12SRr

Lr
D2GFaS Rz

Lr−Rr
D−2

1bSRr

Lr
D−1/2G, (19)

wherea=0.1 andb=1.2. This condition is based solely on current geometry. By
comparing this expression with our numerical results for strain hardening materials,
we also find that this expression provides a reasonably accurate estimate for the
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onset of localization within the cells, provided thats0 is replaced by an appropriate
effective flow stress for the matrix,sm (see also Zhang and Niemi, 1995), anda
and b incorporate a dependence on the strain hardening exponentn. The effective
matrix stress,sm, is defined using (4) whereepm andsm are related through the stress–
strain curve given by (17b).

Thus, with attention confined to cases whereSz is the maximum principal stress,
localization is assumed to set in whenSz=Sloc

z where

Sloc
z

sm
5F12SRr

Lr
D2GFa(n)S Rz

Lr−Rr
D−2

1b(n)SRr

Lr
D−1/2G. (20)

The dependence ona andb on n was determined by a fitting procedure for these
coefficients to a large number of our numerical results for localization in the cell at
two n values (0.1 and 0.3). The dependence onn is plotted in Fig. 13, with Thoma-
son’s values forn=0. The coefficientb is almost constant and can be taken as
1.24 while

a(n)50.110.217n14.83n2 (0#n#0.3), (21)

Fig. 13. Variation of the parameters of the coalescence model,a and b, as a function of the strain
hardening exponent.
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which is plotted as the curve in Fig. 13. An extensive set of comparisons useful in
assessing the accuracy of the criterion is presented in Fig. 14(a) forn=0.1 and a
wide range of triaxialities, initial volume fractions and void shapes. Each point has
the coordinates

X5
Sloc

z

sm
F12SRr

Lr
D2G−1

, Y5Fa(n)S Rz

Lr−Rr
D−2

1b(n)SRr

Lr
D−1/2G, (22)

whereX andY are the values computed from the cell model at localization. If (20)
were an exact criterion, all points would lie on the lineX=Y. The extent to which
they fall off the line is an indicator of the error. (The adjustment ofa andb men-
tioned earlier consisted of minimizing, using the least square method, the distance
to the line X=Y, for all the results of Fig. 14(a) taken together.) Selected results
presented in the same manner are given in Fig. 14(b) for cells with various aspect
ratios, in this case all withT=1. Comparisons for the othern value is similar. An
even better test of the criterion is how accurately it predicts the strain at localization,
and selected comparisons will be given later in the paper.

4.2. A model for the post-localization regime

Attention continues to be restricted to localizations that form perpendicular to the
z-direction. Relation (20) still pertains after the onset of coalescence andSloc

z is
replaced bySz, assuming the voids do not depart significantly from a spheroidal
shape. If one makes this replacement and rewrites (20) using the model variablesS,
f, andA in place ofLr, Rr andRz, one has

Sz

sm

5F12S2 exp(S−A)
3f D−2/3G3Fa(n)Sexp(22S)SS2 exp(S−A)

3f D1/3

21DD2

(23)

1b(n)S2 exp(S−A)
3f D1/6G.

(This form can also be used for the localization criterion withSz;Sloc
z .) The

additional equations for the evolution of the state variables during the post-localiz-
ation stage are obtained under the approximation that elasticity, as well as any
reversed plasticity, is neglected. The strains satisfy

Ėr5Ėp
r 5Ėe

r50, Ėp
z5Ėz. (24)

The half-height of the localization zone is approximated asRz (i.e. h=Rz, see Fig.
1). This approximation avoids the explicit introduction of a new variable characteriz-
ing the localization band height, and it is consistent with the use of (20) or (23)
regarding the void shape evolution. It also follows thatṘz=L̇z. Plastic incompress-
ibility gives

ḟ5(12f)Ėz, (25)

and the evolution ofA=ln(Lz/Lr) is also elementary:Ȧ=Ėz. The evolution ofS can
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Fig. 14. Variations ofY as a function ofX, as defined by Eq. (22), for void cells withn=0.1.a andb
have been chosen as to minimize the distance to the lineX=Y for the entire set of void cell computations.
(a) All void cell simulations performed withn=0.1. (b) A zoom in of (a) showing the effect ofl0 for
cells with T=1. LargerX (or Y) means a larger constraint in the intervoid ligament.
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now be determined by differentiating ln(Rz/Rr). Then, with the aid ofṘz=L̇z, (25),
and assuming volume incompressibility, one can obtain

Ṡ5
3
2SS2 exp(2(A−S))

3f D1/3

2
1
3fDĖz (26)

In order to evaluate the average yield stresssm for the matrix material in the localized
band, the average effective strain rateeloc

e is needed. This is obtained from the evol-
ution of the localized band height as

ėloc
e 5

ḣ
h

5
Ṙz

Rz

5S2 exp(2(A−S))
3f D1/3

Ėz. (27)

At the onset of localization,eloc
e =epm, which is known. In the post localization

response,sm is derived fromee using the uniaxial flow curve (17b).

5. Analysis of the full model for void growth and coalescence

5.1. The extended Gurson model for spheroidal void growth

In this section, the model will be completed by specification of the yield function
and flow potential for materials with aligned spheroidal voids. Comparisons are then
made between predictions from the model and those from full cell model compu-
tations. One conclusion uncovered in the analysis of void coalescence is that the
void aspect ratio significantly affects void coalescence, even when the void is initially
spherical. In other words, the void coalescence model cannot simply be coupled to
a damage model based on spherical void growth. The full model must account for
void shape evolution.

Constitutive models incorporating void shape effect have been recently proposed
in the literature (Gologanu et al. 1993, 1994; Ponte Castan˜eda and Zaidman, 1994).
Gologanu et al. (1995) extended the Gurson model, employing a rigorous
micromechanical analysis, considering both prolate and oblate spheroidal voids. The
extension retains a form similar to that of the Gurson model while introducing plastic
anisotropy resulting from the non-spherical void evolution. For such a purpose, the
void aspect ratio,S, comes into play, for which an evolution law is also derived.
The main equations of the extended model for the axisymmetric case are

F5
C
s2

m
(Sz2Sr1hSh)212q(g11)(g1f) coshSk

Sh

sm
D2(g11)22q2(g1f)2, (28)
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Ṡ5(11hShThf)(Ėp
z2Ėp

r )1hSfĖp
kk, (30)

smėpm(12f)5Sij Ėp
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Ėp
ij 5g
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, (32)
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with

Sh52a2Sr1(122a2)Sz. (33)

A description of the terms in these equations follows. The heuristic parameter of
Tvergaard,q, depends onn, S, T, andf0, as specified in Appendix A (see also Koplik
and Needleman, 1988; Perrin and Leblond, 1990; Gologanu, 1997). The phenomeno-
logical energy balance (31) for plastic work originally proposed by Gurson (1977)
is retained in our version. (This equation is not used in the Gologanu et al. model
which assumes perfect plasticity. A more rigorous approach for incorporating harden-
ing has been proposed by Leblond et al. (1995) for the case of spherical void growth).
The parameterg can be interpreted as “the fictitious porosity obtained by replacing
the real spheroidal void by a spherical one with radius equal to the focal distance”
(Gologanu et al., 1995). It is set to zero for prolate or spherical voids. The quantities
C, h, a2, k, g, andhSf are functions ofS and f; hS is a function ofS; hf is a function
of f; hT is a function of the stress triaxialityT and n. The functional dependencies
of these quantities are specified in Appendix A. The Gurson model is recovered
whenS=0. The rate ofS depends on both the deviatoric and hydrostatic parts of the
strain rate tensor. In addition to theq factor retained here, the determination of some
parameters of Eq. (30) is the only part of the model which does not fully emerge
from the micromechanical analysis. It has been calibrated with the aid of numerical
results. One possible extension of this model to arbitrary multiaxial stress states can
be found in Gologanu et al. (1995). We emphasize again that the Gurson model and
its extension introduced here are intended exclusively as a constitutive relation to
be used in numerical (usually finite element) calculations. The additional quantities
introduced above in the extended model do not significantly increase the compu-
tational complexity of the model.

As in the conventional Gurson model, the relation giving the plastic strain rates
as a function of the stress rates is obtained using the consistency condition for plas-
tic loading

Ḟ50 (34)

Isotropic elasticity is assumed. The model is supplemented by the void coalescence
model described in Section 4, relations (23) to (27). In the present work, the model
is integrated numerically using an explicit forward Euler scheme. At each increment
of the calculation the right- and left-hand sides of Eq. (23) are evaluated using the
current values ofS, f, andA, while Lr andLz, required to computeA, are given by

L̇z

Lz

5Ėz and
L̇r

Lr

5Ėr (35)

5.2. Assessment of the full model

Comparisons are now made between the predictions obtained with the full
extended model for void growth and coalescence and void cell simulations. These
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results will provide additional assessment of the void coalescence model. Fig. 15(a–
f) present results forf0=1024 at triaxialitiesT=1 (a–c) andT=3 (d–f) for initial void
shapesW0=1/6, 1 and 6. For each stress triaxiality, the evolution of the effective
stress,Se, the porosity,f, and the void shape parameter,S, are given as a function
of the effective strainEe. A cross on the void cell results indicates the onset of void
coalescence, while a circle indicates the onset of void coalescence predicted by
applying Eq. (20) or Eq. (23) with all the parameters taken from the void cell compu-
tations. (When the model tends to predict a larger coalescence strain than given by
the void cells, the parameters used in (20) coming from the void cells were extrapo-
lated from their values before the onset of coalescence as if the localization did not
happen in the void cells, i.e. as if diffuse plasticity carries on in the cell.) The differ-
ence in strain between the circle and the cross indicates the error resulting only from
the application of the criterion for the onset of coalescence. It is evident that the
criterion for the onset of coalescence is highly accurate regardless of the void shape
(Fig. 15(a, d)). In fact, when Eq. (20) is used together with the enhanced Gurson
model, the error on the prediction of the onset of coalescence mainly results from the
error in computing the porosity and the other parameters with the constitutive model.

At T=1/3 (results not shown), no coalescence is observed at any of the initial void
shapes, and the porosity remains very small such that all the stress–strain curves
essentially coincide with the curve forf0=0. At T=1 and 3, the ductility predicted
by the full model overestimates the value given by the void cells (Fig. 15(a, d)).
This is due to an underestimation of the void growth rate by the model before
coalescence (see Fig. 15(b, e)). The acceleration of void growth which starts around
the peak stress (before localized yielding sets in) is not captured by the extended
model even though theq factor is used. This effect can also be detected in results
by Koplik and Needleman (1988). Void shape evolution is correctly modeled during
the growth phase (Fig. 15(c, f)). After the onset of coalescence, the fidelity of the
model results for shape evolution deteriorates at low triaxiality (see Fig. 15(c) for
T=1), because the localization band is smaller thanRz used in the post-coalescence
derivation in Section 4. Nevertheless, the stress–strain predictions in the post-localiz-
ation regime are quite good, and such predictions are one of the main objectives of
the model. The slope of the stress–strain curve could be reasonably approximated
as being constant after localization to make easier the implementation in a finite
element code (see also Ruggieri et al., 1996; Xia and Shih, 1995a; Gao et al., 1998).

Fig. 16(a–c) presents results for a significantly larger initial void volume fraction:
f0=1022. The results are now given only in terms of the stress–strain curves in the
axial direction for three triaxialities and three initial void shapes. Fig. 16(a) forT=1/3
shows that the full model correctly predicts coalescence for the very oblate void,
and no coalescence forW0=1 andW0=6. (Both the model and the void cell calcu-
lations predict a saturation of porosity with increasing strain.) This is a remarkable
result which would never be obtained from models not incorporating void shape
effects. However, it is important to mention that in cases of small triaxiality, the
predictions of the model are sensitive to small variations inLr0/Rr0. The full model
is not robust at very small stress triaxiality and can only be considered as giving
qualitative predictions, although the coalescence model alone is again very accurate.
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Fig. 15. Comparison between void cell computations and the model forn=0.1,f0=1024, l0=1 andW0=1/6,
1 and 6; (a) effective stress vs effective strain curves,T=1; (b) porosity variation,T=1; (c) void shape
variation, T=1; (d) effective stress vs effective strain curves,T=3; (e) porosity variation,T=3; (f) void
shape variation,T=3.
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Fig. 15. (continued)
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Fig. 15. (continued)
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Fig. 16. Comparison between the axial stress–strain curves predicted by the void cell computations and
the model forn=0.1, f0=1022, l0=1 andW0=1/6, 1 and 6; (a)T=1/3; (b) T=1; (c) T=3.
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Fig. 16. (continued)

At both T=1 and 3, the ductility for the oblate voids is underestimated by the
extended model (W0=1/6). This underestimation results from an overestimation of
the void growth rate for oblate voids when the initial porosity becomes important
(.1022). For all the other cases, underestimation of the void growth rate by the
model before coalescence is observed. At bothT=1 and 3, the onset of coalescence
is adequately modeled by Eq. (20) except forW0=1 andT=3, where a 20% error is
observed. AtT=1, for a highly prolate initial void,W0=6, the post-localization stress–
strain curve predicted by the model is less steep than the cell model result, again
because of the approximation used for the height of the localization zone. AtT=3,
the post-localization model gives excellent results.

Fig. 17 shows one set of results for a high strain hardening material:n=0.3 (at
T=1). Note that the error coming from the void coalescence model alone is evident
for the oblate void. Use of (31) at high strain hardening incurs error (Leblond et al.,
1995). Results of a similar quality have been observed at other stress triaxialities
(T=2/3, 2 and 4) forf0=1022 or 1024 and n=0.1 or 0.3.

Fig. 18(a, b) address the ability of the model to account for the effect of the void
cell aspect ratiol0. The agreement between the extended model and the cell model
calculations is generally quite good both before and after localization, especially at
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Fig. 17. Comparison between the axial stress–strain curves predicted by the void cell computations and
the model forn=0.3, f0=1022, l0=1 andW0=1/6, 1 and 6, atT=1.

large stress triaxiality. The increasing rate of unloading for largerl0 is captured
quite perfectly.

6. Conclusion and perspectives

To conclude, some remarks comparing the present extension with the versions of
the Gurson model currently in use will be reiterated (see Table 1). The new model
only depends on the initial values of the state variable and thus avoids the use of
critical porosities (for the onset of coalescence and for final separation). Three major
advantages accrue: (i) the approach is more fundamental; (ii) prior research, includ-
ing the present, has shown that critical porosities are not material properties but
depend on the stress state; (iii) critical porosities are not easily determined exper-
imentally. The two additional microstructural characteristics of the new model,S0

andl0, can be obtained from the same metallographic analysis performed to ascertain
f0 andL0. The only parameter which has to be tuned in order to reproduce the void
cell simulations is the parameterq (but this tuning has been done once for all, see
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Fig. 18. Comparison between the axial stress–strain curves predicted by the void cells and the model
for various cell aspect ratios at constant void spacing,W0=1, n=0.1; (a)T=1; (b) T=3.
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Appendix A). The incorporation of the void shape avoids the use of the second
tuning factorq2 introduced by Tvergaard (1981, 1990). Although the new version
of the model is somewhat more complex than earlier versions, it does not make use
of more parameters. It enables new issues to be addressed involving the role of
relative void spacing and void shape.

The comparison with the void cell simulations has established that the full void
growth/coalescence model is able to account for variations in all the characteristic
parameters of the representative volume element of Fig. 1: porosity, void shape, cell
aspect ratio, stress triaxiality, for a wide range of matrix flow behavior. The criterion
for the onset of coalescence has been shown to be very accurate for most of the
cases analyzed in this work. Most importantly, behavior at low and large stress triax-
iality are adequately encompassed by the same model.

6.1. Limitations and possible improvements

O Void nucleation. The present work does not discuss void nucleation which plays
an important role in the void process in some materials (e.g. Pineau, 1992). Void
nucleation models could easily be fitted within the present framework.

O Void growth model. Even with theq factor, it has been proved that an acceleration
of the void growth rate before the onset of coalescence is not accounted for cor-
rectly. Indeed, theq factor has been fitted for the initial void growth rate and not
to give the right porosity around void coalescence, which would be a markedly
more ad hoc procedure. The use of the heuristicq factor (or q1 and q2 in the
version of the model by Tvergaard, 1981) is a remnant weakness of the Gurson
model. The void growth prediction could be improved by considering the RVE
as a combination of a porous and a non-porous zone (Gologanu, 1997). The height
of the porous zone is defined such that the confocality assumption used to derive
the model is respected (see Appendix A). The incorporation of more adequate
hardening behavior into the model offers additional room for improvement (see
Leblond et al., 1995; Pardoen and Delannay, 1998a,b). Finally, at very low stress
triaxiality (typically T,0.5), the presence of the inclusion which prevents the
radial contraction of the void has to be accounted for (Fleck et al., 1989; Steglich
and Brocks, 1997; Pardoen and Delannay, 1998a; Siruguet, 2000).

O Onset of void coalescence. For high strain hardening, the significant variation in
a with the strain hardening exponentn is a problem when dealing with materials
presenting different hardening stages. A sounder micromechanical model for
coalescence which incorporates strain hardening would be a welcomed extension
of the present work. A complete coalescence model would also incorporate the
possibility of a microscopic shear localization at an angle like those observed in
plane strain (e.g. Faleskog and Shih, 1997) or 3D computations (Richelsen and
Tvergaard, 1994; Kuna and Sun, 1996). Inhomogeneity in the distribution of cavi-
ties has been shown not to significantly affect void growth (Needleman and
Kushner, 1990). However, a huge effect on coalescence is obviously expected as
void spacing is the most influent parameter. For the time being, material hetero-
geneity can be accounted for in our model, by adjustingLr0/Rr0 to the mean dis-
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tance between closest cavities (Pardoen et al., 1998) and not to the average dis-
tance between neighboring cavities.

O Void coalescence. Accounting for the presence of a second population of voids
in the ligament during the coalescence phase would be necessary to adequately
represent the behavior of many metal alloys (Faleskog and Shih, 1997). The
approximation of a constant height of the microscopic localization band inside
the ligament also requires more detailed analysis.

7. Addendum

During the process of publication, the authors have discovered additional work
by Gologanu (1997), in which he proposes a model (growth and coalescence) which
has many resemblances with the model addressed in this paper.
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Appendix A. The void growth model

The enhanced Gurson model proposed by Gologanu et al. (1995) is based on the
analysis of the growth of a spheroidal void in a finite, perfectly plastic solid with
an outer confocal surface subjected to homogeneous straining. For mathematical con-
venience, the model is not expressed in terms off andS, but mainly in terms of the
inner and outer eccentricity,e1 ande2, which are uniquely related tof andS by the
following equations,

e15!1−
1

exp(2|S|)
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The parameters used in the models (28)–(33) are expressed in termse1 ande2:

g50 “ p”, (A3a)
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The heuristic factorq in (28) reflects limitations of the model to properly account
for interaction between cavities. The following expression forq is used:

q5tan−1(4(2.52T))|b(S, f, n)−1
p |1b(S, f, n)

2
1

1
2
, (A15)

with

b511(0.65521.75n20.5334Îf) S1
2
1

tan−1(2(1−2))
p

(A16)

20.0288e−1.08(0.2+s)D
The last expression is valid forS.22, f,5×1022 (and thus not for penny-shape
cracks). This equation is a good fit of a large number of values ofq obtained by
adjusting the void growth rates predicted by the model to the void growth rates
predicted by void cell computations in the early stages of straining. A unique equ-
ation for q presenting continuous derivatives with respect to the state dependent
variables was deemed attractive for numerical integration. The necessity of decreas-
ing the value ofq for increasingn has already been discussed by several authors
(e.g. Koplik and Needleman, 1988; Sovik and Thaulow, 1997). The effect off on
q was addressed by Perrin and Leblond (1990) for the case of perfect plasticity and
by Sovik and Thaulow (1997). The latter authors also analyzed the effect ofT on
q. Elongated prolate voids give rise to a value ofq<1 for all values ofn. This is
consistent with the Gurson model for cylindrical voids, exact in that case, and which
requiresq=1.

Finally, hT has been adjusted to give the best predictions for the void shape rates
at the two strain hardening levels (only valid forT,4):

hT5120.555T220.045T410.002T6, n50.1 (A17)

and
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hT5120.54T210.034T420.00124T6, n50.3. (A18)

The functionhT for n=0.1 is close to the one proposed by Gologanu et al. (1995)
for perfect plasticity.
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