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ABSTRACT 

Mode I steady-state crack growth is analysed under plane strain conditions in small scale yielding. The 
elastic-plastic solid is characterized by a generalization of JZ flow theory which accounts for the influence 
of the gradients of plastic strains on hardening. The constitutive model involves one new parameter, a 
material length 1, specifying the scale of nonuniform deformation at which hardening elevation owing to 
strain gradients becomes important. Gradients of plastic strain at a sharp crack tip result in a substantial 
increase in tractions ahead of the tip. This has important consequences for crack growth in materials that 
fail by decohesion or cleavage at the atomic scale. The new constitutive law is used in conjunction with a 
model which represents the fracture process by an embedded traction-separation relation applied on the 
plane ahead of the crack tip. The ratio of the macroscopic work of fracture to the work of the fracture 
process is calculated as a function of the parameters characterizing the fracture process and the solid, with 
particular emphasis on the role of 1. 0 1997 Elsevier Science Ltd 

Keywords : A. crack tip plasticity, B. elastic-plastic material, A. fracture, A. fracture toughness. 

1. INTRODUCTION 

The first part of this paper addresses the role of plastic strain gradients in elevating 
the tractions ahead of the tip of a sharp crack advancing under steady-state conditions. 
An extension of incremental plasticity theory which incorporates a dependence of 
hardening on both plastic strains and strain gradients is employed to characterize the 
solid. A new constitutive length parameter, 1, is added to the standard set of parameters 
characterizing the elastic-plastic solid : the Young’s modulus, E, Poisson’s ratio, v, 
tensile yield stress, by, and strain hardening index, N. Gradient effects become impor- 
tant when the scale of nonuniform straining becomes of order 1. The problem solved 
in Section 4 is for small scale yielding. The traction distribution near the crack tip is 
obtained in terms of the remotely applied intensity field. No near-tip fracture criterion 
is imposed on the solution. 

By contrast, the second part of the paper, in Section 5, makes use of the strain 
gradient constitutive relation in a fracture model that embeds a prescribed traction- 
separation behavior on the plane ahead of the crack tip to simulate the fracture 
process. Computations based on the embedded fracture process zone model (the EPZ 
model) provide the relationship between the steady-state macroscopic work fracture 
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and the work of the fracture process. The focus of this part of the study is the interplay 
between the new constitutive length parameter I and the maximum separation traction 
required by the fracture process. 

Motivation for exploring the effect of plastic strain gradients on crack tip tractions 
derives from deficiencies based on conventional plasticity theory, coupled with recent 
developments in the strain gradient theory suggesting that more realistic predictions 
may be enabled by the theory. The deficiencies concern the maximum stress levels 
attainable ahead of a growing sharp crack surrounded by a plastic zone. According 
to results from conventional plasticity for growing plane strain cracks in mode I, the 
maximum normal stress that can be attained ahead of the tip is about 2.6 times the 
initial tensile yield stress rrY, if the material is elastic-perfectly plastic (Drugan et al., 
1982). Strain hardening gives rise to a stress singularity, but numerical studies for 
growing cracks in conventional elastic-plastic solids indicate that this singularity must 
be exceptionally weak. For relevant distances ahead of the tip, the maximum normal 
stress never exceeds about 4, or at most 5, times cry, depending on N. Maximum crack 
tip tractions this low present a “paradox” for fracture occurring by cleavage or 
decohesion at the atomic scale (Bagchi and Evans, 1996). Atomic separation requires 
traction levels on the order of the theoretical lattice strength (roughly E/30), which 
for most metals is more typically on the order of 100, or more. Thus, conventional 
plasticity theory predictions would appear to rule out a fracture mechanism based on 
atomic separation whenever a well developed plastic zone surrounds the crack tip. 
The “paradox” pertains as well to crack propagation along strong metal&ceramic 
interfaces where similarly low normal interface tractions within the plastic zone are 
predicted. 

Several proposals have been put forward to justify higher crack tip stresses. When 
the crack velocity is sufficiently high and material rate effects are taken into account, 
a robust elastic singularity within the plastic zone re-emerges, and traction levels 
required for lattice separation arise (Freund and Hutchinson, 1985). This description 
only applies to cracks running at high speeds. It does not explain how cracks are able 
to propagate quasi-statically when atomic separation is the fracture mechanism. 
Recent experiments on metalceramic interfaces (Elssner et al., 1994; Bagchi et 
al., 1994; Bagchi and Evans, 1996) have provided detailed evidence of quasi-static 
propagation of interface decohesion cracks in the presence of substantial plasticity in 
the metal. Another approach, pursued most recently by Suo et al. (1993) and Beltz, 
et al. (1996), employs a model which excludes plasticity within some distance D from 
the crack tip. In this way, an elastic stress singularity exists at the tip, enabling the 
normal traction to attain levels necessary for lattice separation at distances on the 
order of an atomic spacing from the tip. A difficulty with this type of model, which 
will be more evident shortly, is the retention of conventional plasticity to describe 
material deformation outside the elastic exclusionary zone. We will argue that a 
consistent application of this class of model may require the use of an enhanced 
plasticity model such as the strain gradient plasticity employed in the present study. 

Experimental evidence for elevated flow stresses due to nonuniform plastic straining 
at small length scales has come from several sources. Indentation tests (Stelmashenko 
et al., 1993 ; Ma and Clarke, 1995 ; Poole et al., 1996) of several metals have revealed 
that elevations in measured hardening set in when the size of the indentation is smaller 
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than about 10-20 pm, and elevations by factors of 2 or 3 have been observed for 
indentations as small as about 1 pm. Torsion tests on fine copper wires (Fleck et al., 
1994) similarly reveal factors of 3 in elevation of effective flow stress for the thinnest 
wires tested (12 pm diameter) compared to the thickest tested (120 pm diameter) at 
corresponding strains. The material length parameter, 1, which will be defined precisely 
in the next section, was inferred to be about 4 pm based on the wire torsion data for 
copper. The physical basis of strain gradient plasticity (Fleck et al., 1994) derives 
from geometrically necessary dislocations generated by gradients in plastic strain. 
When the gradient of strain become large enough compared to the strain, the density 
of geometrically necessary dislocations becomes comparable to the density of dis- 
locations generated by the strain itself (referred to as statistically stored dislocations). 
It is then that the effect on flow stress of the gradient in plastic strain becomes 
important. Given the significance of flow stress elevation in both wire torsion and 
indentation at scales below about lo-20 pm, it seems highly plausible that similar 
effects should prevail at the same scale at the crack tip. It is this reasoning that 
underlies the present study. 

The first problem to be addressed is depicted in Fig. 1. It shows a semi-infinite 
crack propagating in steady-state under small scale yielding in plane strain conditions 
in a homogeneous elastic-plastic solid. The strain gradient theory of plasticity used 
to characterize the solid is specified in the next section. The remote field, which is 
unaffected by gradient effects, is prescribed to be the classical elastic mode I solution 
with an r-l,* dependence and the stress intensity factor K as amplitude. An active 
plastic zone surrounds the tip, followed by a wake of elastic unloading with residual 
plastic strain and stress. A useful reference estimate of the half-height of the plastic 
zone is 

/active 
plastic zone 

Fig. 1. Steady-state crack growth in small scale yielding. 
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R,=$ 
OY 

(1.1) 

Apart from the new material constitutive parameter I, Rp, or some multiple of it, is 
the only length quantity in the first problem. Dimensional considerations dictate that 
the form of the solution, for the stresses, for example, is 

(1.2) 

where the barred quantities are dimensionless functions of the arguments listed. The 
aim of the first part of the paper is to reveal the dependence on i/R,, with primary 
emphasis on the tractions on the plane ahead of the tip. 

The present study appears to be the first to investigate plastic strain gradient effects 
on growing cracks and fracture toughness. Studies of stationary cracks within the 
context of strain gradient plasticity have shown a significant dependence of the near- 
tip stress distribution on the mode of loading and the class of strain gradient solids. 
The simplest class of solids, designated as couple stress (CS) solids in the next section, 
depend only on strain gradients which derive from rotation gradients (deformation 
curvatures), and this class falls within the category of couple stress theory. Stationary 
mode III cracks (Schiermeier et al., 1996) in the CS solid display a substantial elevation 
of the shear traction ahead of the tip, as compared to the tractions predicted for the 
conventional plastic solid. By contrast, stationary mode I cracks (Xia and Hutchinson, 
1996; Huang et al., 1997) in the CS solid hardly experience any elevation in normal 
traction ahead of the crack tip. The behavior difference between these two modes 
arises because the asymptotic near-tip field for the mode I problem in the CS solid 
turns out to be irrotational. Rotation gradients vanish to lowest order, thereby 
producing no appreciable hardening or traction elevation. On the other hand, rotation 
gradients are inescapable in the mode III problem, significantly altering near-tip 
tractions. When both stretch and rotation gradients are incorporated in the constitutive 
response of the solid (labeled the SG solid in the next section), significant traction 
elevation near the tip due to strain gradient hardening occurs as well for the stationary 
mode I crack (Schiermeier and Hutchinson, 1996). The SG solid will be used in this 
paper in the study of steady-state crack growth and in conjunction with the EPZ 
model of steady-state fracture toughness. 

2. CONSTITUTIVE RELATION : STRAIN GRADIENT PLASTICITY 

The study is carried out within the context of the small strain framework. The 
version of strain gradient plasticity proposed by Fleck and Hutchinson (1997) is 
used, and this section draws heavily from that reference. Following those authors, a 
deformation version of the theory is specified first. This is a small strain, nonlinear 
elasticity which incorporates an isotropic dependence on the strain gradients. This 
version is then rendered to incremental form by identifying a yield surface and 
postulating normality of plastic flow. The result is a generalization of the widely used 
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JZ flow theory of plasticity. When strain gradients are sufficiently small, the constitutive 
relation reduces to J2 flow theory. Thus, for example, the plasticity in the outer part 
of the plastic zone will be only slightly affected by gradient effects. The material 
becomes fully characterized when the uniaxial tensile stress-strain behavior and the 
material length parameter 1 are specified. The constitutive law, as posed, expresses 
increments of strains and strain gradients in terms of increments of the stress quan- 
tities. For almost any problem whose solution employs a displacement-based finite 
element method, such as the present solution method for the crack problems, it is 
essential that the constitutive relation be inverted analytically. Numerical inversion 
would be far too inefficient. Thus, a major objective of this section is to present the 
inverted form of the incremental constitutive law. 

2.1. Defbrmation theory 

With ui as the displacements, E,, = i(~~,~ + u,,~) is the strain tensor and qjrk = u,ik = I.+,~, 
is the tensor of second gradient of displacements. The latter can be expressed in terms 
of the gradients of strains as qijk = &jk,i+&ikj-cij,k. An incompressible solid has &kk = 0 
and q&k = 0. Let E:, = E,, -fdi& be the strain deviator. Let $ = f(bi&,p + djkjki/,pp) be 
the “hydrostatic” part of q, which vanishes for incompressible deformations, and let 
q’ = q - qH be the deviator. Consider the invariant E of the strains and strain gradients 
defined by 

E’ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.1) 

Under uniform strain, E is the von Mises strain invariant. The coefficients ci have the 
dimension of length*. For incompressible deformations of isotropic, centro-symmetric 
solids (2.1) is the general combination of quadratic invariants of the strains and strain 
gradients (Toupin 1962 ; Mindlin, 1964). 

The deformation theory is based on the measure E. Through this measure, the 
strain gradients as well as the strains contribute to the energy of deformation and, 
therefore, to the level of stress. Following Fleck and Hutchinson (1997), this measure is 
expressed in two other ways. First, introduce the Smyshlyaev-Fleck (1996) orthogonal 
decomposition of the strain gradient tensor : 

(2.2) 

where qc4) = qH and, here, qcn is used to replace the notation q’(‘) (for I = 1,3) 
employed in the earlier references. The decomposition is given in the Appendix. 
Expression (2.1) can be recast as 

(2.3) 

where the length parameters I, are related to the c:s by 

1: = c*+cj, 1; = c,-;c,, 1: = ;c, +c*--fCs. (2.4) 

In the form (2.3), it is obvious that the measure is positive definite if all the 1, are 
nonzero. To obtain the third form, it is noted that for incompressible deformations the 
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last two invariants in (2.3) can be expressed in terms of the invariants of the gradient 
of the rotation (Fleck and Hutchinson, 1997). With rotation as 0, = ieijkukJ, e;lk as 

the permutation symbol, and xij = ei,, = eiPk& as the rotation gradients, 

(2.5) 

Thus, an equivalent alternative expression to (2.1) or (2.3) is 

E2 = ~~;~~:~+I~~]j,~j!k)r(;~+ (;I; +~Z:)x:jx;,+(;l; -;Z;)X;~X;~. (2.6) 

The following two combinations of the length parameters were designated as being a 
couple stress solid (CS) and a strain gradient solid (SG) by Fleck and Hutchinson 
(1997) : 

cs: 1, =o, /,=;I, I,=&, 

SG : I, = 1, 1, = ;I, I, = A 1. (2.7) 

These two particular combinations were discussed within the context of stationary 
crack problems in Section 1. The SG solid will be used in the present study. It should 
be emphasized that the relative weight of the second term in (2.6), which incorporates 
the stretch gradients, to the third term involving only rotation gradients remains to 
be tied down by an appropriate set of experiments. The formulation for the CS solid 
can be framed within a restricted class of theories (couple stress theory), which 
depends only on the components of v due to rotation gradients. 

Let rrij be the symmetric second order stress tensor and rrjk = Tjik the higher order 
stress tensor such that the work increment per unit volume associated with an arbitrary 
variation of the displacements is 

6 w = G,6E,j + ~ij&,. (2.8) 

With W(E, q) as the energy density function, 

(2.9) 

In the strain gradient deformation theory that generalizes J, deformation theory, W 
is taken to be a function of E, together with contributions from &i and ?$~~~~ to 
account for compressibility. The functional dependence is chosen to reproduce a 
specified uniaxial tensile stress-strain curve. 

The principle of virtual work reads 

s 
[a$&,, + zijkhr],,] d V = /V I /s ri(Dbui)dS, (2.10) j&d, d V+ tick, dS+ 

Y 

where d V and dS are the volume and surface area elements, J is the body force per 
unit volume, t, is the surface traction and ri is the double stress traction. At the surface, 
the gradient of any quantity y is decomposed into tangential and normal components 
according to 

Y,~ = Di~+n,Dy with D() E nj(),j and Di() 3(6ij_ninj)(),j. (2.11) 
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Equilibrium equations and relations between the tractions and the stress quantities 
which follow from the principle are 

flik,i - zzjk,i, = -fkr (2.12) 

tk = n,(o& - $j) + n,nj~ij@,n,) - Dj(flirf,k) and Yk = n;n,zijk. (2.13) 

Line loads along surface edges are omitted here (cf. Fleck and Hutchinson, 1997). 

2.2. Flow theory 

The incremental, or flow, theory which follows (Fleck and Hutchinson, 1997) has 
the property that it coincides with the deformation theory specified above for restricted 
classes of stress histories corresponding to proportional loading. This flow theory 
satisfies the fundamental requirements of stability and convexity, as shown in the 
reference just cited. 

Let o:, = ci, -f 6ija,, be the stress deviator. Let 7I;“k’ = z& = :(6jkz,,, +hjk~& be the 
“hydrostatic” part of z, with z’ = z - 7” as the deviator. Decompose z into the four 
mutually orthogonal tensors ,(‘) as in (2.2). 

The elastic strain energy density of the solid is taken to be 

’ 
2(1 +v)(l-2v) 

E;;]+N: [t, @‘&$]. (2.14) 

The length scales 1,~:~ (I = 1,4 ; where Z, has the dimension of length and the @ are 
dimensionless) characterizing the strain gradient energy contribution in the elastic 
range are adopted to ensure a positive definite energy density. They are not present 
on the basis of any physical grounds at the scales of interest for plastic strain gradient 
phenomena. These length scales must be chosen sufficiently small such that they have 
essentially no influence on any solution for which plastic strain gradients dominate 
elastic strain gradients. For elastic deformations, it follows from (2.9) that 

where 
6,, = Li,k,&k, and 7ijk = Ji,k/nm ‘l/mm, (2.15) 

E 2v 4 

L,kl = ___ 
2(1 +v) 

di,d,, + 6,/h,, -I- (1 _ 2v) dijdkl 1 and Jijklmn = ?-El,2 IF, do2 T$Lt. 

(2.16) 

The isotropic projection tensors T’” are specified in the Appendix. They share the 
indicial symmetries: T$,m,, = T(? ,rklmn 

= T’” 
t/kmln = Tt!n,,k and are defined such that for 

any tensor q with indicial symmetry q,,k = qjik (Smyshlyaev and Fleck, 1996) 

T!jA.=~(~+~) orr# = Tjjnk,,,,nq,mn forI= 1,4. (2.17) 

Identical connections pertain for T(I) and 7. The projection tensors satisfy 

T’” r/klmn T’” ,,,,,,ppqr = 0 for Z # J, 

= T!” ,]kpsr for 1 = J. (2.18) 
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The inverse elastic relations are 

&ij = Mijklokl and rijk = Kijk,mn~/mnr 

where 

(2.19) 

’ + v&-6,, + 6,6,,) -v&j&, 2 1 and Kij/+,n = __ K;o-’ T’? 
i~kklmn. (2.20) 

An effective stress quantity C generalizing the von Mises stress, cre = J3a:,a:i/2, is 
defined in terms of the deviator stress quantities as 

where II&‘) = Z, (I = 1,3) are the length quantities associated with the plastic strain 
gradients introduced in (2.3). Take I to be the largest of the Z,, all of which are assumed 
to be nonzero. (The CS solid in (2.7) is a degenerate limit of the present theory. It 
must be considered within the more restrictive couple stress formulation (cf. Fleck 
and Hutchinson, 1997).) The yield surface in this generalization of J2 flow theory is 

aqc,y) =X-Y, (2.22) 

where Y is the current effective tensile flow stress. 
Plastic loading requires X = Y and 2 > 0. Normality of plastic flow for any plastic 

loading increment requires 

. 
(2.23) 

The hardening rate h(C) is defined by data from a uniaxial tension test, which for the 
above reduces to B* = &/h(o). Thus, the dependence of h on C is identical to its 
dependence on ge in conventional J2 flow theory. The plastic work rate is 
aij8F+rijklj$ = X$/h(X), and an effective plastic strain rate can be defined which is 
equal to e//z(X) (Fleck and Hutchinson, 1997). Explicit expressions for the total rates 
of strain and strain gradient in a plastic loading increment follow from summing 
elastic contributions from (2.19) and plastic contributions from (2.23). They are 

9 13 3 
8, = 

i,‘fijk, + __ 4hX* ff’d 
t, kl 1 [ @k/+ F -a; c do-‘&, 2hCZ fk),,, 

I= I 1 
lC(n-25@ 1 b,, + - 1 [ z”i&/k,,,,,, 

Z4 

Kw m 1 . T/PI” ~lmn (2.24) 
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The steps for constructing the inverse to (2.24) are outlined in the Appendix. The 
result is 

where, as before, (TV = ,/m, p = E/[2(1 +v)] is the shear modulus, and 

1+ (2.26) 

The inverse does not exist in the limit Z, -+ 0, or when any of the @ are zero. The 
limit in which the solid is rigid in its higher order elastic moduli must be considered on 
its own merits, akin to the approach to rigid-plastic solids in conventional plasticity. 

A piecewise-power law tensile stress-strain curve will be used to characterize the 
solid in the crack growth problems such that 

E = u/E for c d by, 

= (fly/E)(~/~y)“N for cr > fry. (2.27) 

The corresponding hardening rate function is 

1 
- = 0 
h 

for C d cry, 

=i[k(Er-“‘“-11 forC > fJy (2.28) 

3. NUMERICAL FORMULATION FOR STEADY STATE 

3.1. Iteration scheme 

The solution scheme for the steady-state small scale yielding problem of Fig. 1 is 
similar to that developed for conventional flow theories of plasticity by Dean and 
Hutchinson (1980) and Parks et al. (1981). In outline, it is as follows. 

Anticipating a numerical implementation, let E be a generalized strain vector with 
components comprised of both the strains and the strain gradients, and let X be the 
stress vector containing components of d and 2. Denote the plastic strain vector 
comprising the components of sp and #’ by EP. The matrix of incremental moduli for 
plastic loading is denoted by D such that 2 = Dfi ; the corresponding elastic matrix 
of moduli is denoted by D”. The solution employs iteration. In each iteration, the core 
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procedure is the finite element solution for the displacements, strains and stresses 
assuming that the plastic strain distribution EP is known. In notation standard to the 
finite element method, let U be the vector of nodal displacements and let B be the 
strain matrix such that E = BU. The finite element problem for U in terms of applied 
boundary forces F (the remotely applied tractions) and any specified EP is represented 
in the standard notation as 

K’U = IsNTFdS+IVBTDeEndV where K’ = jVBTDeBdV. (3.1) 

The iteration steps are as follows : 

(1) 

(2) 
(3) 

Use the distribution of EP from the previous iteration in (3.1) to determine U. 
In the first iteration take EP = 0. 
Compute E from U. 
Obtain a new estimate of the distribution of Z. Use E = D”E in the region 
where Z < cY outside the active plastic zone and outside the wake. Elsewhere, 
make use of the fact that for steady-state growth in the x, direction, 2 = DE 
can be replaced by %/8x, = DaE/ax, such that 

s 

x7 
W, > x2) = we, x2) - D aE/dx, dx,, (3.2) 

XI 

where (XT, x,) is any point on the leading edge of the current active plastic zone, 
i.e. where C = cry. The integration in (3.2) is performed for fixed x2 and applies 
to all points to the left of the leading edge. 

(4) Use EP = E-De-‘E to compute the new estimate of EP for the next iteration. 
(5) If satisfactory convergence has not been achieved repeat steps (l)-(4). 

3.2. Choice of element 

A discussion of some of the numerical difficulties surrounding the choice of finite 
element has been given by Xia and Hutchinson (1996) with emphasis on stationary 
plane strain cracks in the restricted class of CS solids. In the present study, nine- 
noded isoparametric elements were employed with four Gauss integration points in 
each element. The mesh was designed to facilitate the integration along streamlines 
in (3.2). 

3.3. Computation of traction on extended crack plane 

In the higher order theory, the stress quantities riik contribute to the tractions. The 
components of the traction vector t, the force per unit area given by (2.13), acting on 
the plane directly ahead of the crack tip, x2 = 0, are 

tk = ~2k-2T2,k,I -T22k,2. (3.3) 

For mode I fields which are symmetric about the crack plane, tl = 0 and 

t2 = 622 -272,2,, -7222.2. (3.4) 
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The normal traction ahead of the crack tip requires evaluation of the derivative of 
zZIZ and rsZ2, presenting a particular challenge for accurate numerical computation. 
An alternative to using (3.4) is obtained by noting from the principle of virtual work 
(2.10) that t2 is work conjugate to u2. Thus, t2 may be interpreted as a nodal force at 
nodes along the extended crack plane in the higher order finite element formulation. 
Both (3.4) and the nodal force from the elements have been used to compute the 
distribution of normal traction ahead of the crack tip presented in the next section. 
The two procedures are in good agreement. 

4. TRACTION AND OPENING DISPLACEMENT IN STEADY-STATE 
GROWTH 

The normal traction t, acting on the plane ahead of the crack tip in the small scale 
yielding, steady-state problem in Fig. 1 has the same form noted for the stress 
components in (1.2) i.e. 

(4.1) 

where t; is a dimensionless function of the arguments displayed. The dependence on 
I,.1 is explicitly listed, although its importance is secondary. The quantity R, is defined 
in terms of the remote stress intensity factor K in (1.1). Results for t2/ay as a function 
of x,/R, for the SG solid are plotted in Fig. 2 for a solid with 1,/l = 0.5, E/o,, = 300, 
v = 0.3 and N = 0.1 [Fig. 2(a)] and N = 0.2 [Fig. 2(b)]. In each of the two figures, 
the curve for l/Rp = 0 corresponds to the limit for the conventional J2 flow theory 
solid. The curves for the nonzero values of l/Rp apply to the SG solid. The strong 
influence of strain gradients as measured by l/Rp in elevating the tractions within a 
distance of about R,/lO from the crack tip is evident. Note that at distances further 
out from the tip, the tractions drop slightly below those for the conventional solid, 
consistent with the requirement of overall force equilibrium that the higher tractions 
near the tip be offset by lower values. 

The opening displacement of the crack faces behind the crack tip, 
6 = u2(x,, 0’) - uZ(x,, O-), for the case with N = 0.2 is plotted in Fig. 3. Strain gradient 
hardening reduces the opening near the tip, creating a significantly sharper crack tip. 
It is recalled that the crack tip of a growing crack in the conventional J2 tlow theory 
solid is already quite sharp (Drugan et al., 1982). Boundaries of plastic zones are 
displayed in Fig. 4 for l/Rp = 0.3 along with the boundary for the conventional theory 
(l/RP = 0). Strain gradient hardening has only a minor effect on the size and shape of 
the plastic zone. This is not surprising because strain gradients become important 
only in a small region near the tip, well inside the plastic zone. For N = 0.2, the half- 
height of the steady-state plastic zone is approximately 20% greater than the reference 
quantity RP defined in (1 .I). The thin region just above the crack face along the 
negative x, axis is a zone of plastic reloading. 

All the results in Figs 224 were computed with 1,/l fixed at 0.5. The elastic strain 
gradient contributions were introduced in (2.14) to ensure a positive definite energy 
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0 0.02 0.04 0.06 0.08 0.1 0.12 

I I I I I, I I I I I 
0 0.02 0.04 0.06 0.08 0.1 0.12 

Fig. 2. Traction on the plane ahead of the crack tip in the region where the strain gradients have strong 
influence. (aj N = 0.1 and (b) N = 0.2. The curve for l/& = 0 corresponds to that for conventional Jz flow 

theory. For all curves, ay/E = l/300, Y = 0.3 and I,/1 = 0.5. 

density and an invertible constitutive law. They are not considered to have any 
physical significance for strain gradient plasticity. The relatively minor influence of 
i,J on the traction ahead of the crack tip can be seen in Fig. 5 for the case N = 0.2. 

The distinction between the normal traction acting on the plane ahead of the crack 
tip, fz, and the normal component, az2, is illustrated in Fig. 6, for the cases 2/Rp = 0.1 
and 0.3 with 1,/l = 0.5 and N = 0.2. The difference, owing to -2r212,1 -r222,2 in (3.4) 
is all-important in understanding the role of strain gradient hardening in elevating 
the traction ahead of the tip, i.e. the force per unit area acting on the extended plane 
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K2/EaY 

0 
- 0.5 - 0.4 - 0.3 - 0.2 - 0.1 0 

Fig. 3. Normalized crack opening displacement under steady-state growth for various values l/Rp 
N = 0.2, a,/E = l/300, v = 0.3 and iC/l = 0.5. 
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plastic zone and unloading wake for J2 flow theory (l/Rp = 0) and for the 
l/R, = 0.3, in each case with N = 0.2, cry/E = l/300, v = 0.3 and le/l = 0.5. 

SG solid with 

of fracture. The component c12 is not elevated by gradient effects, and, in fact, is 
slightly diminished. The larger l/Rp is, the greater difference between t2 and Q in the 
range plotted. The tractions in the above figures have been computed in two ways, as 
mentioned earlier: using (3.4) with numerical differentiation of r2,2 and rzz2 (the 
contribution from r222,2 is small compared to that from z~,~,,), and using the nodal 
forces as interpreted by the Principle of Virtual Work. Values for t,/o, computed in 
these two ways differ only slightly and would be indistinguishable in a plot such as 
Fig. 6. 
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Fig. 5. The effect of 1,/l on traction ahead of the crack tip for several values of l/Rp with N = 0.2, 
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Fig. 6. Traction t, and stress component (r12 on plane ahead of crack tip for two values of l/Rp with N = 0.2, 
o,/E = l/300, Y = 0.3 and C/l = 0.5. 

5. THE INFLUENCE OF 1 ON STEADY-STATE FRACTURE 
TOUGHNESS 

In this section, the SG solid is taken as the description of the elastic-plastic solid 
in the embedded fracture process zone model (EPZ model) of Needleman (1987) 
and Tvergaard and Hutchinson (1992). In this model, the traction-separation law 
characterizing the fracture process is prescribed as a boundary condition along the 
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Fig. 7. Embedded process zone model for determination of steady-state toughness. The traction-separation 
relation characterizing the fracture process is applied along the plane ahead of the tip and is specified by 

the work of separation TO, the peak traction B and the two shape factors I, = 6,/a, and I, = S,/S,. 

plane ahead of the crack tip, as depicted in Fig. 7. The continuum description of the 
elastic-plastic solid holds everywhere off the extended fracture plane. Heretofore, 
conventional J, flow theory has been used to describe the solid. Attention here will 
focus on steady-state, mode I plane strain toughness under small scale yielding 
conditions. Based on the discussion in Section 1 and the results of the previous section, 
the expectation is for strain gradient hardening to substantially alter the predictions 
of the EPZ model when the maximum traction required for separation, 8, is large. 

The form of the traction-separation law shown in Fig. 7 is exactly the same as that 
employed in earlier studies (e.g. Tvergaard and Hutchinson, 1992). However, within 
the context of the higher order theory, it is tZ, not az2, that is work conjugate to the 
crack opening separation 6 = uz(xl,O+) -u,(x,,O-). Thus, in the present version of 
the EPZ model, the relation between t2 and 6 in Fig. 7 is prescribed as the condition 
along the plane ahead of the crack tip (i.e. on x2 = 0 for x, > 0). The work of fracture 
per unit area, To, is related to 6 and 6 by 

s 

6, 
l-0 = t2 d6 = ;a&[1 +&-A,], (5.1) 

0 
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where A, = S,/S, and 2, = 6,/S,. Inspection of the principle of virtual work in (2.10) 
reveals that a contribution from the double stress component r, working through u~,~ 
along the plane ahead of the crack could also be incorporated into a generalized 
traction-separation law (a contribution from r2 vanishes by symmetry). We have 
chosen not to include any contribution from r,. Because no constraint on u,,~ along 
x2 = 0 is imposed, r, = 0 is a natural (dynamic) boundary condition enforced by the 
variational solution process. 

The numerical method discussed in Section 3 applies to the steady-state problem 
for the EPZ model as well as the first problem. Now, however, the iteration scheme 
must satisfy the traction-separation relation ahead of the tip and must adjust the level 
of the remote stress intensity K such that the propagation condition at the tip is met, 
i.e. 

6 = 6, at x, = 0. (5.2) 

The outcome of the calculation is the relation between K,, and the parameters speci- 
fying the fracture process and the SG solid. The results will be presented using the 
equivalent energetic measure of steady-state toughness 

This quantity measures the total, or macroscopic, work of fracture ; Tss--To is the 
plasticity contribution to the work of fracture. Dimensional considerations now give 

where R. is the same reference length used by Tvergaard and Hutchinson (1992) : 

1 
R. = 

ET0 

37c(l-v2) 0; . 
(5.5) 

Other than I and le, R. is the only length quantity in the model. It can be interpreted 
as an estimate of the half-height of the plastic zone in the limit that Tss is only slightly 
greater than IO. Equivalently, it can be thought of as the estimate of the half-height 
of the plastic zone when K = dm is applied remotely. Note that Rp defined 
by (1.1) is precisely (T,,/To)Ro. The nondimensional parameters in (5.4) which have 
the greatest effect on F,,/r, are I/R,, N and 6/a,. The shape factors for the traction- 
separation law, A1 and A2, have been shown from the earlier study to be relatively 
unimportant. From (5.1) it can be noted that the critical separation 6, is determined 
when IO, 6 and the shape factors have been specified. 

The role of strain gradient hardening in determining toughness is seen in Fig. 8 for 
the case of a solid with moderately high strain hardening, N = 0.2. The limiting curve 
for I/R,, = 0 is that for the conventional J, flow theory solid, which is in agreement 
with the result obtained by Tvergaard and Hutchinson (1992) for the same model. 
The effect of replacing the conventional solid by the SG solid in the model is profound. 
Strain gradient hardening elevates the traction ahead of the crack tip, thereby allowing 
higher peak separation stresses to be overcome. The trends displayed in Fig. 8 are 
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Fig. 8. Influence of strain gradient effects on steady-state toughness. Curves of I../Ia as a function of the 
normalized peak separation traction, ajo Y, for various values of l/R,, with N = 0.2, cry/E = l/300, v = 0.3, 
I, = 0.15, A, = 0.5 and 1,/l = O.S. The curve for I/& = 0 agrees with that obtained by Tvergaard and 

Hutchinson (1992) for the conventional J, flow theory solid. 
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% 
Fig. 9. Influence of a small value of l/R, on the relation of T5./IY0 to B/cr, for several levels of strain hardening 
N. The curves for l/R, = 0 are in agreement with those obtained by Tvergaard and Hutchinson (1992) for 

the conventional Jz flow theory solid. (a,/E = l/300, Y = 0.3,L, = 0.15,1, = 0.5 and lc/l = 0.5.) 

seen at all levels of strain hardening. Figure 9 shows the effect of a relatively small 
value of Z/R,, on the steady-state toughness for three levels of strain hardening. The 
effect is greatest at the highest level of strain hardening, but it persists even for the 
case with N = 0. 
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6. CONCLUDING REMARKS 

The trends in Fig. 8 appear to go a long way towards overcoming the limitations 
of the EPZ model discussed in Section 1. Specifically, with values of I/R0 larger 
than about l/2, peak separation tractions well above lorry can be attained. Atomic 
separation of a metal lattice or a metal/ceramic interface typically requires a work of 
separation, To, on the order of several J m-*. Using representative values for E and 
gY in (5.5), one finds values of R,, in the range from about 0.1 to 1 pm. Given that 
experimental data indicate that I is likely to be on the order of a micrometer or more 
[4 pm for annealed copper ; Fleck et al. (1994)], values of l/R0 at least as large as unity 
must be expected for fracture processes based on separation at the atomic scale. By 
contrast, when the fracture process is void nucleation, growth and coalescence ahead 
of the crack tip, the work of the fracture process is approximately To = a,D/2, where 
D is the average void spacing (Tvergaard and Hutchinson, 1992). For the void 
mechanism, typical values of To are of the order of 1 KJ rnm2, R. is a fraction of a 
mm or more and l/R,, is expected to be so small that strain gradient effects will have 
little influence on toughness predictions. 

Plastic strain gradient effects similar to those just described are likely to be com- 
parably important for the Suo, Shih and Varias (SSV) model (Suo et al., 1993 ; Beltz 
et al., 1996). The width D of the elastic region at the crack tip from which plastic 
deformation is excluded in the SSV model is typically on the order of a small fraction 
of a micron when the model is applied to fracture governed by an atomic separation 
mechanism. It is most unlikely that conventional plasticity theory can be used down 
to that scale to model plastic deformation outside the elastic exclusionary zone. It 
seems reasonable to expect that the tractions acting on the elastic strip region will 
attain significantly higher levels than predicted by conventional plasticity. 
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APPENDIX 

Orthogonal decomposition and projection tensors 

Construction of the SmyshlyaevFleck decomposition (2.2) of qrlk = q,a starts with the 
formation of $9 = I$ and q& = v,,~ - $ as in Section 2. I. A fully symmetric tensor qs is 
formed according to 

Then, 

VSik = f [Sl,k + ul;r, + &,I. (A.11 



Inuersion of (2.24) 

Write (2.24) as 

and write its inverse as 

(A. 10) fijk = &jk,mhm + E,k,mb,mn. 

Substitution of (A. 10) into (A.9) gives 

A&k/pq + B,/mEk/mpq = Iij~q 

Ai,k&,qr + Bi,k/mFk,mpqr = 0 

Bijk/mD,pq + C</k,mnE,mpq = 0 

B;,k,,,z&zpqr f Cijk/mnfimnpqr = Itjkpqr (A.ll) 

where the fourth and sixth order identity tensors have been introduced. The third and fourth 
of the above equations give 

E lnmpq = - CGLjkBt+sDrspq 

F /mnpqr = C~&qr - C.Gw&B~jkrsErspqr (A.12) 

where C-’ is the inverse of C. Elimination of E by combining the first of the equations in 
(A. 11) and (A. 12) gives 

(A.9) 

[A i/k/ - Bi/obr Cc&r Blsrk/I Dklpq = Cq. (13) 

The key step in the derivation is the determination of C-‘. This inversion is facilitated by 
the properties of the projection tensors in (2.17) and (2.18) and the fact that the T(” are 
orthogonal to one another. Anticipate that C-’ has a similar form to C defined in (2.24), i.e. 
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(A. 14) 

where d and IX(‘) (I = 1,3) are to be determined. Direct substitution of (A.14) into C’C = Z 
reveals that (A. 14) is valid if 

d = -8(1 +v)E(Z,/Z)~/[HO,~] 

t((O = (Jp/rp)Z (A.15) 

where His defined in (2.26). It remains to solve sequentially for D from (A.13), for E from the 
first equation in (A.12), and, lastly, for F from the second equation in (A.12). The resulting 
tensors are given in (2.25). 


