Sandwich Plates Actuated by a
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J. W. Hutchinson Kagome truss plates have properties that suggest they should be uniquely effective as an
actuation plane for sandwich plates: a Kagome truss plate has in-plane isotropy, optimal
Division of Engineering and Applied Sciences, stiffness and strength, and its truss members can be actuated with minimal internal resis-
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the actuation behavior of these plates are investigated, including internal resistance and
strains resulting from actuation and efficiency of actuation. Single and double curvature
actuation modes are investigated. Contact is made with analytic results for actuation
modes with long wavelengthDOI: 10.1115/1.1778720

1 Introduction Simulations of various periodic actuation modes of these infinite

. . Kagome structures have been performed for a range of member
Recent studies of planar trusses based on the ancient Kago spect ratios. In its most general form, the approach is numerical.
basket weave pattern have shown that these truss plates h& e

many properties that make them desirable for actuation planes 8§alculation requires the formulation of a "super element” rep-
sandwich plates1,2]. In this study, we begin by analyzing the' enting a unit cell followed by the assembly of the complete

actuation characteristics of a single Kagome truss piéig. 1) structure as a union of the super elements. The scaling of the
g 9 : energy required for actuating the unloaded structure with aspect

an_d fccinllcf)w with lgé\factuaﬁont anzlyss ofta sta(rj\d&/wch pla]Ee COMatio of the truss members is investigated. Bending and stretching
prised ot one solid tace sheet and one actuated kagome tace s'%?r%’ns in the members induced by actuation are also determined.

jmq.ﬁg g%gg)g:g%a; ::3:: gg&iigéﬁ)be constructed from the uF r actuation modes with wavelengths long compared to the
cell shown in Fig. 1b). The 120 deg symmetry of the structur mber length, the response computed with the numerical ap-

X L . roach is compared to actuation predicted by an analytical long

ensures in-plane elastic isotropy assuming all the truss mem elength approximation outlined in a previous stydy.
are identical. Here, only solid circular members are considered, 0 ’
lengthL and radiuR. The Kagome-backed solid skin plate can be
constructed from the unit cell depicted in FigcR In the present
study we limit consideration to plates with identical solid circula® Planar Kagome Structure
truss members of length and radiusR both for the Kagome face 5 1 The Planar Kagome Structure. Consider the infinite
and the core. The solid skin thickness is denoted by addition,  5nar Kagome structure shown in Figal having members of
to further limit the number of parameters in the system, we COjinqih | and solid circular cross-sections of radi@sand under-
sider only plates in which both face sheets and the core membggi, . in_plane displacements. The unit cell of such a structure is
are constructed of the same material with Young's mod#us qpqn in Fig. 1b). The members are modeled as Euler-Bernoulli
Poisson's ratiov and yield streswy . The Kagome-backed sand-peams with clamped conditions at each node representing welded
wich plate in Fig. 2 has isotropic bending and stretching stiffnesginis j.e., the displacement and rotational degrees-of-freedom are

The feature of the planar Kagome truss in Fig. 1 that makesye same for all beams meeting at a given nofletuation of any
most a_dvantaggous fpr actuation Is th_e ability to actuate membﬁﬁémber comprises an elongation or contraction of the member by
to achieve arbitrary in-plane nodal displacements with minimal i aine if the member were unconstrained. In other words, the

internal resistance. Among infinite isotropic planar truss Strugeyation straine is equivalent to a stress-free transformation
tures, a pin jointed planar Kagome truss is optimally stiff and; 4in

strong to overall stressing. Although it has kinematic mechanisms,
it is nevertheless able to carry arbitrary states of overall stress2.2 Actuation Methodology. The actuation of beam mem-
Members of a pin jointed Kagome truss can be actudted, bers is modeled via the so-called cut-stress-reweld scheme em-
elongated or shortengdvith no internal resistance, or equiva-ployed by Eshelby in his study of the transformation strains in
lently, with no redundant stresses. When joints are welded, as véllipsoidal inclusions[6]. To actuate a given member, envision
be assumed throughout this paper, actuation of a member dtfes following steps:
encounter internal resistance, but minimally so as will be shown.
Welded joints also suppress the kinematic mechanisms and result’
in a structure with substantial in-plane buckling resistance. These™
and other aspects of the Kagome structure are explored elsewher%,
[1-5]. '
In this study, we aim to explore the details of actuation of the
planar Kagome truss and the Kagome-backed sandwich plate.

Remove the actuating member from the structure.

Allow the member to actuatelongate or contragfreely by
straine.

Place equal and opposite force& wR?e on the ends of the
member to deform it back to its original configuration.
Place the member back into the structure and “weld” it in

place.
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Fig. 2 (a) The Kagome plane and tetrahedral core of the
Kagome plate structure. The solid members are the Kagome
A face members, and the dashed members the tetrahedral core
/ \ members. (b) The Kagome plate structure. (c) The unit cell
/ \ used for the Kagome plate analysis.

/ (apart from rigid-body motiop the problem would be solved in
\ the usual manner by solving the system of equations represented
/ \ ”
(/ \ Now consider periodic boundary conditions represented by
\ ) constraints of the form

\ / aijUjZO. (3)

\ / The details of the actual periodic boundary conditions imposed for
\ / in-plane nodal displacements and rotations are included in the
\ / Appendix. It is important to note that once the appropriate peri-
\ / odic boundary conditions are imposed on thHisplacements/
\ / rotations periodicity of forces/momentss satisfied by the solu-
\ / tion. For the periodic cell in Fig. 3, the forces acting on a node
N 7/ along one edge of the periodic cdltorresponding to internal
) \V/ forces in the structupewill be equal and opposite to those acting
on the equivalent node on the opposite edge, for a displacement
Fig. 1 (a) The Kagome planar truss. (b) The unit cell used for figld which sgtisfies the periodic conditions outlined in _the Appen-
the Kagome planar truss analysis. The dashed lines are the dix. The displacements themselves are not, in general,
outline of the cell. The solid lines are truss members of the unit periodic—we consider, for example, a displacement field corre-
cell. sponding to a constant strain. Thus, there are some cases for
which the strains, forces and moments, will be periodic, but not
the displacements.
To impose these additional conditions, Lagrangian multipliers
2.3 Enforcement of Periodicity. Our goal is to simulate pe- &€ employed. The modified energy functional now takes the

riodic actuations of an infinite structure by modeling the behavid®™™:

of just one periodic cell subject to periodic boundary conditions. 1
Consider the potential energy functional for a periodic cell: o= > Kijuiu;— k?uj —Niajju; 4)
1 The systems of equations resulting from minimization of the en-
o= > Kijuiu;— k?uj (1) ergy functional with respect to displacementsand the Lagrang-

ian multipliers\; are

whereK is the conventional stiffness matrix of the structusds Kiju;=kP+\jay; (5)
the vector of displacements and rotations at the nodes of the struc- _

ture, andk® is the vector of applied nodal forces and moméitts 3;ju;=0. ©)

this situation these correspond to the virtual actuation forces déew consider periodic actuations of the infinite structure. The
scribed earlier If the structure were isolated and unconstrainedctuation forces exert no net force or moment on the structure.
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Now consider a target field of in-plane nodal displacemafis
The aim is to determine how well this field can be recreated by
actuating members of the Kagome structure. Calculate elongations
‘e and displacements via the relations:

=AUl ®)

ﬁi=AijEj (9)

X X X X X where A" is the Moore-Penrose generalized inverseApfalso
called the pseudo-inverse Af [7]. Then,éis the vector of mem-

X X X X X X ber actuations which minimize the squared error betweemd

ud. If there exist multiple vectors of actuations that minimize this
squared errorg is such a vector of minimal lengtfi.e., [¢ is
minimized.

2.5 Example Target Displacement Fields. The simulations

X X X X X X X X X outlined above were run for several target displacement fields. The
objective is to assess the ability of the structure to achieve specific
actuations and to determine the associated energy required and
stresses induced. The periodic cell used for these simulations is
shown in Fig. 3. It contains a total of 100 unit cells. The axes used
for describing the displacements fields described here are the
{-axis and thep-axis shown in Fig. 3. It is important to note that
the target displacement fields are all consistent with the periodic
displacement boundary conditions.

The first target displacement field is described by

s
ul=Age; sm( L_g) ) (10)
Here,A, is an amplitude factog, is a unit vector aligned with the
-axis, andL, the length of the periodic cell in thé-direction.
This target field is a displacement in tiielirection that is every-
where positive except along the edges0 and{=L, of the pe-
riodic cell where it is zero and reaches a maximunfgé, along
the line {=L /2 of each periodic cell. In this case, the displace-
ment field is repeated in every periodic cell. This target field is
depicted in Fig. 4. The Moore-Penrose best-fit actuations for this
displacement field are calculated as described above. For this pe-
riodic cell, the number of nodal displacements in the target field is
640, while the number of members actuated is 600. One would
Fig. 3 The periodic cell used for the planar Kagome truss expect some error between the target and achievable fields, how-
simulations ever the actual displacements differ from the target displacements
by less than 1% of the maximum target displacement. The actua-
tions are quite close to the actuations predicted by the long wave-
length approximation outlined in previous woifld,]. In this long
This means that if the energy functional given @Y above is wavelength theory, the actuation straif, of a member connect-
minimized over the periodic cell, the energy of the infinite strudng neighboring nodes | and J is"™=(ud(x') —ud(x))t, /L
ture is also minimized. Thus, it is possible to simulate the behawheret, is the unit vector parallel to the member and directed
ior of the infinite structure by modeling just the periodic cell withfrom J to | andu,, is the displacement derived from the target
the appropriate boundary conditions. displacement field.
A second target displacement field is described by:

2.4 Calculation of Actuations. The objective is to probe
how effectively the planar Kagome structure can achieve arbitrary T i
in-plane deformations through actuation of its members. To this ul=Ag(e,+ en)Sin(L—) sin .
end, periodic actuation of the structure is simulated as described ¢
in previous sections for actuation of each member in the perioditere,e, is a unit vector aligned with the-axis andL ,, the length
cell, tracking the nodal displacements in a matrix of influencef the unit cell in they direction. This displacement is zero along
coefficients,A. Theijth component of this matrix is thieh dis- all of the edges of the periodic cell and reaches a maximum of
placement resulting from the actuation of ftie member. To gen- Aq(e;+e,) at the center g=L,/2,{=L,/2) of each periodic
erate this matrix, displacements are calculated at each of the nodels The target displacement field can be seen in Fig. 5. The
in the periodic cell resulting from a unit actuation of each membédoore-Penrose best-fit actuations are predicted quite well by the
in that cell. long wavelength approximation. In this example, the maximum

As this simulation is linear, once the matrix of influence coefdiscrepancy between the actual displacements of the nodes and
ficients, A, has been constructed, the displacements of the nodhe target displacements is less than 2% of the maximum target
from actuation of any combination of members is easily computetisplacement. For simulations run for a target displacement field

. (11)
7

as in the same direction, but with a wavelength half of thaitf)
(in both the and » directiong, this maximum discrepancy is less
Ui=Aj; € (7) than 10 7. The critical difference between the two sets of target
displacement fields is that the field described by) with the full
wheree is a vector of member actuations. wavelength has a jump in slope across the boundaries between

654 / Vol. 71, SEPTEMBER 2004 Transactions of the ASME



Fig. 4 The target field described by u I=Aqe,sin(wgL,). The Fig. 5 The target displacement field described by u I=Aq(e;

arrows show the displacement vectors of the nodes. +e,)sin(mf/L)sin(mn/L,). The arrows show the displace-
ment vectors of the nodes.

periodic cells(and, as a result, a jump in actuafofor the dis- identifying the “best” subset of actuation members remain to be

placement field with the half-wavelength, the slope of diSpIaceé'stablished. The behavior of planar Kagome structures with lim-

ment_ IS contlnuogs across per!odlc cell boun(_jarles. . ited numbers of actuation members will be considered in subse-
A final target displacement field of interest is described by quent work

Ug=Pole; (12)

This corresponds to a constant straingfin the £ direction. This 3  Energy of Actuation of Planar Kagome Structure

field is shown in Fig. 6. In this example, the actual displacements . R .

of the nodes match the target displacements almost perfectly—the-1 Energy of Actuation. One of the motivations behind
maximum discrepancy is less thanf0of the maximum target the selection of the Kagome structure for actuation is the desire to

displacement. Note that for this displacement field, the slope fﬂ)@d a structure_ that can be actuated with mlnlma! internal resis-
. . . . : ilance to actuation. Here, we present the total strain energy stored

in"the planar Kagome structure actuated to achieve the target dis-

2.6 Actuation of Selected Kagome Members. In practical placement fields described above. In the limit of a pin-jointed
applications it will generally be desirable to manufacture struécagome structure, actuations can be achieved with no internal
tures in which only a small subset of the members will be actuesistance, although mechanisms will also exjdi, For the
ated. The Moore-Penrose actuation scheme can be applied iKegome structures considered here, simulated with Euler-
similar manner in such cases. This procedure is outlined in S&ernoulli beams welded together at their ends, the energy of ac-
tion 4.4 for the Kagome plate structure. Given a restriction on ttigation is expected to be due primarily to elastic bending of the
number of members to be actuated, systematic procedures eams.
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Fig. 7 The energy of actuation of a beam. The rest of the struc-
ture resists the imposed actuation strain €7, generating an
elastic strain of £€ and an internal force F=¢®EA.

of actuation in this case is therefore 1#2J?EAL, and this is
chosen as the reference energy for each member in the energy
calculations and comparisons below.

Actuation of multiple members does not pose any energy ac-
counting difficulties—the total energy of actuation can be calcu-
lated by adding up the contributions from each individual mem-
ber, with the elastic strain of each member calculated in response
to all the actuations. In some circumstances, the work done by an
individual member may be negative—the actuations of other
members may result in the structure actually assisting, not resist-
ing, an actuation. However, the overall energy of actuation will of
course always be positive. Thus, the relevant energy ratio calcu-
lated for energy comparisons is

#members
2- _78?8?—EiAiLi
~ i=
= #members . (13)

1
El 5 (1)’ EiAL;
=

This energy ratioV is plotted for several slenderness ratios in
Fig. 8 for the target displacement fields shown above. For a struc-

ture with energy storage dominated by bending enéiggan be

Fig. 6 The target displacement field described by u  ;=Aqle,

0.008
0.007 |
The strain energy of actuation is calculated in a straightforwar o AEHE) sine (/L) sine (m/L)

manner depicted in Fig. 7. Consider an actuating member
length L, cross-sectional ared, and Young’s modulu€. The b
imposed actuation strain of' is the strain the member would 0005
undergo if the member were free to actuéifethe structure of- W k
fered no resistangeAs the structure will have some resistance t¢  0.004 |
the actuation, the member will undergo some elastic strain that\ .
denotes®. The axial forceF experienced by the member is then ~ 0.003 ¢
easily calculated af=¢s°EA. The work done by the actuator B
(acting on the structuyeis the work of this axial force acting 0.002 -
through the actuation strain’, —1/2:®TEAL, and it is stored as F

0.008 |-

Ao e sine (m;/[z)

elastic strain energy in the structure. 0.001 A cgz
r 0
3.2 Reference Energy. Now consider the work done by the o L= ‘ A R L
same actuator, undergoing the same actuation sifaibut in this 0 0.001 0.002 0.003 0.004 0.005

case consider the structure to be rigid—that is, consider a strt (R/LY

ture that will completely resist the actuation. This corresponds to

fixing both ends of the member as it is actuated. In this situatiopig, 8 Normalized actuation energy for the target displace-
the total strain of the member is zero, sb+e"=0. The energy ment fields, as a function of  (R/L)?
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035 bending and stretching strains are plotted as a function of slender-
[ ness ratio for the target displacement fields described above. The
03 [ - . maximum actuation straif,,, is used to normalize the induced
; Ao(—e?'en) sing (nG/L,) sine (/L) bending and stretching strains. The relatively larger bending
025 L strains will restrict the levels of actuation due to fatigue.
el i 4 Kagome Plate Structure
'max 02 -
A [ 4.1 The Kagome Plate Structure. Consider a solid face
max 45 [ sheet of thicknesg backed by a planar Kagome structure. Core
X members attach to the face sheet and Kagome plane to form tet-
o4 L rahedral units, as shown in Fig. 2. The Kagome planar members
and the core members have solid circular cross sections of radius
R and are all of the same length As a result, the core thickness
0.08 ¢ A 2 sine (/L) is H.= y273L. While in some applications it may be desirable to
F 0% & use solid face sheets and Kagome planar sheets of different mate-
e — rials, for the purposes of this study we restrict the structure to be
0 001 002 003 004 005 006 007 008  of gne single isotropic material of Young’s ModulBEsand with a
@ R/L Poisson’s ratio ofv=1/3. The unit cell used in this analysis is
shown in Fig. Zc).
0014 The stiffness matrix of the unit ce{Fig. 2(c)) of the Kagome

plate structure is simulated through the use of a composite ele-
ment comprised of beam and shell elements. We model the
Kagome planar and core members as three-dimensional Euler-
Bernoulli beams, with six degrees-of-freedom at each node. The
behavior of the solid plate is simulated via linear shell elements in
S I ) the commercial finite element package ABAQUS|. The in-
Emax 0008 |- A, EZsme (/L) plane behavior of these elements is plane stress, while the out-of-

0012 - AO(EZ*'E;) sine (nG/L ) sine (/L )

001 -

A i plane behavior corresponds with linear plate thef®y, as these
Emax 0008 [ are flat shell elements.
I Since the sandwich plate will generally be subject to applied
0004 transverse loads, the Kagome planar truss in its role as a face
i sheet must carry substantial in-plane loads in addition to undergo-
0002 | ing_ gctuatipn_. For Fhe sandwich pla_te to carry transverse loads
BRI efficiently, it is desirable for the solid and Kagome plane face
sheets to have comparable in-plane stiffness. The in-plane stiff-
0 U b ness of the Kagome planar truss is isotropic, with the relation
(b) 0 001 002 003 004 005 008 007 008  hKapyeen average in-plane strains and the overall stress resultants
RIL given by
Fig. 9 (a Maximum bending strain normalized by maximum £11= s*l(Nlr vNyy), &= S*l(szf vNiq),
actuation strain for the target displacement fields, as a function
of R/L. (b) Maximum stretching strain normalized by maximum £1,=S Y1+ v)Ny, (14)
gfctlu?e/\tLlc-Jn strain for the target displacement fields, as a function with S=EA/(J3L) and »=1/3. Equating the in-plane stiffness of

the solid sheet and that of the Kagome sheet described 4y
leads to the following relation between the face sheet thickness
and member radius:

shown to scale with the slenderness ratio squard, X%, while ¢ R\2
for a statically overdetermined structure, such as a fully triangu- . l(_) (15)
lated sheet\V is expected to be of order unity, independent of the L J3iL

slenderness ratio and whether pin jointed or weld jointed. Thgyis yejation will be used to specify the face sheet thickness for

energy associated with actuation of the Kagome structure 5, \arious member radii used in the examples detailed below.
clearly much smaller than that energy of a fully triangulated truss

grid. The energy associated with actuation of an isolated beam in4.2 Actuation and Periodicity of the Infinite Kagome
a Kagome structure is investigated in work by Wicks and GueBlate.. First consider an infinite Kagome plate structure. The

[5]. For such actuationsV scales linearly with slenderness, withobjective of this section is to probe how well the shape of the
energy equally partitioned between stretching and bending. Ho@#lid face sheet can be controlled by periodic actuations of the

ever, for the target fields considered heféclearly scales as the Members of the planar Kagome face sheet. Actuation is simulated
square of the slenderness via the same cut-stress-reweld scheme outlined in Section 2.2. For

the infinite plate, periodic target and actuation fields are consid-
3.3 Strain Levels Induced by Actuation. As the structures ered and a corresponding periodic cell is adopted for performing
will generally undergo cyclic actuations, investigation of straithe computations. The details of the periodic boundary conditions
levels for fatigue design is also required. One quantity of interefsir out of plane behavior are given in the Appendix. The periodic
is the maximum stretching strain occurring in the structure dboundary conditions, in addition to those suppressing rigid-body
vided by the maximum actuation strain. For a bending controlledotions, are imposed via the use of Lagrangian multipliers, as
structure, this ratio is also expected to scale with slenderness raimwn in Section 2.3, resulting in solutions that show periodicity
squared. Of more interest is the ratio of maximum bending straifi the forces and moments exerted on the boundaries of the peri-
to maximum actuation strain—which is expected to scale lineardic cell.
with the slenderness ratio for bending controlled structures. TheseAs in the planar Kagome case, a simulation is run for a unit
trends are seen to hold in Fig. 9 where the normalized maximwstongation of every member of the Kagome plane. Core members
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Fig. 10 Periodic cell used for Kagome plate simulation

are not actuated. In this case, the vertical displacements of the

nodes of the solid face sheet are assembled into a matrix of inflig- 11 Best-fit displacement field calculated using Moore-
ence coefficient®. Theijth component oB is the vertical dis- Penrose analysis for target field w  “=A,¢%,

placement of théth node of the solid face sheet resulting from a

unit elongation of théth member of the Kagome plane.

The linearity of the theory allows the displacements of the 2m¢
nodes from arbitrary actuatio@longation or contractionof any Wd:AOez sin( —) (20)
combination of members to be calculated easily oeis L,
assembled: whereL, is the length of the unit cell in th¢-direction. This

displacement field has zero displacement along two edges of the
wi=Bi;€; (16) periodic cell, corresponding =0 and/=L,. Along these same
wheree is the vector of member actuations awdthe vector of €dges, the slope in thedirection takes the value of2Aq /L, .
vertical displacements of solid face sheet nodes. This displacement field takes on a maximum valueohoe, at
Now consider a target field of the vertical displacements of tHe=L¢/4 and{=3L /4. The achievable displacement field shown
solid face sheet displacement fistd. We wish to determine how ' Fi9: 12 again matches the target field. . .
well this field can be recreated by actuating members of theONe final target displacement field of interest is described by
Kagome plane. The Moore-Penrose generalized inverse is em- 2 27y
ployed in a similar manner as before to calculate elongaféons Wd:Aer sin( L_) sin( 3 ) (21)
and displacement® via the relations ¢ K
~ Note that, unlike the previous target displacement fields, this field
& =Bw/ (17)  involves a nonzero Gaussian curvature of the solid face sheet. The
achievable field shown in Fig. 13 also matches the target field.

Wi =Bj¢ (18) . ,

4.4 Comparison With Long Wavelength Theory. The
whereB' is the Moore-Penrose generalized invers@oHere,&  best-fit actuations for the displacement fields described above
is the vector of member actuations which minimize the squaré@dve been compared with the actuations predicted by the long
error betweerw andw?. As before, if there exist multiple vectors wavelength approximation outlined in previous wofk]. In this
of actuations which minimize this squared eri@is such a vector long wavelength theory, the extensional straih, of a member is
of minimal length. e’ =—Hx st t; wherew is the curvature tensor associated with

4.3 Example Target Displacement Fields. The simulations V_"d (kS5=w",p) andt, is the unit vector specifying the orienta-
outlined above were run for several target displacement fields. T#@n of the member. _ _
periodic cell used for these simulations is shown in Fig. 10. |t Meémber actuations calculated via the Moore-Penrose analysis
contains a total of 64 unit cells. The axes used for describing tffgf the case of constant curvature agree well with actuations pre-
displacements fields described here are the sames andy-axis  dicted by the long wavelength theory. As this is a displacement
used in the planar Kagome examples. It is important to note tHigld with infinite wavelength, the agreement is not surprising.
the target displacement fields imposed are all consistent with #hstuations for the simulation corresponding to the sinusoidal dis-
periodic displacement boundary conditions described in the Ap-
pendix. As in the planar Kagome examples, the displacements
themselves are not, in general, periodic, while the stresses, stre
and curvatures are periodic. Here we consider, for example,
displacement field corresponding to a constant curvature—the
ternal forces are periodiéwith periodicity size of the periodic
cell), while the displacements are clearly not periodic.

The first target displacement field is described by Fig. 12 Bestit displacement field calculated using Moore-

. . d_ ;
wi= A%, . (19) Penrose analysis for target field w Age,sin(@m il Ly

Here, the displacement corresponds to the vertical displacement of
the nodes of the solid face sheet corresponding to a state of ¢
stant curvature ok, = 2A, with Aq as the amplitude factor argj
the unit vector perpendicular to the plasdigned with thez-axis).
The Moore-Penrose best-fit actuations for this displacement fie
are calculated as described above. The achievable displacen
field is shown in Fig. 11—only the achievable field is shown, as
is indistinguishable from the target field. There are 384 membe
that are actuated in this simulation and only 209 target nodai
displacements. However, the rank®fis only 194, so itis inter- gjg 13 Bestfit displacement field calculated using
esting that the achievable field is so close to the target field. Agore-penrose analysis for target field w 9= Age, sin (27 ¢/ Ly
tuation energy and strains will be discussed in Section 5. Xsin (27 5/ L,). The faceting of the solid sheet is an artifact of
The second target displacement field is the plotting—the actual shape of the solid sheet is smooth.
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placement field(20) are also predicted well by the long wave-
length theory. This displacement field has a wavelength of eigl
unit cells. Actuations were also calculated for a sinusoidal dis
placement field with a wavelength of only four unit cells:

. _[Am¢

w=Aye, sinl —|. (22)
L,

The actuations predicted by the long wavelength theory sho

more discrepancy in this case, as would be expected, but the la

est actuation strains are not in major disagreement.

4.5 Actuation of Selected Kagome Members. As a practi-
cal matter, it will usually be the case that only a small subset ¢
the Kagome face members will be actuated. The Moore-Penro
actuation scheme described previously can still be used to pro
how well such structures can achieve the target displaceme
fields.

Consider there are onlyl members which have been identified
for actuation. The matriB contains the displacements of the solid
face sheet nodes corresponding to all member actuations. Thyg
we can construct a new matrB* that contains only thé col-
umns corresponding to the members to be actuated. Then the ¥g§- 14 The members which are allowed to actuate in the
tical displacements of the face sheet nodes are again easily cabinalysis of actuation of selected Kagome members. Only the

lated according to Kagome plane is shown. The dashed members are the mem-
bers selected to actuate.
where nowe* is the vector of actuations of those members that
can be actuated. structure. The work done by the same actuator, undergoing the

Consider a target displacement fisld. The minimum length, same actuation strai’, in a perfectly stiff structure is, as before,
minimum squared error set of actuations for Memembers is  1/2(¢T)2EAL. This energy is taken as the reference energy for the
~  oxtod energy calculations presented below. As with the planar Kagome
& =Bij ;. (24) truss, actuation of multiple members does not pose any energy
Here, B* T is the Moore-Penrose generalized inverseBsf The —accounting difficulties—the total energy of actuation can be cal-
vertical displacements of the solid face nodes are also easily cgilated by adding up the contributions from each individual mem-

culated: ber. The relevant energy ratio calculated for energy comparisons is
- - again given by(13) wheree{ are computed for each specific set of
Wi =Bjjej . (25)  actuationssT .
Reconsider the target displacement field that corresponds tcAs noted earlier, for a structure with energy storage dominated
constant curvature: by bending energy in the beam members, the energy Vetzan

(26) be shown to scale with the slenderness ratio squardd,)€. It is
important to note that the sandwich plate comprised of the

Now, however, assume that only members of the Kagome planedagome face with a solid face sheet is indeterminate—not only

the row corresponding to~L /2 can actuate. These members arare the joints welded, but a solid face is intrinsically indetermi-

located in the middle of the periodic cell, as shown in Figi@l4 nate. It can be anticipated that this indeterminacy will result in

The Moore-Penrose best-fit displacement field is shown in Fig.

15. Note that the structure displays only local curvature along the

wi=Aql%; .

line {=L,/2.
Reconsider also the target sinusoidal displacement field:
2
wi=Aqe, sin(L—g . (27)
¢

Here, however, assume that only the selected members of
Kagome plane are actuated corresponding to those aligned in rc
having {~L /4 and {~3L,4, as shown in Fig. 14). These
members lie within the zones of maximum curvature magnituc
of the target displacement field. When the Moore-Penrose analy
is run under these conditions, the resulting displacement field 1s

displayed in Fig. 16. While the shape looks very similar to that ipjg. 15 The bestit displacement field when limited members

Fig. 12 achieved by activating all the members of the Kagomge allowed to actuate for the target displacement field w @
face, the curvature in Fig. 16 is nevertheless limited to regionsa ;2e,

where members are actuating alofigL /4 and{~3L /4.

5 Energy of Actuation of Kagome Plate Structure

5.1 Energy of Actuation. The strain energy of actuation is
again calculated in the manner depicted in Fig. 7 and the work
done by each actuator is1/2:° "EAL where " is its actuation Fig. 16 The best-fit displacement field when limited members
strain ands® is the elastic strain it experiences as a consequen@@ allowed to actuate for the target displacement field w ¢
of all actuations. This work is stored as elastic strain energy in tkeAqe, sin (2w ¢/ L))
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Fig. 19 Maximum stretching strain normalized by maximum
Fig. 17 Normalized actuation energy for the target displace- actuation strain for the target displacement fields, as a function
ment fields, as a function of R/L of R/L

somewhat larger actuation energies than those predicted for beciéntly large deflections due to nonlinear coupling between bend-

ing dominated structures. The energy ratias plotted against the ing and stretching in the solid face sheet whenever shapes with
slenderness ratio for the truss members in Fig. 17 for the thrB@nzero Gaussian curvature are actuated. This nonlinear effect is
target periodic displacement fields described above. It is clg2®t considered in this paper. Thus, the results for doubly curved
from this plot that the Kagome-backed sandwich plate offers cofhapes presented here are restricted to small deflections.
siderably more resistance to actuation for modes with curvature in
two directions than to actuations that bend the plate solely in op
direction. Nevertheless, compared to the reference energy, the
tuation energy is still small. A more meaningful interpretation ofy
the actuation energy will be given in Section 5.2. Similar tren
are seen in Figs. 18 and 19, where the maximum bending
stretching strain quantities for these displacement fields are plWl'th
ted as a function of slenderness ratio. =
Plates actuated to produce double curvature will necessarilym
limited to smaller actuation strain@nd thus displacementso
ensure they do not undergo plastic yield. It is important to no
that the results here for the double curvature plate have been CoR?
puted using linear theory. Large resistance will arise for suffi-

5.2 Comparison of Two Energy Quantities. In most appli-
Stions, a multifunctional role of these actuating structures is an-
ipated where the structures will be required to both change
ape and carry and lift significant loads. Here an approximate
culation is presented of the relative energies to perform these
different functions, highlighting the significance of structures
low resistance to actuation.

or specificity, consider a cantilevered Kagome plate structure
ength ¢ subjected to a load per unit lengghat free end. Now
imagine that, via actuation of Kagome members, the cantilevered
d is raised a distane®, . The work per unit length done to raise

S load scales as

Wp"N“PéA: P8A€ (28)

where g, is the typical actuation strain for a member near the
e . . clamped end. The energy per unit length stored as strain energy in
P A, sine (2"@/[4{;) Sine (2’“1/[47,) the Kagome plate structure due to resistance to actuation scales as

Wa~KEAe4 (29)

whereA is the member cross-sectional area &rid a small frac-
tion of unity for structures with low internal resistance to actua-
tion, such as those reported above.

The structure must be designed to be able to carry the load per
(@n/L,) unit lengthP. For an optimally designed structure, we anticipate
that face yielding or buckling will be an active constraifit(].

With o as the critical stress in a Kagome memlksst by either
buckling or yielding, the member must be sized to satisfy a rela-
tion that scales as;AL~PL¢{. Thus, to carry the applied load,
the member cross-sectional area will be sized according to the
scaling law

- .
A € sine

02 -

07‘-uI-‘--\..‘.l‘..w.u.m.u|.‘..\..‘.| A%P€/0'C, (30)

0 001 002 003 004 005 0068 007 o008 The maximum allowable actuation is also related to this critical
stresso, according to

R/L
. . . . : . ep~fo,/E. (31)
Fig. 18 Maximum bending strain normalized by maximum ac-
tuation strain for the target displacement fields, as a function of Here, f is the factor relating actuation strain and the maximum
RIL strain induced in the structure due to actuation as plotted for the

660 / Vol. 71, SEPTEMBER 2004 Transactions of the ASME



Kagome structures earlier in the paper. In most instances, the ct - ®*------ Y ———— *------

dition limiting actuation is likely to be yielding in bending, at least / / /
for the Kagome structures, but the possibility of buckling of mem / / /
bers under compression must also be considered. Now calcul 1‘ B ,‘ ,‘
the ratio of the energy stored in the structure due to actuation / /) D /

the amount of energy required to raise the load: / / /

W, KkEP(salo. Kk(Elo.)eh o - ¢ . fomm o *&—————- -/
Wp  Penl ea T (32) ,’I
’
For the Kagome sandwich plates analyzed in Section 4, typic ’ 1
values off are about 10, as the maximum induced bending strairz® / A C /

in the Kagome plane are about 10% of the maximum actuati(e“1 / /’
strain. Values ok depend upon the specifics of the actuation, bt/ /
because of their low resistance to actuation they typically ran¢ * o ————"———-—- & ———-—- ’
from about 1/100 to 1/1000 for the Kagome structures. Thus, ftc  ~— == Bl

such structures, the energy required to raise the applied loads vvin %

be 10-100 times the energy stored as strain energy in the struc- 1 a periodic structure. A, B, C, D are equivalent periodic
ture. The sandwich plates subject to double curvature offer songg%‘s_ The dots correspond to nodes along the edges of the
what more internal resistance to actuatida=(1/40), but values perjgdic cells. e; and e,, are unit vectors sligned with the edges
of f are also lower {~2) such that the energy stored in internabs the periodic cells.
resistance is still relatively low, i.eW,/Wp~1/20. In this fun-
damental sense, the Kagome plate structure offers minimal inter-
nal resistance to the actuation.
(i) — (D) (1)
6 Concluding Remarks Up =Uo +Usa Uca™ (@gat ca) X (A6)
. . ) Now consider the rotations at each node in A. Denote these as
Sandwich plates employing as the actuation plane a Kagome
planar truss have been studied to assess their effectiveness and =) . (A7)
efficiency in the dual role of a load carrying structure capable of .
actuated shape changes. The advantage of the Kagome platigtiarly for B, C, and D:

truss in this application is its in-plane stiffness and strength A=+ wga (A8)
coupled with its low internal resistance to actuation. The sandwich _ .

plate offers more internal resistance than the isolated Kagome &Y =)+ wea (A9)
plane. Nevertheless, an actuated plate designed to carry specific : :

loads can achieve a wide variety of shapes with relatively low )= By + wpat woch. (A10)

expenditure of energy to overcome the internal resistance cogs
pared to the work expended in raising the loads. It remains to
seen from prototypes that are currently under construction, as

as from further theoretical work, just how large the actuated am- . _
plitudes can be and the range of modes shapes that can be pro- ul=u§’+ ugat wgaxr®. (A1)
duced. This is especially true for double curvature mod
that require greater expenditure of energy to overcome inter
resistance.

w consider the edge joining cell A and cell B. With the dis-
cements of the nodes along the top of A equal to the displace-
nts of the nodes along the bottom of B:

?re,(l) is along the top of A andi) along the bottom of B.
We can writer V=r®W+L e , whereL, is the length of the
periodic cell in thee, direction.

Now, equate the displacements along the edge joining C and D:
Acknowledgments " q P o g g€l g
. . . (= (i
This work was supported by the grant Multifunctional Yo +Uca® @caXr=Up +UcatUgat (wgat eca) X
Mechano-Electronic Materials(N00014-01-1-0528 and by (A12)

the Division of Engineering and Applied Sciences, Harvard Rearranging and simplifyingA12) leads to:
University.

Uy’ —ul =uga+ weaxr—weax L, e, (A13)
Appendix Comparison ofA13) with (A11) above yields:
Periodic Displacement Boundary Conditions. Consider a wcpXL,e,=0=wca=wcal, (A14)

periodic structure such as that shown in Fig. ALl. With A as the
reference periodic cell and” the vector from the origin in A to

theith node in A, we denote the displacements of the nodes in
as uf’=uf +uca+ ecaxr (A15)

up'=uy’ . (A1) Here,(J is along the right of A andj) along the left of C.

Now we can writer =r@+L e, whereL, is the length of

e periodic cell in thes, direction.

Equating displacements of nodes along the edge between cells

Now equate the displacements of nodes along the edge between
c&lls A and C:

Let B, C, and D be neighboring periodic cells, as shown in Fi%
Al. We denote the displacements at the nodes in those cells a

ug)=ul’+uga+ wgaxr® (A2) B and D yields
Ul =ul)+ ugat weaxr® (A3) uy) +ugat wgaX (r'+L,e)
ul)=ud+uga+ wgaxr® (A%) =uf+Ucat Ugat (@pat wca) X1, (AL6)

u8)=ug)+UCA+ wepXr. (A5) Rearranging and simplifyingA16) yields:

Combining(Ad) with (A3) or (A5) with (A2) yields g’ —ug’ =ucat @A X1V —wga X Le; . (A17)
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Comparison ofA17) with (A15) with above yields 0+ wea= @) + wgat oca (same as(A23)). (A24)

wppX L 8=0= wpp= wpp; - (A18)  Finally, equating rotations at nodes along the edge joining cells A
So, for edges parallel te,, displacements are related by and C:
: . D G
uy)—uf) = uga+ wpae, X1 (A19) 0= ¢y + wca= @'+ wcse, (A25)

i ()= #(0) (i) i i
Now,dwrlter ={e,+2z"k and note thak is perpendicular to References
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