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Sandwich Plates Actuated by a
Kagome Planar Truss
Kagome truss plates have properties that suggest they should be uniquely effective
actuation plane for sandwich plates: a Kagome truss plate has in-plane isotropy, op
stiffness and strength, and its truss members can be actuated with minimal internal
tance. In this paper, sandwich plates are studied that are comprised of one solid face
and one actuated Kagome face sheet joined by a pyramidal truss core. Various aspe
the actuation behavior of these plates are investigated, including internal resistance
strains resulting from actuation and efficiency of actuation. Single and double curva
actuation modes are investigated. Contact is made with analytic results for actu
modes with long wavelength.@DOI: 10.1115/1.1778720#
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1 Introduction
Recent studies of planar trusses based on the ancient Kag

basket weave pattern have shown that these truss plates
many properties that make them desirable for actuation plane
sandwich plates,@1,2#. In this study, we begin by analyzing th
actuation characteristics of a single Kagome truss plate~Fig. 1!
and follow with an actuation analysis of a sandwich plate co
prised of one solid face sheet and one actuated Kagome face
joined by a pyramidal truss core~Fig. 2!.

The single Kagome truss plate can be constructed from the
cell shown in Fig. 1~b!. The 120 deg symmetry of the structu
ensures in-plane elastic isotropy assuming all the truss mem
are identical. Here, only solid circular members are considered
lengthL and radiusR. The Kagome-backed solid skin plate can
constructed from the unit cell depicted in Fig. 2~c!. In the present
study we limit consideration to plates with identical solid circu
truss members of lengthL and radiusR both for the Kagome face
and the core. The solid skin thickness is denoted byt. In addition,
to further limit the number of parameters in the system, we c
sider only plates in which both face sheets and the core mem
are constructed of the same material with Young’s modulusE,
Poisson’s ration and yield stresssY . The Kagome-backed sand
wich plate in Fig. 2 has isotropic bending and stretching stiffne

The feature of the planar Kagome truss in Fig. 1 that make
most advantageous for actuation is the ability to actuate mem
to achieve arbitrary in-plane nodal displacements with minim
internal resistance. Among infinite isotropic planar truss str
tures, a pin jointed planar Kagome truss is optimally stiff a
strong to overall stressing. Although it has kinematic mechanis
it is nevertheless able to carry arbitrary states of overall str
Members of a pin jointed Kagome truss can be actuated~i.e.,
elongated or shortened! with no internal resistance, or equiva
lently, with no redundant stresses. When joints are welded, as
be assumed throughout this paper, actuation of a member
encounter internal resistance, but minimally so as will be sho
Welded joints also suppress the kinematic mechanisms and r
in a structure with substantial in-plane buckling resistance. Th
and other aspects of the Kagome structure are explored elsew
@1–5#.

In this study, we aim to explore the details of actuation of t
planar Kagome truss and the Kagome-backed sandwich p
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Simulations of various periodic actuation modes of these infin
Kagome structures have been performed for a range of mem
aspect ratios. In its most general form, the approach is numer
A calculation requires the formulation of a ‘‘super element’’ re
resenting a unit cell followed by the assembly of the compl
structure as a union of the super elements. The scaling of
energy required for actuating the unloaded structure with as
ratio of the truss members is investigated. Bending and stretc
strains in the members induced by actuation are also determi
For actuation modes with wavelengths long compared to
member length, the response computed with the numerical
proach is compared to actuation predicted by an analytical l
wavelength approximation outlined in a previous study,@1#.

2 Planar Kagome Structure

2.1 The Planar Kagome Structure. Consider the infinite
planar Kagome structure shown in Fig. 1~a! having members of
length L and solid circular cross-sections of radiusR and under-
going in-plane displacements. The unit cell of such a structur
shown in Fig. 1~b!. The members are modeled as Euler-Bernou
beams, with clamped conditions at each node representing we
joints ~i.e., the displacement and rotational degrees-of-freedom
the same for all beams meeting at a given node!. Actuation of any
member comprises an elongation or contraction of the membe
a straine if the member were unconstrained. In other words,
actuation straine is equivalent to a stress-free transformati
strain.

2.2 Actuation Methodology. The actuation of beam mem
bers is modeled via the so-called cut-stress-reweld scheme
ployed by Eshelby in his study of the transformation strains
ellipsoidal inclusions,@6#. To actuate a given member, envisio
the following steps:

1. Remove the actuating member from the structure.
2. Allow the member to actuate~elongate or contract! freely by

straine.
3. Place equal and opposite forces2EpR2e on the ends of the

member to deform it back to its original configuration.
4. Place the member back into the structure and ‘‘weld’’ it

place.
5. Release the forces from the ends of the member by appl

equal and opposite forcesEpR2e to the joints at the mem-
ber ends.

Thus, the cut-stress-reweld procedure is equivalent to analy
the complete truss subject to equal and opposite actuation fo
of magnitudeEpR2e applied to the joints at the ends of the r
spective member.
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2.3 Enforcement of Periodicity. Our goal is to simulate pe
riodic actuations of an infinite structure by modeling the behav
of just one periodic cell subject to periodic boundary conditio
Consider the potential energy functional for a periodic cell:

F5
1

2
Ki j uiuj2kj

0uj (1)

whereK is the conventional stiffness matrix of the structure,u is
the vector of displacements and rotations at the nodes of the s
ture, andk0 is the vector of applied nodal forces and moments~in
this situation these correspond to the virtual actuation forces
scribed earlier!. If the structure were isolated and unconstrain

Fig. 1 „a… The Kagome planar truss. „b… The unit cell used for
the Kagome planar truss analysis. The dashed lines are the
outline of the cell. The solid lines are truss members of the unit
cell.
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~apart from rigid-body motion!, the problem would be solved in
the usual manner by solving the system of equations represe
by

Ki j uj5ki
0. (2)

Now consider periodic boundary conditions represented
constraints of the form

ai j uj50. (3)

The details of the actual periodic boundary conditions imposed
in-plane nodal displacements and rotations are included in
Appendix. It is important to note that once the appropriate pe
odic boundary conditions are imposed on thedisplacements/
rotations, periodicity of forces/momentsis satisfied by the solu-
tion. For the periodic cell in Fig. 3, the forces acting on a no
along one edge of the periodic cell~corresponding to internal
forces in the structure! will be equal and opposite to those actin
on the equivalent node on the opposite edge, for a displacem
field which satisfies the periodic conditions outlined in the Appe
dix. The displacements themselves are not, in gene
periodic—we consider, for example, a displacement field cor
sponding to a constant strain. Thus, there are some cases
which the strains, forces and moments, will be periodic, but n
the displacements.

To impose these additional conditions, Lagrangian multiplie
are employed. The modified energy functional now takes
form:

F5
1

2
Ki j uiuj2kj

0uj2l iai j uj (4)

The systems of equations resulting from minimization of the e
ergy functional with respect to displacementsui and the Lagrang-
ian multipliersl i are

Ki j uj5ki
01l jaj i (5)

ai j uj50. (6)

Now consider periodic actuations of the infinite structure. T
actuation forces exert no net force or moment on the structu

Fig. 2 „a… The Kagome plane and tetrahedral core of the
Kagome plate structure. The solid members are the Kagome
face members, and the dashed members the tetrahedral core
members. „b… The Kagome plate structure. „c… The unit cell
used for the Kagome plate analysis.
SEPTEMBER 2004, Vol. 71 Õ 653
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This means that if the energy functional given by~4! above is
minimized over the periodic cell, the energy of the infinite stru
ture is also minimized. Thus, it is possible to simulate the beh
ior of the infinite structure by modeling just the periodic cell wi
the appropriate boundary conditions.

2.4 Calculation of Actuations. The objective is to probe
how effectively the planar Kagome structure can achieve arbit
in-plane deformations through actuation of its members. To
end, periodic actuation of the structure is simulated as descr
in previous sections for actuation of each member in the perio
cell, tracking the nodal displacements in a matrix of influen
coefficients,A. The i j th component of this matrix is theith dis-
placement resulting from the actuation of thejth member. To gen-
erate this matrix, displacements are calculated at each of the n
in the periodic cell resulting from a unit actuation of each mem
in that cell.

As this simulation is linear, once the matrix of influence co
ficients,A, has been constructed, the displacements of the no
from actuation of any combination of members is easily compu
as

ui5Ai j ej (7)

wheree is a vector of member actuations.

Fig. 3 The periodic cell used for the planar Kagome truss
simulations
654 Õ Vol. 71, SEPTEMBER 2004
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Now consider a target field of in-plane nodal displacementsud.
The aim is to determine how well this field can be recreated
actuating members of the Kagome structure. Calculate elongat
ẽ and displacementsũ via the relations:

ẽi5Ai j
† uj

d (8)

ũi5Ai j ẽj (9)

where A† is the Moore-Penrose generalized inverse ofA, also
called the pseudo-inverse ofA, @7#. Then,ẽ is the vector of mem-
ber actuations which minimize the squared error betweenũ and
ud. If there exist multiple vectors of actuations that minimize th
squared error,ẽ is such a vector of minimal length~i.e., uẽu is
minimized!.

2.5 Example Target Displacement Fields. The simulations
outlined above were run for several target displacement fields.
objective is to assess the ability of the structure to achieve spe
actuations and to determine the associated energy required
stresses induced. The periodic cell used for these simulation
shown in Fig. 3. It contains a total of 100 unit cells. The axes u
for describing the displacements fields described here are
z-axis and theh-axis shown in Fig. 3. It is important to note tha
the target displacement fields are all consistent with the perio
displacement boundary conditions.

The first target displacement field is described by

ud5A0ez sinS pz

Lz
D . (10)

Here,A0 is an amplitude factor,ez is a unit vector aligned with the
z-axis, andLz the length of the periodic cell in thez-direction.
This target field is a displacement in thez-direction that is every-
where positive except along the edgesz50 andz5Lz of the pe-
riodic cell where it is zero and reaches a maximum ofA0ez along
the line z5Lz/2 of each periodic cell. In this case, the displac
ment field is repeated in every periodic cell. This target field
depicted in Fig. 4. The Moore-Penrose best-fit actuations for
displacement field are calculated as described above. For this
riodic cell, the number of nodal displacements in the target field
640, while the number of members actuated is 600. One wo
expect some error between the target and achievable fields, h
ever the actual displacements differ from the target displacem
by less than 1% of the maximum target displacement. The ac
tions are quite close to the actuations predicted by the long wa
length approximation outlined in previous work,@1#. In this long
wavelength theory, the actuation strain,«T, of a member connect-
ing neighboring nodes I and J is«T5(ua

d(xI)2ua
d(xJ))ta /L

where ta is the unit vector parallel to the member and direct
from J to I andua is the displacement derived from the targ
displacement field.

A second target displacement field is described by:

ud5A0~ez1eh!sinS pz

Lz
D sinS ph

Lh
D . (11)

Here,eh is a unit vector aligned with theh-axis andLh the length
of the unit cell in theh direction. This displacement is zero alon
all of the edges of the periodic cell and reaches a maximum
A0(ez1eh) at the center (h5Lh /2,z5Lz /2) of each periodic
cell. The target displacement field can be seen in Fig. 5. T
Moore-Penrose best-fit actuations are predicted quite well by
long wavelength approximation. In this example, the maxim
discrepancy between the actual displacements of the nodes
the target displacements is less than 2% of the maximum ta
displacement. For simulations run for a target displacement fi
in the same direction, but with a wavelength half of that of~11!
~in both thez andh directions!, this maximum discrepancy is les
than 1027. The critical difference between the two sets of targ
displacement fields is that the field described by~11! with the full
wavelength has a jump in slope across the boundaries betw
Transactions of the ASME



c
be
im-
se-

e to
is-

ored
dis-
ed
rnal

ler-
ac-

the
periodic cells~and, as a result, a jump in actuation!. For the dis-
placement field with the half-wavelength, the slope of displa
ment is continuous across periodic cell boundaries.

A final target displacement field of interest is described by

ud5A0zez . (12)

This corresponds to a constant strain ofA0 in thez direction. This
field is shown in Fig. 6. In this example, the actual displaceme
of the nodes match the target displacements almost perfectly—
maximum discrepancy is less than 1027 of the maximum target
displacement. Note that for this displacement field, the slope
displacement is again continuous across periodic cell bounda

2.6 Actuation of Selected Kagome Members. In practical
applications it will generally be desirable to manufacture stru
tures in which only a small subset of the members will be ac
ated. The Moore-Penrose actuation scheme can be applied
similar manner in such cases. This procedure is outlined in S
tion 4.4 for the Kagome plate structure. Given a restriction on
number of members to be actuated, systematic procedures

Fig. 4 The target field described by u dÄA 0ez sin „pzÕLz…. The
arrows show the displacement vectors of the nodes.
Journal of Applied Mechanics
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identifying the ‘‘best’’ subset of actuation members remain to
established. The behavior of planar Kagome structures with l
ited numbers of actuation members will be considered in sub
quent work.

3 Energy of Actuation of Planar Kagome Structure

3.1 Energy of Actuation. One of the motivations behind
the selection of the Kagome structure for actuation is the desir
find a structure that can be actuated with minimal internal res
tance to actuation. Here, we present the total strain energy st
in the planar Kagome structure actuated to achieve the target
placement fields described above. In the limit of a pin-joint
Kagome structure, actuations can be achieved with no inte
resistance, although mechanisms will also exist,@1#. For the
Kagome structures considered here, simulated with Eu
Bernoulli beams welded together at their ends, the energy of
tuation is expected to be due primarily to elastic bending of
beams.

Fig. 5 The target displacement field described by u dÄA 0„ez

¿eh…sin „p z ÕLz…sin „p h Õ Lh…. The arrows show the displace-
ment vectors of the nodes.
SEPTEMBER 2004, Vol. 71 Õ 655
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The strain energy of actuation is calculated in a straightforw
manner depicted in Fig. 7. Consider an actuating member
length L, cross-sectional areaA, and Young’s modulusE. The
imposed actuation strain of«T is the strain the member would
undergo if the member were free to actuate~if the structure of-
fered no resistance!. As the structure will have some resistance
the actuation, the member will undergo some elastic strain tha
denote«e. The axial forceF experienced by the member is the
easily calculated asF5«eEA. The work done by the actuato
~acting on the structure! is the work of this axial force acting
through the actuation strain«T, 21/2«e«TEAL, and it is stored as
elastic strain energy in the structure.

3.2 Reference Energy. Now consider the work done by the
same actuator, undergoing the same actuation strain«T, but in this
case consider the structure to be rigid—that is, consider a st
ture that will completely resist the actuation. This corresponds
fixing both ends of the member as it is actuated. In this situati
the total strain of the member is zero, so«e1«T50. The energy

Fig. 6 The target displacement field described by u dÄA 0zez
656 Õ Vol. 71, SEPTEMBER 2004
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of actuation in this case is therefore 1/2(«T)2EAL, and this is
chosen as the reference energy for each member in the en
calculations and comparisons below.

Actuation of multiple members does not pose any energy
counting difficulties—the total energy of actuation can be calc
lated by adding up the contributions from each individual me
ber, with the elastic strain of each member calculated in respo
to all the actuations. In some circumstances, the work done by
individual member may be negative—the actuations of oth
members may result in the structure actually assisting, not res
ing, an actuation. However, the overall energy of actuation will
course always be positive. Thus, the relevant energy ratio ca
lated for energy comparisons is

Ŵ5

(
i 51

#members

2
1
2 « i

e« i
TEiAiLi

(
i 51

#members
1
2 ~« i

T!2EiAiLi

. (13)

This energy ratioŴ is plotted for several slenderness ratios
Fig. 8 for the target displacement fields shown above. For a st
ture with energy storage dominated by bending energy,Ŵ can be

Fig. 7 The energy of actuation of a beam. The rest of the struc-
ture resists the imposed actuation strain «T, generating an
elastic strain of «e and an internal force FÄ«eEA .

Fig. 8 Normalized actuation energy for the target displace-
ment fields, as a function of „RÕL …2
Transactions of the ASME
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shown to scale with the slenderness ratio squared, (R/L)2, while
for a statically overdetermined structure, such as a fully trian
lated sheet,Ŵ is expected to be of order unity, independent of t
slenderness ratio and whether pin jointed or weld jointed. T
energy associated with actuation of the Kagome structure
clearly much smaller than that energy of a fully triangulated tr
grid. The energy associated with actuation of an isolated bea
a Kagome structure is investigated in work by Wicks and Gu
@5#. For such actuations,Ŵ scales linearly with slenderness, wit
energy equally partitioned between stretching and bending. H
ever, for the target fields considered here,Ŵ clearly scales as the
square of the slenderness.

3.3 Strain Levels Induced by Actuation. As the structures
will generally undergo cyclic actuations, investigation of stra
levels for fatigue design is also required. One quantity of inter
is the maximum stretching strain occurring in the structure
vided by the maximum actuation strain. For a bending contro
structure, this ratio is also expected to scale with slenderness
squared. Of more interest is the ratio of maximum bending st
to maximum actuation strain—which is expected to scale linea
with the slenderness ratio for bending controlled structures. Th
trends are seen to hold in Fig. 9 where the normalized maxim

Fig. 9 „a… Maximum bending strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL . „b… Maximum stretching strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL .
Journal of Applied Mechanics
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bending and stretching strains are plotted as a function of slen
ness ratio for the target displacement fields described above.
maximum actuation strain,«max

A , is used to normalize the induce
bending and stretching strains. The relatively larger bend
strains will restrict the levels of actuation due to fatigue.

4 Kagome Plate Structure

4.1 The Kagome Plate Structure. Consider a solid face
sheet of thicknesst, backed by a planar Kagome structure. Co
members attach to the face sheet and Kagome plane to form
rahedral units, as shown in Fig. 2. The Kagome planar memb
and the core members have solid circular cross sections of ra
R and are all of the same lengthL. As a result, the core thicknes
is Hc5A2/3L. While in some applications it may be desirable
use solid face sheets and Kagome planar sheets of different m
rials, for the purposes of this study we restrict the structure to
of one single isotropic material of Young’s ModulusE and with a
Poisson’s ratio ofn51/3. The unit cell used in this analysis i
shown in Fig. 2~c!.

The stiffness matrix of the unit cell~Fig. 2~c!! of the Kagome
plate structure is simulated through the use of a composite
ment comprised of beam and shell elements. We model
Kagome planar and core members as three-dimensional E
Bernoulli beams, with six degrees-of-freedom at each node.
behavior of the solid plate is simulated via linear shell element
the commercial finite element package ABAQUS@8#. The in-
plane behavior of these elements is plane stress, while the ou
plane behavior corresponds with linear plate theory,@9#, as these
are flat shell elements.

Since the sandwich plate will generally be subject to appl
transverse loads, the Kagome planar truss in its role as a
sheet must carry substantial in-plane loads in addition to unde
ing actuation. For the sandwich plate to carry transverse lo
efficiently, it is desirable for the solid and Kagome plane fa
sheets to have comparable in-plane stiffness. The in-plane s
ness of the Kagome planar truss is isotropic, with the relat
between average in-plane strains and the overall stress resu
given by

«115S21~N112nN22!, «225S21~N222nN11!,

«125S21~11n!N12 (14)

with S5EA/(A3L) andn51/3. Equating the in-plane stiffness o
the solid sheet and that of the Kagome sheet described by~14!
leads to the following relation between the face sheet thickn
and member radius:

t

L
5

p

A3
S R

L D 2

. (15)

This relation will be used to specify the face sheet thickness
the various member radii used in the examples detailed below

4.2 Actuation and Periodicity of the Infinite Kagome
Plate.. First consider an infinite Kagome plate structure. T
objective of this section is to probe how well the shape of
solid face sheet can be controlled by periodic actuations of
members of the planar Kagome face sheet. Actuation is simul
via the same cut-stress-reweld scheme outlined in Section 2.2
the infinite plate, periodic target and actuation fields are con
ered and a corresponding periodic cell is adopted for perform
the computations. The details of the periodic boundary conditi
for out of plane behavior are given in the Appendix. The perio
boundary conditions, in addition to those suppressing rigid-bo
motions, are imposed via the use of Lagrangian multipliers,
shown in Section 2.3, resulting in solutions that show periodic
of the forces and moments exerted on the boundaries of the
odic cell.

As in the planar Kagome case, a simulation is run for a u
elongation of every member of the Kagome plane. Core memb
SEPTEMBER 2004, Vol. 71 Õ 657
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are not actuated. In this case, the vertical displacements of
nodes of the solid face sheet are assembled into a matrix of in
ence coefficientsB. The i j th component ofB is the vertical dis-
placement of theith node of the solid face sheet resulting from
unit elongation of thejth member of the Kagome plane.

The linearity of the theory allows the displacements of t
nodes from arbitrary actuation~elongation or contraction! of any
combination of members to be calculated easily onceB is
assembled:

wi5Bi j ej (16)

wheree is the vector of member actuations andw the vector of
vertical displacements of solid face sheet nodes.

Now consider a target field of the vertical displacements of
solid face sheet displacement fieldwd. We wish to determine how
well this field can be recreated by actuating members of
Kagome plane. The Moore-Penrose generalized inverse is
ployed in a similar manner as before to calculate elongationẽ
and displacementsw̃ via the relations

ẽi5Bi j
† wj

d (17)

w̃i5Bi j ẽj (18)

whereB† is the Moore-Penrose generalized inverse ofB. Here,ẽ
is the vector of member actuations which minimize the squa
error betweenw̃ andwd. As before, if there exist multiple vector
of actuations which minimize this squared error,ẽ is such a vector
of minimal length.

4.3 Example Target Displacement Fields. The simulations
outlined above were run for several target displacement fields.
periodic cell used for these simulations is shown in Fig. 10.
contains a total of 64 unit cells. The axes used for describing
displacements fields described here are the samez-axis andh-axis
used in the planar Kagome examples. It is important to note
the target displacement fields imposed are all consistent with
periodic displacement boundary conditions described in the
pendix. As in the planar Kagome examples, the displaceme
themselves are not, in general, periodic, while the stresses, st
and curvatures are periodic. Here we consider, for example
displacement field corresponding to a constant curvature—the
ternal forces are periodic~with periodicity size of the periodic
cell!, while the displacements are clearly not periodic.

The first target displacement field is described by

wd5A0z2ez . (19)

Here, the displacement corresponds to the vertical displaceme
the nodes of the solid face sheet corresponding to a state of
stant curvature ofkzz52A0 with A0 as the amplitude factor andez
the unit vector perpendicular to the plate~aligned with thez-axis!.
The Moore-Penrose best-fit actuations for this displacement fi
are calculated as described above. The achievable displace
field is shown in Fig. 11—only the achievable field is shown, as
is indistinguishable from the target field. There are 384 memb
that are actuated in this simulation and only 209 target no
displacements. However, the rank ofB is only 194, so it is inter-
esting that the achievable field is so close to the target field.
tuation energy and strains will be discussed in Section 5.

The second target displacement field is

Fig. 10 Periodic cell used for Kagome plate simulation
658 Õ Vol. 71, SEPTEMBER 2004
the
flu-

a

he

he

the
em-
s

red

The
It

the

hat
the
p-
nts
ains
, a
in-

nt of
con-

eld
ment

it
ers
dal

c-

wd5A0ez sinS 2pz

Lz
D (20)

where Lz is the length of the unit cell in thez-direction. This
displacement field has zero displacement along two edges of
periodic cell, corresponding toz50 andz5Lz . Along these same
edges, the slope in thez-direction takes the value of 2pA0 /Lz .
This displacement field takes on a maximum value of6A0ez at
z5Lz/4 andz53Lz/4. The achievable displacement field show
in Fig. 12 again matches the target field.

One final target displacement field of interest is described b

wd5A0ez sinS 2pz

Lz
D sinS 2ph

Lh
D . (21)

Note that, unlike the previous target displacement fields, this fi
involves a nonzero Gaussian curvature of the solid face sheet.
achievable field shown in Fig. 13 also matches the target field

4.4 Comparison With Long Wavelength Theory. The
best-fit actuations for the displacement fields described ab
have been compared with the actuations predicted by the l
wavelength approximation outlined in previous work,@1#. In this
long wavelength theory, the extensional strain,«T, of a member is
«T52Hkab

d tatb wherekd is the curvature tensor associated wi
wd (kab

d 5w,ab
d ) and ta is the unit vector specifying the orienta

tion of the member.
Member actuations calculated via the Moore-Penrose anal

for the case of constant curvature agree well with actuations p
dicted by the long wavelength theory. As this is a displacem
field with infinite wavelength, the agreement is not surprisin
Actuations for the simulation corresponding to the sinusoidal d

Fig. 11 Best-fit displacement field calculated using Moore-
Penrose analysis for target field w dÄA 0z2ez

Fig. 12 Best-fit displacement field calculated using Moore-
Penrose analysis for target field w dÄA 0ez sin „2p z Õ Lz…

Fig. 13 Best-fit displacement field calculated using
Moore-Penrose analysis for target field w dÄA 0ez sin „2p z Õ Lz…

Ãsin „2p h Õ Lh…. The faceting of the solid sheet is an artifact of
the plotting—the actual shape of the solid sheet is smooth.
Transactions of the ASME
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placement field~20! are also predicted well by the long wave
length theory. This displacement field has a wavelength of e
unit cells. Actuations were also calculated for a sinusoidal d
placement field with a wavelength of only four unit cells:

wd5A0ez sinS 4pz

Lz
D . (22)

The actuations predicted by the long wavelength theory sh
more discrepancy in this case, as would be expected, but the
est actuation strains are not in major disagreement.

4.5 Actuation of Selected Kagome Members. As a practi-
cal matter, it will usually be the case that only a small subse
the Kagome face members will be actuated. The Moore-Pen
actuation scheme described previously can still be used to p
how well such structures can achieve the target displacem
fields.

Consider there are onlyM members which have been identifie
for actuation. The matrixB contains the displacements of the so
face sheet nodes corresponding to all member actuations. T
we can construct a new matrixB* that contains only theM col-
umns corresponding to the members to be actuated. Then the
tical displacements of the face sheet nodes are again easily c
lated according to

wi5Bi j* ej* (23)

where nowe* is the vector of actuations of those members t
can be actuated.

Consider a target displacement fieldwd. The minimum length,
minimum squared error set of actuations for theM members is

ẽi* 5Bi j*
†wj

d . (24)

Here,B* † is the Moore-Penrose generalized inverse ofB* . The
vertical displacements of the solid face nodes are also easily
culated:

w̃i5Bi j* ẽj* . (25)

Reconsider the target displacement field that correspond
constant curvature:

wd5A0z2ez . (26)

Now, however, assume that only members of the Kagome plan
the row corresponding toz'Lz/2 can actuate. These members a
located in the middle of the periodic cell, as shown in Fig. 14~a!.
The Moore-Penrose best-fit displacement field is shown in F
15. Note that the structure displays only local curvature along
line z5Lz/2.

Reconsider also the target sinusoidal displacement field:

wd5A0ez sinS 2pz

Lz
D . (27)

Here, however, assume that only the selected members o
Kagome plane are actuated corresponding to those aligned in
having z'Lz/4 and z'3Lz/4, as shown in Fig. 14~b!. These
members lie within the zones of maximum curvature magnitu
of the target displacement field. When the Moore-Penrose ana
is run under these conditions, the resulting displacement fiel
displayed in Fig. 16. While the shape looks very similar to tha
Fig. 12 achieved by activating all the members of the Kago
face, the curvature in Fig. 16 is nevertheless limited to regi
where members are actuating alongz'Lz/4 andz'3Lz/4.

5 Energy of Actuation of Kagome Plate Structure

5.1 Energy of Actuation. The strain energy of actuation i
again calculated in the manner depicted in Fig. 7 and the w
done by each actuator is21/2«e«TEAL where«T is its actuation
strain and«e is the elastic strain it experiences as a conseque
of all actuations. This work is stored as elastic strain energy in
Journal of Applied Mechanics
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structure. The work done by the same actuator, undergoing
same actuation strain«T, in a perfectly stiff structure is, as before
1/2(«T)2EAL. This energy is taken as the reference energy for
energy calculations presented below. As with the planar Kago
truss, actuation of multiple members does not pose any ene
accounting difficulties—the total energy of actuation can be c
culated by adding up the contributions from each individual me
ber. The relevant energy ratio calculated for energy comparison
again given by~13! where« i

e are computed for each specific set o
actuations« i

T .
As noted earlier, for a structure with energy storage domina

by bending energy in the beam members, the energy ratioŴ can
be shown to scale with the slenderness ratio squared, (R/L)2. It is
important to note that the sandwich plate comprised of
Kagome face with a solid face sheet is indeterminate—not o
are the joints welded, but a solid face is intrinsically indeterm
nate. It can be anticipated that this indeterminacy will result

Fig. 14 The members which are allowed to actuate in the
analysis of actuation of selected Kagome members. Only the
Kagome plane is shown. The dashed members are the mem-
bers selected to actuate.

Fig. 15 The best-fit displacement field when limited members
are allowed to actuate for the target displacement field w d

ÄA 0z2ez

Fig. 16 The best-fit displacement field when limited members
are allowed to actuate for the target displacement field w d

ÄA 0ez sin „2p z Õ Lz…
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somewhat larger actuation energies than those predicted for b
ing dominated structures. The energy ratioŴ is plotted against the
slenderness ratio for the truss members in Fig. 17 for the th
target periodic displacement fields described above. It is c
from this plot that the Kagome-backed sandwich plate offers c
siderably more resistance to actuation for modes with curvatur
two directions than to actuations that bend the plate solely in
direction. Nevertheless, compared to the reference energy, th
tuation energy is still small. A more meaningful interpretation
the actuation energy will be given in Section 5.2. Similar tren
are seen in Figs. 18 and 19, where the maximum bending
stretching strain quantities for these displacement fields are p
ted as a function of slenderness ratio.

Plates actuated to produce double curvature will necessaril
limited to smaller actuation strains~and thus displacements! to
ensure they do not undergo plastic yield. It is important to n
that the results here for the double curvature plate have been
puted using linear theory. Large resistance will arise for su

Fig. 17 Normalized actuation energy for the target displace-
ment fields, as a function of RÕL

Fig. 18 Maximum bending strain normalized by maximum ac-
tuation strain for the target displacement fields, as a function of
RÕL
660 Õ Vol. 71, SEPTEMBER 2004
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ciently large deflections due to nonlinear coupling between be
ing and stretching in the solid face sheet whenever shapes
nonzero Gaussian curvature are actuated. This nonlinear effe
not considered in this paper. Thus, the results for doubly cur
shapes presented here are restricted to small deflections.

5.2 Comparison of Two Energy Quantities. In most appli-
cations, a multifunctional role of these actuating structures is
ticipated where the structures will be required to both chan
shape and carry and lift significant loads. Here an approxim
calculation is presented of the relative energies to perform th
two different functions, highlighting the significance of structur
with low resistance to actuation.

For specificity, consider a cantilevered Kagome plate struct
of length, subjected to a load per unit lengthP at free end. Now
imagine that, via actuation of Kagome members, the cantileve
end is raised a distancedA . The work per unit length done to rais
this load scales as

WP'PdA5P«A, (28)

where «A is the typical actuation strain for a member near t
clamped end. The energy per unit length stored as strain energ
the Kagome plate structure due to resistance to actuation scal

WA'kEA«A
2 (29)

whereA is the member cross-sectional area andk is a small frac-
tion of unity for structures with low internal resistance to actu
tion, such as those reported above.

The structure must be designed to be able to carry the load
unit lengthP. For an optimally designed structure, we anticipa
that face yielding or buckling will be an active constraint,@10#.
With sc as the critical stress in a Kagome member~set by either
buckling or yielding!, the member must be sized to satisfy a re
tion that scales asscAL'PL,. Thus, to carry the applied load
the member cross-sectional area will be sized according to
scaling law

A'P,/sc . (30)

The maximum allowable actuation is also related to this criti
stresssc according to

«A' f sc /E. (31)

Here, f is the factor relating actuation strain and the maximu
strain induced in the structure due to actuation as plotted for

Fig. 19 Maximum stretching strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL
Transactions of the ASME
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Kagome structures earlier in the paper. In most instances, the
dition limiting actuation is likely to be yielding in bending, at lea
for the Kagome structures, but the possibility of buckling of me
bers under compression must also be considered. Now calc
the ratio of the energy stored in the structure due to actuatio
the amount of energy required to raise the load:

WA

WP
'

kEP,«A
2/sc

P«A,
5

k~E/sc!«A
2

«A
5k f . (32)

For the Kagome sandwich plates analyzed in Section 4, typ
values off are about 10, as the maximum induced bending stra
in the Kagome plane are about 10% of the maximum actua
strain. Values ofk depend upon the specifics of the actuation, b
because of their low resistance to actuation they typically ra
from about 1/100 to 1/1000 for the Kagome structures. Thus,
such structures, the energy required to raise the applied loads
be 10–100 times the energy stored as strain energy in the s
ture. The sandwich plates subject to double curvature offer so
what more internal resistance to actuation (k'1/40), but values
of f are also lower (f '2) such that the energy stored in intern
resistance is still relatively low, i.e.,WA /WP'1/20. In this fun-
damental sense, the Kagome plate structure offers minimal in
nal resistance to the actuation.

6 Concluding Remarks
Sandwich plates employing as the actuation plane a Kag

planar truss have been studied to assess their effectivenes
efficiency in the dual role of a load carrying structure capable
actuated shape changes. The advantage of the Kagome p
truss in this application is its in-plane stiffness and stren
coupled with its low internal resistance to actuation. The sandw
plate offers more internal resistance than the isolated Kag
plane. Nevertheless, an actuated plate designed to carry sp
loads can achieve a wide variety of shapes with relatively l
expenditure of energy to overcome the internal resistance c
pared to the work expended in raising the loads. It remains to
seen from prototypes that are currently under construction, as
as from further theoretical work, just how large the actuated a
plitudes can be and the range of modes shapes that can be
duced. This is especially true for double curvature mod
that require greater expenditure of energy to overcome inte
resistance.
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Appendix

Periodic Displacement Boundary Conditions. Consider a
periodic structure such as that shown in Fig. A1. With A as
reference periodic cell andr ( i ) the vector from the origin in A to
the ith node in A, we denote the displacements of the nodes i
as

uA
~ i !5u0

~ i ! . (A1)

Let B, C, and D be neighboring periodic cells, as shown in F
A1. We denote the displacements at the nodes in those cells

uB
~ i !5u0

~ i !1uBA1vBA3r ~ i ! (A2)

uC
~ i !5u0

~ i !1uCA1vCA3r ~ i ! (A3)

uD
~ i !5uC

~ i !1uBA1vBA3r ~ i ! (A4)

uD
~ i !5uB

~ i !1uCA1vCA3r ~ i !. (A5)

Combining~A4! with ~A3! or ~A5! with ~A2! yields
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uD
~ i !5u0

~ i !1uBA1uCA1~vBA1vCA!3r ~ i !. (A6)

Now consider the rotations at each node in A. Denote these a

fA
~ i !5f0

~ i ! . (A7)

Similarly for B, C, and D:

fB
~ i !5f0

~ i !1vBA (A8)

fC
~ i !5f0

~ i !1vCA (A9)

fD
~ i !5f0

~ i !1vBA1vCA . (A10)

Now consider the edge joining cell A and cell B. With the di
placements of the nodes along the top of A equal to the displa
ments of the nodes along the bottom of B:

u0
~ I !5u0

~ i !1uBA1vBA3r ~ i !. (A11)

Here,~I! is along the top of A and~i! along the bottom of B.
We can writer (I )5r ( i )1Lheh , whereLh is the length of the

periodic cell in theeh direction.
Now, equate the displacements along the edge joining C an

u0
~ I !1uCA1vCA3r ~ I !5u0

~ i !1uCA1uBA1~vBA1vCA!3r ~ i !.
(A12)

Rearranging and simplifying~A12! leads to:

u0
~ I !2u0

~ i !5uBA1vBA3r ~ i !2vCA3Lheh (A13)

Comparison of~A13! with ~A11! above yields:

vCA3Lheh50⇒vCA5vCAeh (A14)

Now equate the displacements of nodes along the edge betw
cells A and C:

u0
~J!5u0

~ j !1uCA1vCA3r ~ j ! (A15)

Here,~J! is along the right of A and~j! along the left of C.
Now we can writer (J)5r ( j )1Lzez , whereLz is the length of

the periodic cell in theez direction.
Equating displacements of nodes along the edge between

B and D yields

u0
~J!1uBA1vBA3~r ~ j !1Lzez!

5u0
~ j !1uCA1uBA1~vBA1vCA!3r ~ j !. (A16)

Rearranging and simplifying~A16! yields:

u0
~J!2u0

~ j !5uCA1vCA3r ~ j !2vBA3Lzez . (A17)

Fig. A1 A periodic structure. A, B, C, D are equivalent periodic
cells. The dots correspond to nodes along the edges of the
periodic cells. ez and eh are unit vectors sligned with the edges
of the periodic cells.
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Comparison of~A17! with ~A15! with above yields

vBA3Lzez50⇒vBA5vBAez . (A18)

So, for edges parallel toez , displacements are related by

u0
~ I !2u0

~ i !5uBA1vBAez3r ~ i !. (A19)

Now, write r ( i )5z ( i )ez1z( i )k and note thatk is perpendicular to
ez andeh .

Thus, we can write

u0
~ I !2u0

~ i !5uBA1vBAz~ i !ec3k. (A20)

Thus, for all pairs of points the same distance above the refere
plane

u0
~ I !2u0

~ i !5uBA5u0
~ I 1m!2u0

~ i 1m! . (A21)

Similar along the edges parallel toeh :

u0
~J!2u0

~ j !5uCA5u0
~J1m!2u0

~ j 1m! . (A22)

Now, compare the rotations. Setting equal the rotations at no
along the edge joining cells A and B:

f0
~ I !5f0

~ i !1vBA5f0
~ i !1vBAez . (A23)

Equating rotations at nodes along the edge joining cells C and
662 Õ Vol. 71, SEPTEMBER 2004
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D:

f0
~ I !1vCA5f0

~ i !1vBA1vCA ~same as~A23!!. (A24)

Finally, equating rotations at nodes along the edge joining cel
and C:

f0
~J!5f0

~ j !1vCA5f0
~ j !1vCAeh . (A25)
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