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ABSTRACT

Solutions are presented for mode I and mode II crack tip fields for plane strain deformations of an elastic—
plastic solid whose constitutive behavior depends on both strains and strain gradients. The constitutive
law is the simplest generalization of the J, deformation theory of plasticity to include strain gradient effects.
Only one new constitutive parameter enters, a length parameter characterizing the scale over which gradient
effects become important. The formulation is cast within the framework of coupled stress theory. Crack
tip solutions are obtained which display the transition from the HRR fields, governing behavior in an
intermediate region with the plastic zone, to the dominant fields at the tip. The dominant fields are obtained
in closed form, and finite element methods have been used to produce the solution over the entire field.
Some of the difficulties encountered in arriving at an accurate numerical scheme are detailed. Implications
of the solutions for fracture are discussed, as are avenues for further research. Copyright © 1996 Elsevier
Science Ltd

Keywords: A, crack tip plasticity, A, fracture, B, constitutive behavior, C, finite elements, C, asymptotic
analysis.

1. INTRODUCTION

Attempts to link macroscopic fracture behavior to atomistic fracture processes in
ductile metals are frustrated by the inability of conventional plasticity theories to
adequately model stress—strain behavior at the small scales required in crack tip
models. Adding to the complications of the atomistic separation processes and inter-
actions of individual dislocations with the crack tip, is the complication of an inter-
mediate region lying between the tip and the outer plastic zone within which stresses
are almost certainly much higher than implied by conventional plasticity theory. This
discrepancy does not appear to be an issue for the ductile mechanism of fracture
associated with void nucleation, growth, and coalescence, because the scale of the
ductile fracture process is usually of the order of 10 um or more and the largest crack
tip stresses are never more than about 3-5 times the tensile flow stress. However, for
atomistic fracture mechanisms, conventional plasticity is unable to explain how
stresses at a crack tip can reach levels necessary to bring about atomic decohesion.
An increasing body of experimental evidence points to the fact that metals require
significantly higher stresses to induce plastic deformation at micrometer and sub-
micrometer scales than at larger macroscopic scales. Indentation tests on several
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metals (Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole et al., 1995) display
increases of hardness by as much as three time the macroscopic hardness for inden-
tations diminishing in size from 10s of micrometers to a fraction of a micrometer.
The scale in these tests is such that the indentation is still much larger than the average
dislocation spacing, and a continuum description of plasticity remains imperative if
the deformation is to be modeled. Within a continuum formulation, the strong
size dependence is introduced through strain gradient effects. The most compelling
evidence so far for this approach comes from the thin wire tests of Fleck ez al. (1994).
For copper wires ranging in radius from 6-60 um, there is little evidence of any size
dependence in the uniaxial tension for which strain gradients are absent. In torsion,
however, which imposes a deformation gradient on the wire, there is a strong size
effect with thinner wires displaying significantly higher effective shear stress—strain
behavior than thicker wires.

The strain gradient effect introduced by Fleck er al. (1994) was related to the
generation of geometrically necessary dislocations which accompany almost all defor-
mations involving strain gradients. The total dislocation density is taken to be pro-
portional to the sum of the plastic strain and the strain gradient (i.e. poce+10¢g/0x)
in a manner prescribed in the next section. The only new constitutive parameter in
the theory is the length parameter /. The torsion tests referred to above indicated / = 4
um for the particular copper comprising the wires. Strain gradients become large in
the vicinity of a crack tip, and a theory incorporating strain gradient effects is expected
to produce stress and strain distributions which are modified from the predictions of
a conventional plasticity theory within distances from the tip of the order of /. The
aim of this paper is to provide these near-tip stress and strain distributions for a
particular strain gradient theory.

2. GOVERNING EQUATIONS AND PROBLEM STATEMENT

2.1. Field equations for strain gradient plasticity

The deformation theory of strain gradient plasticity detailed by Fleck and Hut-
chinson (1993) is used in the present study. The solid is taken to be homogeneous and
isotropic with an energy density W which depends on scalar invariants of the strain
tensor & and the deformation curvature tensor y. Coupled stress theory is invoked to
complete the characterization. The stress quantities which are work conjugate to the
two strain quantities are the symmetric part of the Cauchy stress ¢ and the unsym-
metric coupled stress m. The following small strain formulation represents the simplest
generalization of the widely-used J, deformation theory of plasticity.

With u; as the displacement vector, ¢, as the linearized strain tensor, 8, = %e,;,kuk ; as
the linearized rotation vector, let the linearized curvature tensor be y;; = §,; and note
that it can be expressed in terms of the strain gradients as y,;; = eu€;,. The curvature
tensor y is an unsymmetric deviatoric tensor. Let ¢, = ¢4/3, &, = ¢;—¢, 0; and
g = \/% The invariant of y used to form the dependence on strain gradients is

Ye = « /%x,,x,,. Additional invariants of the strain tensor are not taken into account
in this formulation. Certain strain gradients make no contribution to y,, an example
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being an irrotational deformation field (i.e. 8, = 0). The two invariants, ¢, and ., are
combined into a single effective strain quantity according to

E? =g+, 2.1

where / is a material length quantity which becomes the sole additional constitutive
parameter in the theory. The physical basis for combining the terms in this manner is
discussed in Fleck et al. (1994). In the simplest interpretation, ¢, is regarded as a
measure of the density of statistically stored dislocations and 7, is a measure of the
density of geometrically necessary dislocations produced by the strain gradients. Thus,
E is regarded as a measure of the total dislocation density. The energy density for the
deformation solid is postulated to be

W(E,¢,) = w(E) +3 K&, (2.2)

where the elastic part of the strain energy due to the deviatoric strains is included in
w, and « is the bulk modulus of the solid. For an incompressible material, the second
term in (2.2) vanishes.

With o; as the symmetric part of the stress tensor, o,, = 0,/3, s, = 6,—0,,0,, and
with m;; as the unsymmetric, deviatoric couple stress tensor,

OW = a0, +m; 0y, = 5,08, +m; Y+ 0, 06,, 2.3)
where
ow cw ow ow
y=5—, my=5—, Or s,,»=—vf, My =—-"—, Opn=Kt, (2.4)
¢, Oy dej; O

An effective stress can be defined as
32 =062417 ms, 2.5

where 0. = \/3s,;5,,/2 and m, = \/3m;m,/2. The effective stress and strain are related
by

T = Ow/OE (2.6)
from which it follows that

2x 2 X
s =me; and my = -1 —y. 2.7

W3 E 30 EY

The focus of the present study of crack tip fields will be on behavior within the
plastic zone where stresses have exceeded yield. Within the plastic range, the solid will
be represented by the power law relation

E (n+1)/n Z E 1/n
w= " 0'080< ) such that *=(> . (2.8)

n+l N 09 &o

As in the conventional formulation, g, is identified with a measure of the tensile yield
stress and ¢, is the associated elastic tensile strain at that stress. When strain gradients
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are small (i.e. /[y, < &), the above relation reduces to the J, deformation theory of
plasticity for a power law solid.

A principle of virtual work is postulated, thereby embedding the theory within the
framework of coupled stress theory [Fleck ez al. (1993), c.f. Koiter (1964) for coupled
stress theory]. Let 7, be the anti-symmetric part of the stress such that the traction
vector acting on a surface element with unit normal », is T; =(¢,;+7,)n, and let
g; = myn; be the coupled stress traction vector. The principle of virtual work statement
for all admissible variations oy, is

j [T; 5”["“]{501'] ds = J [aij 58,y+m,-,'5xﬁ] dav. 2.9)
s v

The associated equilibrium equations in the absence of body forces or couples are

O+, =0 and 1, = ~%e,»jkm,,,-y,, (2.10)
If desired, the anti-symmetric part of the stress, 7, can be eliminated in the field
equations in favor of the gradients of the coupled stresses using the second equation
in (2.10). Since these components will prove to be significant, we will retain them as
explicit variables. Under conditions that W is convex, principles of minimum potential
energy and complementary energy can be constructed (Fleck er al., 1993). Versions
of these principles will be used in formulating the numerical solution methods.

2.2. Formulation of the problem for the crack tip fields

Pure mode I and mode II problems in plane strain will be considered with non-zero
displacements u,(x,, x,) and #,(x,, x,). The only non-zero rotation component is &,
with its associated component of moment traction g¢;. The list of non-zero stress and
strain quantities iS: @y, x5, 033, 613 = G315 Ti2 = —Ta1, E115 €225 £125 E11> X31> Xa2» Py3 and
my;. The crack tip is located at the origin and the crack lies along the negative x, axis,
as shown in Fig. 1. The following generalization of Rice’s (1968) path-independent
J-integral exists for the deformation theory solid

plastic zone
HRR )‘(2

r
0

X,

HRR

\
X
A

2

r=[
=

Fig. 1. Asymptotic crack tip geometry for plane strain problems.
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J= J‘ (Wn] —T,—u,ﬂ —q,—9,—v1)ds, (211)
C

where C is any contour circling the crack tip originating on the lower crack surface
and ending on the upper crack surface with s as the distance along the contour. When
the force and moment tractions vanish on the crack surfaces, J has the same value
for all such contours C. The value J will be used as the amplitude measure in what
follows. In small-scale yielding, J = (1 —v?)K*/E, where K is either the mode I or mode
IT elastic stress intensity factor, £ is Young’s modulus and v is Poisson’s ratio.
However, for the problem posed below there is no need to invoke small-scale yielding.

As previously noted, the above formulation reduces to conventional deformation
theory for a power-law solid when / = 0. The singular crack tip fields in that limit are
the HRR fields (Hutchinson, 1968; Rice and Rosengren, 1968)

J nj{n+1})
U = 30( > ri; (0, n),

ao&ol,r

J nfin+1) J 1/(n+1)
L= g o 5, 2.12
81», &o (0'080 1,/') 81] (05 n) th () <O’0801n r) O-U(B’ n)a ( )

where r and 6 are polar coordinates centered at the tip. The functions of # and 8, 4,
&, and &, depend on whether mode I or mode II holds, as does the function of », I,
These functions are tabulated and available in the report by Symington ez al. (1988).

According to the HRR distribution (2.12), strain gradients are unbounded at the
crack tip, varying as r~ @"* D+ The zone in which strain gradient effects become
important is located at the crack tip and is surrounded by the HRR field. Formally,
with R, as the size of the plastic zone and with J sufficiently large such that R, > /,
one can pose the asymptotic crack tip problem depicted schematically in Fig. 1
wherein the solution to the complete strain gradient problem is required to approach
(2.12) in the outer field for r// > 1. It will be seen that the departures of the complete
solution from the HRR solution become significant when r// is of the order of unity.
In carrying out the numerical analysis described in the next section, we impose
conditions on the outer radius R of the meshed region using u, in (2.12) to specify the
displacements and rotation, with R/! chosen to be sufficiently large to ensure that the
outer field does approach the HRR limit. The asymptotic problem of Fig. 1 can be
meaningfully posed for the limit of an elastically incompressible material (k — o),
but for numerical purposes it is useful to keep « finite.

The focus 1in this paper is on the influence of strain gradient effects near the crack
tip within the regime of load and parameters such that the present small strain
formulation is valid. We proceed by anticipating that such a regime does exist, and
return to the issue after the small strain solution has been produced to give precise
conditions which ensure that large strain effects, such as crack tip blunting, do not
invalidate the small strain assumptions.

The path independence of the J-integral in (2.11) allows one to draw some con-
clusions about the asymptotic behavior of the solution as ¥ — 0. As in the conventional
theory, (2.11) suggests that W — f(6)/r as r — 0, and it will be seen that this is indeed
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the case. Some of the conclusions about the distributions of the stress and strain
quantities which follow from this asymptotic behavior for ¥ are subtle and not easy
to anticipate. Elastic compressibility does not affect the most singular fields, and
without loss of generality we will take k — oo in the following discussion. As the first
step, suppose that the strains vary as r~* as the tip is approached such that ¢, » .
Assuming the displacements generating these strains are not irrotational, then .
would behave like r =" as r — 0, and the strain gradient terms would dominate W as
the tip is approached. In fact, we find that the dominant fields at the tip are irrotational
(i.e. have 8; = 0 and, therefore, give no contribution to ¥, to lowest order) such that
the strains and not the curvatures are dominant at the crack tip. Then, by (2.1), (2.8)
and the requirement that W — r~', one is led to the conclusion that s = n/(n+ 1) with
g — r~"®*D and ¢, » r~'®*1 as is the case for the HRR fields. The one non-zero
nonsymmetric stress component, 7,,, has the same singularity as the other stress
components. Explicit closed-form expressions for the dominant fields will be obtained
which agree with a particular limit obtained by Huang ef al. (1995).
In general, the solution in plane strain, mode I and mode II can be written as

J nj(n+1) ) 2 ~ r
J nfin+1) A r ) ) r
loy, I~ ' my, 1] = a4 (60801 r) I:Gij(g’l’n >’ m,-j(B, ,n), TU(H’I’ n)}

(2.13)
Based on the observations outlined above, it will be argued that the dominantly
singular crack tip fields are such that &, ¢, and 1, are all finite as »// — 0, while ¥,
and #,; approach zero. Numerical results will be presented in Section 4 for these
dimensionless quantities for r// ranging from values which are small compared to 1
to values which are sufficiently large that the HRR solution is approached. In the
outer field where the HRR solution is approached, &, and &, respectively, approach
&; and &, defined by (2.12). As r// — 0, the dominant singular fields given in Section

5 are approached.

~ ™~

3. FINITE ELEMENT FORMULATION

In this section, several finite elements will be specified for the deformation theory
of strain gradient plasticity outlined in the last section. The potential energy P(u) is
given by (Fleck and Hutchinson, 1993)

P(u) = '[ {w(s, )+ %Ks;";,}dV—f (T?u;+426,) dsS, (3.1a)

where w(g, x) is defined in (2.8), and the surface integral is taken over that part St of
the surface of the body over which T and g; are prescribed. The principle of minimum
potential energy states that among all the kinematically admissible displacement fields
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u, the actual displacement field will render P(u) an absolute minimum, provided w is
strictly convex in ¢ and %. The associated variational statement is

5P(u) = 0. (3.1b)

For finite element formulations based on the principle of minimum potential energy,
admissibility conditions dictate continuity of rotations, 8,, requiring elements which
have C, continuity in displacements, u,. Alternatively, the finite element scheme can
be formulated based on other mixed variational statements, relaxing the C; continuity
requirement. We have found that the choice of element for gradient plasticity is
complicated anag, in particular, quite sensitive to details of the constitutive relation.
So that others will not have to repeat our steps in element development, we have
chosen to give a reasonably systematic presentation of the elements we have tried,
indicating our experience with each one. A displacement-based C, element for anti-
plane deformation will first be discussed, followed by its extension to the plane strain
case. Difficulties with this class of element will be noted. Other elements are then
explored for plane strain deformation based on mixed variational statements. The
element used to carry out the present crack tip calculations is indicated at the end of
Section 3.2, and readers wishing to bypass details about the choice of finite element
may want to skip directly to that section.

One important consideration in finite element formulation of current strain gradient
plasticity is the continuity of rotations 6, while imposing 6, = %e,-jkuk,,-. If a general
couple-stress theory is adopted where the rotations 6, are treated as independent of
displacements u; as proposed originally by the Cosserat brothers (Cosserat and
Cosserat, 1909), the procedure for finite element formulation will be greatly simplified.
It has been used by de Borst (1993) and others to study localization problems, which
is different from the current study.

3.1. A C, element for anti-plane deformation and its extension to the plane strain case

In anti-plane deformation, the only non-vanishing displacement quantity is # = u;.
The rotations are related to u by

0, = lu'x, and 6, =0. 3.2)

u,y, 92 = —2

1
2
To develop a C, element for the strain gradient plasticity in anti-plane shear, one can
exploit the similarity with the bending of plates where continuity of the normal
displacement and its first partial derivatives is required. Extensive research into finite
element formulations for plates in the past several decades has produced several
elements which perform well in applications. The C, elements selected for discussion
are similar to one given in Zienkiewicz and Taylor (1989b), whose notation and
formalism are adopted here.

Consider a triangular element with corner nodes in the (x, y) plane. This element
has three nodal variables at each node, namely the displacement « and its two first
derivatives u, and u,. As is common in finite element formulations, the displacement
field within one element will be given by a listing of the nodal variables, now totaling
nine
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3 (u,u,x,u,y]

1

[u’u’xau’y) £3 2 (u,ll’x’llsy]

Fig. 2. A 3-noded displacement-based C, element for anti-plane deformation.

(u,v,0)

Fig. 3. A 4-noded hybrid element for plane strain deformation.

a={a,), where a,=u, . (3.3)
aj u‘y i

Since this element has three nodes and nine degrees of freedom (DOF), it will be
designated here as N3U9 for convenience.

Following Zienkiewicz and Taylor (1989b), a polynomial expression utilizing area
coordinates is used to define the shape functions in terms of the nine nodal variables.
As shown in Fig. 2, the position of point P is determined by its three area coordinates
L,, L,, and L,, where L, = area P23/area 123, etc. Area coordinates are a natural
choice for formulating triangular elements (Zienkiewicz and Taylor, 1989a,b). Now
assume that the displacement field within one element can be approximated by

u=o LitoLotosls+oas Ly Ly+oasl,Ly+aglsL,y
o, L Ly +og L3l +agLiL,,  (3.4)

where the o,s are free parameters to be determined. By relating the nine o5 to the nine
nodal variables, we find, after some algebra, that (3.4) can be re-written as

u=Y Na, (3.5)



Crack tip fields in strain gradient plasticity 1629
N! 3L7 =201} —2LL,L,
NT =N} y={—cL} L+ LL,Li) + ¢, L} L, (3.6)
N? b(L2L,+ L,L,L,)—bL}L,
where

by =y,— Vi € =X—X; (3.7)

and i, j, k are the cyclic permutations of 1, 2, 3.
For anti-plane deformation, the generalized strain vector E is given in terms of
nodal variables by

3
ZNl\al
r e = g
3
y) 1ZN,Wa,
=4 —{ 2 —B (3.8
N Xi2 T_ 13 T_ » &
VZNiyya'
A21 2507
L X22 J 12
- 5 Z] Ni.xxai

where B is the strain shape function.
The corresponding generalized stress vector X is defined as

L= {t,1,my,my.m; My, 3.9
where
dw(e, )
Y=""p (3.10)

With shape functions given above and the principle of minimum potential energy
as the basis, the formulation of finite element equations follows the standard pattern,
and will not be documented here. It was found that volume integrals could be
evaluated with sufficient accuracy using three-point numerical quadrature. The
element passes the patch test, and performs quite well on the anti-plane shear problem.
An independent study of the mode III crack problem within the framework of strain
gradient plasticity, using this and other similar elements, will be published elsewhere
by Shiermeier (1996). There are important differences between the form of the singu-
larity in mode I1I and that in modes I and II.

The above element, N3U9, as well as other elements which will be introduced later
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in this paper, was ported into the commercial finite element package ABAQUS
through its user-defined element capability.

A modification of N3U9 derived by Specht (1988) has also been implemented. This
modified element uses three fourth-order terms in place of the three cubic terms in
(3.4), resulting in a new displacement field given by

u=o,L,+o,Ly+osly+o, L Ly+oasl,Ly+ogliL,
+o, {L1L, +%L1L2L3 [B(1—ps) Ly — (14 3p3) (L — L3)]}

+og{L3iL, +%L1L2L3[3(1 —u) Ly — (1 +3p)(Ls— L)1}

+ag {L.%Ll +%L|L2L3[3(1 —p2) Ly — (1 +3p)(Ly —Lz)]}, (3.11)
where
L -0 B0
= = fly = (3.12)
17 I3 /3

and /,, L, [; are lengths of corresponding triangle sides as indicated in Fig. 2.
Although this element is claimed to be one of the best in its class for plate bending,
it does not give adequate results for the anti-symmetric stress quantities 7,; in our
strain gradient applications, which are computed from (2.10).
The extension of the element N3U9 to plane strain deformation is straightforward.
Denote the two non-zero displacement components by u = u; and v = u,. Accordingly,
the element will now have six nodal variables at each node, namely,

U.}'};ra

totaling 18 DOFs for one element. This element is thus denoted as N3U18.
The shape functions take the same forms as given in (3.4)—(3.7), except now for

both u and ». The generalized strain vector E for plane strain deformation reads,

a={u u, u, v (3.13)

v,

2 arl 2 ar2 2 73 1 a7l L ar2 L ar3 N
-e, - _ENI.,.X }Ni,x }Ni,x _ENi.y _ENi,y _§N1|
1 1 1 2 1 3 2 t 2 a72 2 ar3
e, -3 Ni,,\' -3 Ni..r 3 Ni..r 3 Nz,y 3 Ni.y 3 Ni,y
| 1 1 2 1 3 1 1 1 2 ! 3
E e F i 2 —EN(,X _ENI'.X _ENL.X _ENI,)' _—gNi,y _;Nl\ L
= < =
M = 1 2 3 1 2 3
rxy i=1 Ni‘y Ni,y Ni,y Ni,x Ni,t Ni..\‘
1 1 1 2 1 3 1 1 1 2 1 3
s ) N"J}’ ) Ni..’(y 3 Ni.xy 2 Ni.xx 3 Ni, xx 5 Ni. Xx
L ) 1 a7l 1 A72 I 73 Larl 1 a72 1 ar3
) ~IN IN2, o —INEL INL N2 DN
. 2 Lyy 2 Lyy 2 iyy 2 Lxy 2 Lxy 2 iLxy
( U;
(u,x)i
(u,);
Wy
x < . —Ba, (3.14)
v
(U,,x)i
“ @),

where B is the strain shape function. The corresponding generalized stress vector X is
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L ={0,,0,,0.,0,,m.m,}". (3.15)

The volumetric strain ¢, is related to the nodal variables by

=

{Nil‘_\' ler N?,v Nll} le} N?y}al (3 16)

Em =
i=1

with the hydrostatic stress p given by p = g,

The finite element formulation for N3UI18 is again based on the principle of
minimum potential energy (3.1), and follows the standard procedure. Integration of
the contribution of w to the strain energy is evaluated using three-point numerical
quadrature. One-point reduced integration is used to evaluate the volumetric con-
tribution to the strain energy, thereby avoiding possible locking phenomena in case
the solid is incompressible or nearly incompressible (Zienkiewicz and Taylor, 1989a).

This element passes the patch test, performs well for both linear solids with couple
stresses and conventional elastic—plastic solids (i.e. the present class of solids in either
the linear limit or in the nonlinear case with /= 0). However, it fails to produce
adequate results for the hydrostatic stress when applied to calculate crack tip fields
for the general case—a phenomenon commonly encountered when developing new
finite elements for incompressible or nearly incompressible solids. The performance
difference observed for / = 0 and / s 0 strongly suggests that the performance of a
given element is closely tied to the constitutive behavior, as borne out for other
elements developed in this study.

To overcome the difficulty associated with the locking phenomena, two other
variational statements have been used as the basis for the finite element formulation.
One treats the hydrostatic stress p as an additional independent variable. It reads

I(u,p) = L{w(s, 1)+ ;—sz } dv+ Lp<£m - 1-;) dv— L‘I‘(T?u,- +¢76,)dS
(3.172)
with
ST(u, p) = 0. (3.17b)

Another is modified from Simo ez al. (1985) where both the hydrostatic stress p and
the volumetric strain ¢, are independent variables in addition to the displacements. It
has the form

1
M(u, p,e,) = J {w(s, )+ 2Kgf}dV+j p(sm—av)dV—J (T?u,+4"6,)dS
v v Sr
(3.18a)
with
oll(u, p,e.) = 0. (3.18b)

In this formulation, the volumetric strain given by (3.16) is enforced in an averaged
sense, as indicated in the second term of the right-hand side of (3.18a). Of course, the
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displacement fields are still same as for the element N3U18. Unfortunately, none of
the elements we formulated based on (3.17) or (3.18) shows significant improvement
over the original.

3.2. Hybrid elements for plane strain deformation

The elements introduced in the last section are based on the principle of minimum
potential energy, which requires continuity of first derivatives of the displacements.
Consequently, the displacements as well as their first derivatives are used as nodal
variables, resulting in large number of degrees of freedom for one element and
compromising computational efficiency. Moreover, the shape functions are relatively
complicated to formulate. In this section, the following variational statement is used
as the basis of an alternative finite element formulation

M(u,0,7) = L{w(a, )+ % rcsi} dv+ JV 0, dV — LT(T?u, +478)dS
(3.19a)
with
oll(u,6,7) =0, (3.19b)
where 7 is the anti-symmetric component of the stresses, and
2y = el —5(u—uy)). (3.20)

In (3.19), both the displacements #,; and the rotations 8, are considered as independent
variables. For a couple-stress solid, «,; = 0 enforces the relationship between rotations
0, and displacements u;. The variational statement (3.19) is derived through enforcing
a; = 0 in an averaged sense in (3.1) by use of the Lagrange multipliers t,;, which are
the anti-symmetric stress components. This principle was first used by Herrmann
(1983) as the basis for a finite element formulation of couple-stress solids.

Plane strain elements based on (3.19) have as primary dependent variables the
displacement components (u,v), the rotation 6 = 6,, and the anti-symmetric com-
ponent of the stress t = 1, = —1,,. Within this framework, we have formulated 4-,
6-, 8-, and 9-noded elements. For these elements, there are three nodal values at each
nodes, namely (u,v,6), and one constant t within each element. Therefore, both
displacements and rotations are continuous across elements, but not 7. Figure 3 shows

A ln 7 TO\ B

crack face symmetry plane

crack tip
Fig. 4. Finite element mesh for crack tip problem using element N4U13.



Crack tip fields in strain gradient plasticity 1633

such a 4-noded element. Elements with continuous 7 have also been explored, but
generally performed poorly. The total degrees of freedom for an N-noded elements
are thus (3N +1). We shall denote those elements as N4U13, N6U19, N8U25, and
N9U28, respectively. These are standard isoparametric elements, with the same shape
functions for u, v, and 6. The details of formulation are omitted here for brevity.
Numerical quadrature is used, with full integration for the deviatoric part of the strain
energy and reduced integration for the volumetric part. The second term in (3.19a),
which enforces the rotation—displacement relationship, is also fully integrated,
although numerical experiments show little difference if reduced integration were used
instead.

All the elements developed above have been used to calculate the plane strain crack
tip fields for the strain gradient theory of plasticity given in Section 2. The performance
of any of these elements depends strongly on the constitutive parameters, the fineness
of the mesh, and the compressibility of the solid. For the power law solid with # = 3,
all elements behaved quite well if / = 0, even for very fine meshes. However, when
strain gradient effects come into play (/ > 0), the performance of all the elements
deteriorates to some extent. The best element in terms of performance, accuracy, and
economy seems to be the 4-noded N4U13. The results reported in the next section for
plane strain crack tip fields are computed using this clement, with 18 elements dis-
tributed circumferentially around the crack tip in the range 0 < 6 < n. The accuracy
of the numerical results are validated by other elements and by internal consistency
as the mesh is refined.

4. NUMERICAL RESULTS FOR CRACK TIP FIELDS

Numerical results are presented in this section, obtained using the finite element
methods outlined in the last section. Results for the dimensionless quantities in (2.13)
are first presented for plane strain mode I, followed by results for mode II. The 4-
noded hybrid element N4U13 is used with the mesh shown in Fig. 4. Computations
with other elements and other meshes have also been performed to check the accuracy
of results that will be presented below. Displacements and rotation are prescribed on
the outer boundary coinciding with the HRR solution in (2.12); the functions i, are
taken from Symington ez al. (1988). The outer radius of the mesh is taken to be 10/.
The numerical results presented below, together with numerical results obtained with
meshes having other outer radii, indicate that the choice of 10/ is adequate. For mode
I, v = 8 = 0 is enforced on the symmetry plane, while u = 0 for the mode II case. The
crack flank on 6 = r is free of force and moment tractions; these conditions are
enforced as natural boundary conditions by the variational principle. All results
presented below were computed with 1 = 5, although calculations were also carried
out for other values of ».

4.1. Plane strain mode I crack tip fields

Distributions of the dimensionless stress components in (2.13), &, %, and 3, are
plotted in Fig. 5(a)—(f). The normalized effective stress quantity X is defined in the

same manner as the other stresses in (2.13) according to
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Fig. 5. Distributions of normalized stress components defined in (2.13) and (4.1) for mode 1.
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Included in these plots is the HRR solution, shown as the solid line curves, which
with the normalization of (2.13) depends only on 8 (%, vanishes for the classical
theory). The computed results for r// = 5 can be seen to be close to the HRR limit.
This provides internal consistency indicating that the choice of radius, r// = 10, on
which the HRR displacements were prescribed is sufficiently remote from the tip. The
plots indicate that gradient effects are strongly evident for r// = 1. Moreover, the
trends with r// give convincing evidence that the dimensionless quantities, 6,;, etc., are
bounded as r// approaches zero. Note especially that the component of the anti-
symmetric stress tensor, %4, undergoes little change for // decreasing from two orders
of magnitude from 0.1 to 0.001.

The stress components &4 and &, are surprisingly insensitive to gradient effects
according to the present constitutive relation. In particular, the traction on the line
directly ahead of the crack tip, ay(6 = 0), is virtually unaffected by the gradient
dependence. On the other hand, the effective stress X increases by more than a factor
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Fig. 5—Continued.

of two relative to the effective stress in the HRR solution as r approaches zero. The
same is true for the shear traction, 7, = a4, + 14,, acting on the radial line emanating
from the tip with 6 = 90°, due to the contribution of the anti-symmetric stress com-
ponent. The effective stress £ becomes independent of 8 as the tip is approached, as
will be evident from the asymptotic analysis in the next section.

Companion results for the dimensionless strain variations defined in (2.13) are
given in the plots of Fig. 6. It will be evident from the results for the singular
fields presented in the next section that these strains are associated with irrotational
displacements as the tip is approached. To examine the role of the curvatures, y,;, we
have included plots in Fig. 7 of the normalized total effective strain £ and the two
quantities from which it is composed, the effective strain ¢, and the effective curvature
X, at two distances from the tip, r// = 1 and r/! = 0.01. The effective strain ¢, makes
the dominant contribution to the total strain E, and it will be argued in the next
section that /y, is less singular than ¢, as r// approaches zero. (This is more evident
from the numerical results for mode II, as can be seen by looking ahead to Fig. 10.)
The effective strain ¢, immediately ahead of the tip on 6 = 0 is significantly larger
than the corresponding strain predicted by the HRR solution. Thus, one of the main
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Fig. 6. Distributions of normalized strain components defined in (2.13) for mode L.

distinctions between the predictions of the two theories is the substantial enhancement
of both X and ¢, ahead of the crack tip in the strain gradient solution relative to the
HRR solution. This distinction exists even though the traction on the plane ahead of
the tip is nearly the same in the two solutions.

4.2. Plane strain mode II crack tip fields

Arguments concerning the relative order of the singular contributions apply for the
mode 11 problem as well. Equation (2.13) pertains with the non-dimensional quantities
topped by the circumflex being bounded as r// approaches zero and approaching the
corresponding quantities in (2.12) for r// large. The displacements from the HRR
solution in (2.12) are prescribed on r// = 10.

Stress components are presented in Fig. 8(a)—(f). As in mode I, the components of
the symmetric stress tensor depart only modestly from the HRR solution. The effective
stress ¥ becomes independent of 6 as r approaches zero. The major difference between
the predictions of the two theories in mode I1 is the magnitude of the shear traction,
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Fig. 7. Distributions of the total effective strain £ and the two quantities from which it derives for mode 1
at (a) r// = 0.01 and (b) r// = 1.

4+ T4, directly ahead of the crack tip, which is larger by more than a factor of two
relative to the HRR solution. Here, again, this is almost entirely due to the con-
tribution from the anti-symmetric stress component z,,.

Strain distributions are plotted in Figs 9 and 10. The strains approach the dis-
tributions is given later in Section 5.2 for mode 11 for small #//. The contribution of
Iy, to the total strain E is largest when r// is about unity and approaches zero as the
tip is approached, as seen in Fig. 10. It is seen again that E becomes independent of
O near the tip. Relative to the HRR solution, the strain gradient theory predicts strains
ahead of the tip that are lower by a factor of two while the shear tractions are larger
by a factor of more than two.

5. DOMINANT SINGULAR FIELDS

For the present constitutive theory with # > 1, Huang ez al. (1995) concluded that
it is not possible to have a dominantly singular solution of separable form with ¢; and
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¥;; having the same singular dependence on r, and we corroborate that finding in the
Appendix. The numerical results presented in Section 4 give strong evidence for the
dominance of the strains over the curvatures, y;,. As already noted, this is only possible
if the dominant displacement field is irrotational. Our starting point will be to look
for a dominant singular solution derived from an incompressible, irrotational dis-
placement field.

5.1. Mode I

It is readily verified that the only mode I strain distribution varying in accord
with =@+ and derived from an incompressible, irrotational displacement field is

specified by
A sy n+2 . (n+2
. 69) = A(—cos(lH_1 0>,sm (n+ i 9>), 5.1

where 8y = —§&,, A is a positive amplitude factor to be determined, and the nor-
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malization introduced in (2.13) is retained. The effective strain from (5.1) is inde-
pendent of 6 and given by

J nin+1) 2
= a4 52
& &g (005()Inr> V/—g ( )

The effective stress o, is also independent of 6, and it is straightforward to show

that
124\ 2 2
(sA,,,s‘,U)z—ﬁ(«) (—cos(i>9,sin<i>9> (5.3)
V3 ﬁ n+1 n+1

subject to the normalization (2.13). In planar polar coordinates, the first set of
equilibrium equations in (2.10) is

[ +r ! (arG,B - Troﬁ) +r : (O-rr - 0-69) = O,
079,r+‘[r0.r+r—1696,6+2r-16r9 = U (54)

With ¢,, = 6,/3 as the mean stress, write
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(am,r,@)=ao( )l'/(””(ém,f,g) with (6m,f,9>='(ﬁ)lm(f(e),gw)).

ool 7 \/§ \ﬁ
(5.5)
Noting that g,, = s,,+0,, and g4 = 599+ 7,,, One can reduce (5.4) to
dg 1 n—1) n+2
ST RRTTS A (n+1)°°s<n+19>’
df 1 =D . (n42
a0 m+rn? " _(n+1)sm<n+10>' (5:6)
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The solution to (5.6), subject to mode 1 symmetry and the vanishing of both &, and
Gg+1To,at @ =mis

2n 1 n—1 n+2
f= n+]cos<n+l B)-I— o cos(n+19>

d _ 2n 1 0 n—1 . rH—Z‘9 5.7)

and g = n+lsm e ——n+lsm 1) .
The stresses and strains associated with the dominantly singular field have now
been fully determined apart from the amplitude factor 4. Evaluation of the J-integral

expression in (2.11) using these fields gives (after a fairly lengthy, but relatively
straightforward, calculation)
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2\ 2nn

1 nji(n+1)
A=ﬁ<”+ 1n> . (58)

In summary, the normalized #-variations of the strains are given by (5.1) and the
corresponding stress variations (Ggs, 6,,, 6,9, T,9) are given by (5.3) and (5.5) where
Gog = Sep+6,,and 6,, = §,,+ 6, Plots of the normalized stresses and strains from these
equations for » = 5 are given in Fig. 11. Comparison of these variations with the
numerical solutions given in the previous figures leaves little doubt that the irrotational
singular fields produced in this section are the desired asymptotic singular crack tip
fields.

A further simplification is achieved if the HRR factor 7, is eliminated, thereby
directly linking the near-tip quantities with J. Using (5.8) with (2.13), one finds
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(Gos, Orry O +70] = 2nd (n+ 1)J 1/(Hl)x cos EZ'H +cos —]—9
00> Urrs Ugr Or \/§(n+l) 2n7m'080r n+1 n+1

1 n+2 1 n+2
— —cos{ ——8 |+cos[{——0},sin ‘—9 +sin[ —

n n+1 n+1 n+1
B (n4+1)J Yt h \/g n+2 . n+2
[&rr5 €ors Ec] —80(27[71?0'0807 x| — 7 cos n+10

(5.9b)

(5.9a)

Apart from a free amplitude factor, these singular stresses and strains agree with
those found by Huang ez al. (1995) for their version of the present constitutive law
which combines ¢, and ¥, into the single total effective strain E in a different manner
from (2.1). Their asymptotic analysis produces two amplitude factors, one pro-
portional to the present 4 controlling the irrotational field and the second multiplying
the couple stresses. Each makes a contribution to J which cannot be determined by
the asymptotic analysis alone. If the second amplitude factor is set to zero (4® = 0
in their notation), their singular fields should coincide precisely with (5.9), in spite of
the difference in the two constitutive assumptions. A comparison of the two sets of
results shows that this is indeed the case.

The limit #» = 1 is special in the sense that it is possible to have a dominant singular
field with both ¢, and yx, having the same r~'? singularity (c.f. Appendix). The
constitutive model of Huang ez al. (1995) coincides with the present model for n = 1,
and these authors have shown that there are two amplitude factors in this limit, with
one constraint provided by J. Thus, the expressions in this section for the singuiar
stresses and strains do not necessarily apply forn = 1.

5.2. Mode I

The analysis for mode II follows along precisely the lines outlined above for mode
1. The results are as follows. The normalized quantities defined in (2.13) are found to

be
A (R ) AN \/3 n+2 \/g n+2
[8,,,89,,€C]—< Y- 3 sin n+16 75 cos n+16 11 (5.10a)

2n <(n+1)]”>l/(n+l)
3+ 1\ 2nm

2 1 | 2
x | —sin 10 —sin| ——0 },-sin et 0
n+1 n+1 n n+1
. [ n+1 n+2 n—1 n+2 1
—sm(—n_HQ), n cos(n+16>,— n cos(——n+19>—cos(f+19>] (5.10b)

where 1, is now the normalization factor for the mode I1 plane strain problem.

[6969 érrs 6)’05 frﬁ] =
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The expressions for the dominantly singular strains and stresses with /, eliminated

are
1)J \/e+ D1 /3 2\ /3 2
[&,rs €0r» €] = & (M) [\/r sin<£ 8),\/7005(Z+ 6), l:l (5.11a)

2O 460 F 2 n+1
2 DJ\e+D ) +2 . 1
(600, Orr o+ T0,] = ol (et 1) x | —sin n—@ —sin{ ——6 |,
\/g(nH) 2nnoger n+1 n+1

1 n+2 1 n+2 1
s —sin{—— re ——0). (5.1
; sm<n+ i 0) Sln<n+l 6>,cos<n+l 9>+cos(n+1 9) (5.11b)

6. DISCUSSION

It is remarkable that the dominant singular fields can be obtained in closed form
for the present plasticity theory, while the #-dependence of the plane strain HRR
fields can only be obtained numerically for the less complicated J, deformation theory.
The numerical solutions in Figs 5-10 show that the transition from the HRR fields
to the dominant singular solutions occurs smoothly. Roughly speaking, the HRR
fields are accurate for r > 5/, the singular fields become reasonably accurate for
r < I/5, and a gradual transition region lies between. The singularity is robust in the
sense that it governs behavior within a non-negligible portion of the zone within
which strain gradient effects are important.

6.1. Applicability of the small strain solution

The solution was derived within the framework of small strain theory. To gain
some insight into the range of applicability of the results, direct attention to mode I
and consider the effective strain from (2.13)

J ni(n+1}
Q=%( ) .. (6.1)

0'0801,17

As a condition for validity of a small strain solution to within a distance //10 of the
crack tip, require that ¢, < 1/10. It then follows from (6.1) that the crack tip intensity
J must satisfy

I 1 1/n 1 l/in
J< ool o ), — .
001100<1080> , E¢ 0 0630[,1(1080) , (6.2)

where the last estimate uses the value of & from Fig. 7, n =15 and I, = 5. As an
illustration, if one takes / = 4 um (c.f. Fleck et al., 1994) and ¢, = 0.003, then J must
be less than about 50 J m~?if 6, = 100 MPa and less than 250 J m~?if ¢, = 500 MPa.
Such levels of J greatly exceed the atomistic work of fracture for metals, which are
typically of the order of several J m~2 On the other hand, these levels are below the
values of J at crack initiation for some of the toughest metal—ceramic interfaces and
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metal crystals undergoing atomic decohesion shielded by a plastic zone. It is also
useful to re-express condition (6.2) in terms of the crack tip opening displacement.
Using the conventional estimate for the tip opening displacement in plane strain mode
I, J(20,), one finds

1 1/n
< .
b < 0.0311(1080> . (6.3)

Typically, this condition required 9, to be less than //16, which suggests that the
criterion stated above may be unduly restrictive. Finally, it should be noted that the
criterion has been derived for a stationary crack. Strains at the tip of an advancing
crack are distinctly smaller than those of a stationary crack, and this should also
permit the criterion to be relaxed.

6.2. Implications for fracture and avenues for further research

The strain gradient theory gives rise to higher stresses near the tip than the con-
ventional theory, but perhaps not as large as might be expected. In particular, the
normal stress acting on the plane ahead of a mode I crack tip is largely unaffected by
the strain gradient effects considered in this paper. The greatest change occurs for a
mode II crack for which the shear traction on the plane ahead of the tip is increased
by more than a factor of two relative to the prediction of the conventional theory. As
noted in Section 5, the deformations producing the most singular strains and sym-
metric stresses are irrotational and, therefore, have 7, = 0. By virtue of the constitutive
law used in the present theory, based on (2.1), the expected higher stresses do not
occur in mode 1. In other words, the most singular deformations adjust to reduce the
associated gradient effect. Similar behavior was observed by Fleck and Hutchinson
(1993) in their analysis of void growth within the context of the present theory. The
dominant deformation mode for a spherical void is a spherically symmetric expansion
field which is irrotational. Thus the dominant mode does not contribute to the gradient
measure y., with the result that void growth is not significantly influenced according
to the present gradient theory. In both instances, the absence of a stronger effect is a
consequence of the restricted form of the constitutive law invoked in (2.1) and (2.2),
which brings in the gradients only through the one measure ..

An attractive general formulation for isotropic solids dependent on first-order
strain gradients has been laid out by Smyshlyaev and Fleck (1995), who extended
developments of Mindlin (1965). For incompressible solids, there are three inde-
pendent invariants of degree two of the second-order displacement gradient tensor,
Nk = Uy;. Smyshlyaev and Fleck have shown that #,; can be decomposed into three
measures, 5 = 4" +7?+4®, which are mutually orthogonal in the sense that
W =0, etc. then n{Pn%w for m=1, 2, and 3 represent three independent
invariants. In terms of these invariants, a generalization of (2.1) is

2 272 (D) 4 72 () (2) 4 J2 4 (3) e (3
E? = & +18nintid + Iayn@dni + 1aym5in (6.4)

involving three non-negative material length parameters, /. One of the strain gradient
terms in (6.4) can be normalized such that it coincides with /?y2. Thus, with the other
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two length parameters set to zero, (6.4) reduces to the relation (2.1) used as the basis
of the present work. With all three length parameters as positive, (6.4) is positive such
that any non-zero strain gradient will give rise to a non-zero E. The irrotational
displacement field associated with the dominant stresses and strains at the crack tip
found in the present study would be excluded if the constitutive law were based on
(6.4) with at least two of the three length parameters being non-zero. It is likely that
the near tip stresses for a solid based on the more general total strain measure (6.4)
would be higher than those based on (2.1), perhaps significantly so.

Further effort will be required to understand the relationship between crack tip
stresses and constitutive behavior in the regime near the tip where strain gradients
become important. The present results for the pure mode I and mode II fields in plane
strain have been derived for a limited class of solids whose dependence on strain
gradients is through the single invariant .. As discussed above, this model may miss
significant aspects of strain gradient dependence. Of equal importance is the need to
establish fundamental connections between phenomenological total strain measures
used to formulate the constitutive law, such as (2.1) and (6.4), and dislocation patterns
associated with strain gradient deformations.
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APPENDIX: ANALYSIS OF COUPLED SINGULAR FIELDS

We look for dominantly singular fields where both &, and y; behave as r=""*" as r
approaches zero. The discussion will focus on the plane strain, mode I problem. As already
discussed, such coupled fields would only be possible in separable form if

— Tim+ 1y ﬂ+2 4 n+2 (n+2)(n=—1){ n+] ,
(u,, tg) = A(n+ )r ( cos(-n+19 , sin *n+10 +r 2n+3“(6)’”(9) R

(A1)

where the first contribution with amplitude A4 is irrotational and the second gives rise to non-
zero ;. Both contributions are incompressible. The function u(8) is to be determined. A prime
denotes differentiation with respect to 8. The rotation from (A.1) is

, 1 1 2 :
0, - r‘""“’*(n_’_ yan n+3u>5 P D). (A.2)

2\2n+3 n+1

A direct calculation shows that

E— \/,;ez +12Xez — r—n/(n+l)\/’4A2/3+12x(9)2 = r—n{(n+1)E‘(9), (A3)
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where x(0) = \/2(w"* + (»/(n+1))?)/3. The moment equilibrium equation in (2.10) can only
be satisfied to lowest order by the coupled fields if ¢,,,, = 0. In planar polar coordinates,
this equation is (rm,;),+ny; 9 = 0. When the couple stresses are expressed in terms of y;, and
Y30 With the aid of the constitutive equation and then in terms of w and w’, the moment
equilibrium equation can be reduced to a non-linear second-order ordinary differential equation
for w(6)

n
(n+1)>
Further reduction of this equation using (A.3) and the definition of x(0) gives
- 2[n(n+ 1)(A/D) + (2 — D +r(n+ 1) ]o? +n*w?
(n+ D R2rr+D2A/D  + (n+1) 0 +nw?]
Symmetry and the boundary condition m,, at § = © require
w(0)=0 and o'(n)=0. (A.6)

Forn = 1, (A.5) with (A.6) is satisfied by w = ¢sin(8/2) for all values of A. Coupled solutions
of the type sought are possible in this limit, and such solutions have been considered by Huang
et al. (1995).

For n > 1, we have explored the possibility of solutions to (A.5) with (A.6) using a simple
numerical shooting procedure. Without loss of generality, one can take w(0) = 0 and w’(0) = 1,
and integrate across the interval to obtain w’(x). Note that (A.5) is well conditioned—both the
numerator and the denominator in the term multiplying @ are positive if 4 > 0. A solution
exists for each n if 4 = 0. This confirms the finding of Huang et al. (1995) who used a stress-
based formulation to carry out their analysis. If » > 1, no solutions were found for any a > 0,
again verifying the findings of Huang et «l. in their analysis of the present version of the
constitutive model. The conclusion for n > 1 is that no coupled solution of the type sought
exists. The numerical results in the body of the paper give strong support to the existence
of dominantly singular fields which are irrotational with less singular couple stresses and
curvatures.

(BE-0-Dmgyy 4 E-tn=Nmgy _ . (A4)

w=0. (A.5)



