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Abstract

The question motivating the present study is whether metal sandwich plates with su3ciently strong cores
are able to sustain substantially larger blast loads than monolithic solid plates of the same material and
total mass. Circular plates clamped at their edges are considered under blast loads large enough to produce
substantial de5ections. The material is elastic–perfectly plastic. Material strain-rate dependence and fracture
are neglected. A dynamic 7nite element formulation for elastic–plastic solids is employed to analyze the plate
response. Uniformly distributed blast impulses are considered. As a basis for comparison, complete results
are obtained for solid plates for both zero-period and 7nite-period impulses. Similar computations are carried
out for a set of sandwich plates having tetragonal truss cores. The potential for superior strength and energy
absorbing capacity of the sandwich plates is demonstrated compared with solid plates having the same mass.
The importance of both the strength and energy absorbing capacity of the core are highlighted for superior
blast resistance. Proposals for further research are made.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The superior performance of sandwich plates relative to monolithic solid plates in applications
requiring high strength and sti=ness is well known. Recent work on polymer matrix 7ber-reinforced
sandwich plates has focused on the advantages of this type of construction under blast loads when
the deformations remain dominantly elastic [1]. The relative advantage of sandwich plates over solid
plates has not been 7rmly established for metal construction when strong blast loads require both high
strength and energy absorption. In this 7rst paper of a series, the responses of metal sandwich plates
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Nomenclature

E Young’s modulus
Ec equivalent Young’s modulus of sandwich core
Hc height (thickness) of sandwich core
h thickness of solid plate
hf thickness of face sheet of sandwich plate
I initial impulse
Î impulse per unit area
KEsandwich initial kinetic energy imparted to sandwich plate
KEsolid initial kinetic energy imparted to solid plate
Lc length of truss member
Msandwich total mass of sandwich plate
Msolid total mass of solid plate
p pressure
R radius of plate
Rc radius of truss member
T response duration of the plate
V0 initial velocity
� material constant in metal foam
�max maximum de5ection
� Poisson’s ratio
�p Poisson’s ratio for plastic strain increments
� density of solid plate
�c e=ective density of sandwich core
J�c = �c=� relative density of sandwich core
�e e=ective stress
�m mean stress
�Y uniaxial tensile yield stress
�c

Y compressive yield stress of sandwich core
� duration of blast pressure
�c

Y shear yield stress of sandwich core

are compared with those of solid plates of the same material and total mass under identical impulse
loads. Blast loads of su3cient magnitude are applied such that the plates undergo large permanent
de5ections. The material is taken to be elastic–perfectly plastic with no strain rate dependence. While
detailed descriptions of the core will not be pursued in this 7rst study, core properties representative
of truss cores will be considered since they have the potential to achieve the combination of high
strength and energy absorption necessary for e=ective performance of sandwich plates under blast
loads.

The study is conducted within the framework of dynamic, 7nite strain plasticity for an elastic–
perfectly plastic solid with no rate dependence. Computations are preformed using the explicit time



Z. Xue, J.W. Hutchinson / International Journal of Mechanical Sciences 45 (2003) 687–705 689

integration version of the commercially available code ABAQUS [2]. The simulations capture limits
to deformation due to necking localization, however, no consideration will be made in this study of
limits due to fracture. The focus will be on the comparison between sandwich plates and solid plates
assuming each is able to withstand fracture. If the plates are constructed from a material with good
ductility, this is tantamount to comparing them over the range of blast loads for which deformations
are comparable.

To provide a basis of comparison, we start in Section 2 by investigating the elastic–plastic
behavior of a clamped circular solid plate under blast loading, validating results in the literature
[3,4] and extending the results in several important respects. The class of loads is a uniform pres-
sure applied for a 7nite period of time, including the limit for a zero time period corresponding to
a uniform momentum impulse. The maximum de5ection of the plate is determined as a function of
the blast intensity. An important time scale emerges: the time required for the plate to attain the
maximum de5ection under the zero-period impulse. If the period of the blast pulse is longer that
this characteristic time, the maximum de5ection of the plate under the 7nite-period impulse may be
signi7cantly less than that for the corresponding zero-period impulse. Conversely, if the period of
the blast pulse is su3ciently short compared to this characteristic time, the idealization of the blast
as a zero-period impulse is justi7ed.

The dynamic responses of clamped circular sandwich plates subject to uniformly distributed
impulsive loads applied to one face sheet of the sandwich is studied in Section 3. For each im-
pulse level, the maximum de5ection is compared to that of a solid plate of the same mass. The core
is envisioned to be a tetragonal truss structure and is modeled by a continuum plasticity relation
developed previously for metal foam cores having a speci7c crushing strength. This crushing strength
is matched to the corresponding strength of the truss core. The role of the strength of the core is
studied via variations in its relative density, and some insight into an optimal design of the sandwich
structure is obtained. A more extensive study of the blast performance of optimized sandwich plates
subject to blast loads will be presented in subsequent papers.

The duration of an underwater or air blast pulse is typically on the order of 10−4 s (0:1 ms). In
all the examples of sandwich plates considered in this paper the characteristic response time referred
to above is on the order of several ms. The performance assessment in this paper compares the
responses of sandwich and solid plates of equal mass subject to identical zero-period impulses. It
will be demonstrated in a sequel to this paper that this is a valid basis for comparison for air blasts.
However, this approach underestimates the advantages of sandwich construction relative to solid
plates for water blasts due to 5uid–structure interaction.

2. Dynamic response of a clamped circular solid plate

As depicted in Fig. 1, a circular solid plate with outer radius R and the uniform thickness h,
which is fully clamped at the outer boundary, is subjected to a blast load.

2.1. Idealized blast loading

Explosives create a pressure wave with a triangular-like pro7le, known as a “blast” [5] as shown
in Fig. 2(a). The blast exerts an impulse, I , on the circular plate, which is equal to the integral of
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Fig. 1. A schematic diagram of the clamped circular solid plate under the blast loading.

the total force over time,

I =
∫

p(r; #; t) dA dt: (1)

The details of the spatial distribution and time history of the pressure depend on the position of
the explosive center with respect to the plate. The pressure history will generally depend on the
response of the plate itself, unless its duration is su3ciently short compared to response period of
the plate, in which case it is as if the pulse hit a rigid wall. As mentioned above, the interaction
between the pressure pulse and the plate response is not explicitly accounted for in this paper. The
pressure pulse applied to the plate is idealized to be uniform over the entire plate with amplitude
p0 and duration �, as shown in Fig. 2(b):

p =

{
p0; 06 t6 �;

0; t ¿ �
(2)

such that the impulse is I ='R2p0�. The impulse per area is Î = I='R2=p0�. The limit of this family
of loads corresponding to a zero-period impulse (� → 0) has initial momentum per area denoted



Z. Xue, J.W. Hutchinson / International Journal of Mechanical Sciences 45 (2003) 687–705 691

t
τ

p

p

p
0

t(a)

(b)

Fig. 2. (a) A schematic diagram of a pressure–time pulse; and (b) a rectangular pressure–time pulse.

by Î . For the solid plate of density � and thickness h, the zero-period impulse Î can be imposed as
a uniform initial velocity V0 prescribed throughout the plate where

V0 =
Î

�h
: (3)

The dynamic behavior of the fully clamped circular plate loaded by the zero-period impulsive is
investigated 7rst, followed by the 7nite-period impulsive loading.

2.2. Theoretical solutions for a clamped circular plate loaded impulsively

Florence [6] has studied the behavior of a rigid-perfectly plastic circular plate which is fully
clamped around an outer boundary and subjected to rectangular pressure pulse (2) applied uniformly
over the plate, following earlier work of Wang and Hopkins [7] who examined the case of zero-period
impulses (3). Both studies were restricted to linear bending kinetics, neglecting in-plane stretching.
For the zero-period impulsive, Wang and Hopkins found the response duration, i.e. the time for the
plate to reach its maximum de5ection, to be

T ∼= 0:36�V0R2=�Y h; (4)

where �Y is the uniaxial tensile yield stress. The maximum permanent de5ection at the plate center is

�max
∼= 0:28�V 2

0 R2=�Y h: (5)

These theoretical solutions were developed for thin plates that undergo in7nitesimal displacements
and with plastic 5ow controlled by the Tresca yield criterion.
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Results such as those in (4) and (5) are limited to maximum de5ections, �max, that are less
than about h=2, at which point in-plane stretching behavior begins to become important. Symonds
and Wierzbicki [4] have examined the 7nite displacement response of impulsively loaded circular
plates that are clamped around the entire boundary by neglecting bending and treating the plate as
a membrane undergoing stretch. Their result for the maximum de5ection can be written in the form

�max
∼= 0:83V0R

√
�

�Y
: (6)

The results of the present simulations make contact with this result.

2.3. Clamped circular plate loaded impulsively (� = 0)

In the present analysis, the elastic–plastic behavior of the plate is described by an elastic–perfectly
plastic model with Young’s modulus E, Poisson’s ratio � and uniaxial tensile yield stress �Y . The
von Mises criterion is used to specify the yield surface. Because the deformations of the plate are
dominated by inertia, the neglect of strain hardening does not lead to necking localization at small
strain as would be the case if loads were applied quasi-statically. The simplicity of the material
constitutive model is useful for the purposes of comparing behavior of solid and sandwich plates,
although strain hardening and strain-rate sensitivity are clearly important in making 7nal assessments.

A dimensional analysis implies that the response duration, T , can be expressed in functional form
in terms of dimensionless combinations as

T = R
√

�
�Y

f
(

V0

√
�

�Y
;

�Y

E
; �;

h
R

)
; (7)

while the maximum de5ection at the center of the plate can be written as

�max = R F
(

V0

√
�

�Y
;

�Y

E
; �;

h
R

)
: (8)

Finite element calculations have been performed simulating the dynamic response of the plate
using the commercial code ABAQUS Explicit [2]. The plate is modeled as a three-dimensional,
axisymmetric solid with a re7ned mesh near the outer boundary. For a set of given dimensionless
parameters in (7) and (8), the response duration and maximum de5ection have been computed. As
mentioned above, T is de7ned as the time for the plate to attain the maximum de5ection. Motion
of the plate continues for times greater than T , primarily as elastic vibrations. Results have been
obtained over the following range of the parameters:

0:04¡ V0

√
�

�Y
¡ 0:6; 0:0005¡

�Y

E
¡ 0:01; � = 0:3; 0:005¡

h
R

¡ 0:06: (9)

Over the above range of the parameters approximate formulas were developed to 7t the computed
values of T=R

√
�=�Y and �max=R. These formulas are

T

R
√

�=�Y
= 0:965

[
1− 12

(
h
R

)
+ 95

(
h
R

)2
]
(1 + 0:4e−0:006E=�Y ) (10)
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Fig. 3. A comparison of the approximate formula of response duration T (solid curves from Eq. (9)) for various geometric
and material parameters for the solid plate under zero-period impulse loading. The 7nite element results are plotted as the
triangular points: (a) in5uence of density. Fixed parameters are: E = 200 GPa, � = 0:3, �Y = 580 MPa, V0 = 31:25 m=s,
h = 0:02 m and R = 1:0 m; (b) in5uence of yield stress. Other 7xed parameters are the same as those in Fig. 2a with
� = 8000 kg=m3; (c) in5uence of Young’s modulus. Other 7xed parameters are the same as those in Fig. 2a with
� =8000 kg=m3; and (d) in5uence of h=R. Other 7xed parameters are the same as those in Fig. 2a with � =8000 kg=m3.
The solid triangular points present the 7nite-element results for di=erent R for the 7xed thickness h = 0:02 m; the hollow
triangular points present those for di=erent h for the 7xed radius R = 1:0 m.

and

�max

R
=
(

V0

√
�

�Y
+ 0:84

√
�Y

E
− 0:03

)[
1− 8:3

h
R
+ 25

(
h
R

)2
]

: (11)

The accuracy of the approximate formulas (10) and (11) is evident in the plots in Figs. 3a–d and
4a–d where the results of the formulas are plotted as solid curves and results from speci7c 7nite
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Fig. 4. A comparison of the approximate formula of maximum de5ection �max (solid curves from Eq. (10)) for various
geometric and material parameters for the solid plate under zero-period impulse loading. The 7nite-element results are
plotted as the triangular points: (a) in5uence of initial velocity and density. Other 7xed parameters are the same as those
in Fig. 2a; (b) in5uence of the yield stress. Other 7xed parameters are the same as those in Fig. 2a with �=8000 kg=m3;
(c) in5uence of Young’s modulus. Other 7xed parameters are the same as those in Fig. 2a with � = 8000 kg=m3; and
(d) in5uence of thickness and radius of the solid plate. Other 7xed parameters are the same as those in Fig. 2a with
� = 8000 kg=m3. Solid triangular points present the 7nite-element results for di=erent R with h = 0:02 m; the hollow
triangular points present those for di=erent h with R = 1:0 m.

element calculations are presented as triangular points. These comparisons span the range indicated
in (9). Although not shown, T=(R

√
�=�Y ) is independent of V0

√
�=�Y , to an excellent approxi-

mation over range (9). Additionally, Poisson’s ratio, �, has almost no in5uence on T=(R
√

�=�Y )
and �max=R over the range of the other parameters in (9). In four parts of Fig. 4, the predic-
tion of solution (6) of Symonds and Wierzbicki has also been plotted as a dash line. It can
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Fig. 5. Normalized maximum de5ection versus the dimensionless impulse duration, �=T , for various impulse levels
(V0 is the initial velocity for the zero-period impulse).

be seen that (6) accurately re5ects the dependence on V0
√

� with E and �Y chosen as repre-
sentative of a speci7c steel for h=R = 0:035, but it does not capture the full dependence on E,
�Y and h=R.

2.4. Clamped circular plate subjected to a ;nite period pressure pulse (� ¿ 0)

A limited set of calculations has been carried out to reveal the relationship between the 7nite-period
and zero-period impulse loads. The calculations have been carried out for a speci7c steel plate with
the following properties: R=1:0 m, h=0:02 m, �=8000 kg=m3, E=200 GPa, �=0:3 and �Y=585 MPa.
The 7nite element results for the 7nite period impulsive load are shown in Fig. 5. Each set of points
connected by a solid curve corresponds to a prescribed level of impulse per unit area, Î . The
initial velocity, V0, associated with limiting zero-period impulse (� = 0) at the same Î is shown in
Fig. 5. The vertical axis represents the maximum de5ection normalized by the radius of plate, while
the horizontal axis is �=T . where T is plate response duration for the zero-period impulse given by
(10). For the plate in Fig. 5, T = 3 ms.
For a given impulse level, Î , the maximum de5ection occurs for the zero-period impulse. When

�=T=1, the de5ection is about two thirds that for the zero-period limit, while there is more than a 50%
reduction of the de5ection for �=T ¿ 2, although this does not account for any possible modi7cation
of the blast pulse due to the plate de5ection. While no further examples have been studied, we
expect the trends in Fig. 5 should be representative for most plates subject to blast loads. The results
highlight the importance of the response duration, T , associated with the zero-period impulse. If the
duration of the blast load is a small compared to T , as will be the case in most structural applications,
response predictions based on the zero-period impulse should supply an accurate approximation,
assuming 5uid–structure interaction is taken into account.
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3. Dynamic response of a clamped circular sandwich plate with a truss core

In this section, the dynamic response of a clamped circular sandwich plate with a truss core will
be studied for the case of a uniform distributed impulsive load applied to the (top) face sheet of
the plate towards the blast. Attention will be restricted to zero-period impulses. The response of the
sandwich plate will be compared with the response of the corresponding solid plate of Section 2
made from the same material and having the same radius and total mass. In this way, the competitive
advantage or disadvantage of sandwich construction relative to the solid plate can be assessed. In this
preliminary study, no e=ort has been made to identify optimal sandwich plates, although the role of
the relative density of the truss core will be explored. The focus here is on truss cores because they
have a relatively high speci7c crushing strength and energy absorbing capacity that is essential if
the sandwich plate is to outperform solid construction. Other core construction, such as honeycomb,
corrugated plate or woven wire, should also be considered as possible competitors. Indeed, perhaps
the most important outcome of the present work, aside from demonstrating the relative advantage
of sandwich construction, will be seen to be the need for further study to identify the best core
geometry for blast resistant plates.

As before, the radius of the sandwich plate is R. The plate has two identical face sheets of
thickness, hf, bonded to a tetragonal truss structure core of thickness, Hc, as sketched in Fig. 6a.
The face sheets and the truss elements are made from the same elastic–perfectly plastic material
with density, �, Young’s modulus, E, Poisson’s ratio, �, and tensile yield stress, �Y . The yield
surface of the face sheets is again taken to be the von Mises surface. The core is modeled using a
continuum constitutive law for porous materials, as will be discussed below. For the sandwich plate,
the uniform zero-period impulse, I , is applied as an initial uniform velocity, V0 = I=(�'R2hf), of
the top face sheet in Fig. 6a. Because the momentum impulse is applied to just one face sheet, the
kinetic energy imparted to the sandwich plate is more than twice that imparted to the solid plate of

2R

I

Hc

hf

2RcLc

(a)

(b)

Fig. 6. (a) A schematic of a circular sandwich plate with a truss core subjected to impulsive loading; and (b) a tetragonal
truss core unit.
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the same mass under the same impulse: i.e. KEsandwich = I 2=(2�'R2hf) for the sandwich plate versus
KEsolid = I 2=(2�'R2h) for the solid plate. We return to this point later.

3.1. Continuum constitutive model for sandwich core

No attempt has been made to carry out calculations for the sandwich plate using full meshing
of individual truss elements. Although such calculations might be feasible for a limited number of
cases, they would be extremely large and would not permit an exploration of trends, which is the
main goal here. Instead, a more practical approach is to model the core as a solid whose e=ective
properties mimic those of the tetragonal truss between face sheets. At the present time, a constitutive
model of this type for the tetragonal truss core has not been developed. Here, a constitutive model is
adopted that was developed for metal foams by Deshpande and Fleck [8]. The model permits one to
set the crushing strength of the core to match values appropriate to the tetragonal truss. Moreover,
the model represents a material with high porosity similar to that of the truss core. The model is a
dilatational plasticity relation that employs an isotropic yield surface speci7ed by

�̂ = �c
Y ; (12)

where �̂ is an equivalent stress, de7ned by

�̂2 ≡ 1
1 + (�=3)2

[�2
e + �2�2

m]: (13)

Here, �e=
√

3sij sij=2 is the conventional e=ective stress with sij as the stress deviator, and �m=�kk =3
as the mean stress. The compressive yield stress, �c

Y , is a prescribed function of the equivalent plastic
strain using data taken under uniaxial compression. Normality of plastic 5ow is assumed. For metal
foams, the parameter � is usually chosen to produce a speci7c plastic Poisson’s ratio �p =−,̇p

22=,̇p
11

corresponding to uniaxial compression in the one-direction [8], i.e.,

� = 3
(
1=2− �p

1 + �p

)1=2

or �p =
1=2− (�=3)2

1 + (�=3)2
: (14)

The 5ow stress, �c
Y , in shear is related to that in compression at the same equivalent plastic by

�c
Y =

[
1 + (�=3)2

3

]1=2

�c
Y : (15)

3.2. Properties of a tetragonal truss core and identi;cation of �c
Y and �

A tetragonal truss core element is con7gured as shown in Fig. 6b. The properties of all members
of the core are identical with length Lc and a solid circular cross-section of radius Rc. A regular
tetragonal core with Hc=Lc =

√
2=3 has neighboring nodal points on the face sheets separated by

Lc. The relative density of this core, �̂c, de7ned as the ratio of equivalent core density, �c, to the
density of the material, �, can be expressed in terms of Lc and Rc as

J�c =
�c

�
= 3

√
2'

(
Rc

Lc

)2

: (16)
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The crushing yield stress of regular tetragonal core, �c
Y , is de7ned as the normal force per unit area

applied to the face sheet required bringing the truss members to compressive yield. It is related to
the relative density by Deshpande et al. [9]

�c
Y =

2
3
J�c�Y : (17)

Similarly, the Young’s modulus of the core under normal loading of the face sheets, Ec, is

Ec =
4
9
J�cE: (18)

Tests on normal compression of tetragonal truss core elements [10] have shown that (17) provides
a reasonably accurate estimate of the maximum crushing strength of the core, underestimating this
strength when strain hardening is appreciable. Following attainment of the maximum, the crushing
stress gradually falls but still retains a large fraction of the maximum strength at overall compressive
strains above 10%. In the present simulations, �c

Y in the core constitutive model is taken as (17),
independent of the e=ective plastic strain for strains less than 60%. For e=ective plastic strains above
60%, a linear hardening behavior with a large hardening rate is adopted. In the constitutive model,
we have taken � = 3=

√
2 which, by (15), gives �p = 0. This choice corresponds to metal foams

with a relative density typically in the range of 5–10% [11]. The choice �p = 0 for modeling the
tetragonal core is motivated by the fact that its compressive behavior normal to the faces is essentially
independent of deformations parallel to the faces. By (15), the constitutive model implies the core
shear strength is �c

Y =�c
Y =
√
2. The constitutive model overestimates the shear strength corresponding

a direct calculation of yield of the regular tetragonal core when the face sheets are sheared with no
normal stress [9]: �c

Y = J�c�Y =3
√
2 or �c

Y = �c
Y =2

√
2 = 0:353�c

Y (see also shear tests of core elements
which validate this result [10]).

Subsequent work with more realistic constitutive representations for the core will be required
to verify the 7ndings presented here which are based on a simpli7ed representation of crushing
behavior and overly high strengths for the core in shear and in-plane stretching. It is expected that
the present results will not be changed signi7cantly by lower core shear strength since the face
sheets are held rigidly at their perimeter, tending to suppress overall shearing motion between the
faces. The characteristic of the core of primary importance in the present examples is its crushing
strength, and it will be shown that most of the energy absorbed in the core is due to crushing not
stretching. Nevertheless, models allowing for better representations of core behavior are needed, as
are models that account for the e=ects of local inertia, strain hardening and strain rate-sensitivity in
the core. The in5uence of strain hardening and strain rate-sensitivity in the face sheets should also
be studied.

The total mass of the sandwich plate is Msandwich = �'R2(2hf + J�cHc), while the mass of a solid
plate of thickness h is Msolid = �'R2h. The response of the sandwich plate will be compared to
the response of the solid plate of the same radius and mass subject to the same loading. Thus,
Msandwich = Msolid requires

2hf + J�cHc = h: (19)

In the calculations carried out below both the face sheets and the truss members are made from
a moderately high strength steel with � = 8000 kg=m3 �Y = 500 MPa, E = 200 GPa and � = 0:3.
The relative density of the regular tetragonal core is given by (16). The compressive yield stress
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Fig. 7. The normalized maximum de5ection of the top and bottom face sheets of a sandwich plate versus the relative
density of core for three zero-period impulses. All plates are of equal mass, as detailed in the text.

of the continuum constitutive model is given by (17), and � = 3=
√
2 in (13). The elastic properties

of the core are modeled as isotropic with Young’s modulus (18) and Poisson’s ratio, �c = 0. The
example analyzed in this section has R = 1:0 m and Msandwich = Msolid = 628:32 kg corresponding to
h=2:5 cm for the solid plate. The thickness of the core of the sandwich plate is 7xed at Hc=10 cm,
but the relative core density, J�c, is varied over the range from 0.01 to 0.2. As J�c varies, so does
hf according to (19). For this choice of parameters, the relative density must satisfy J�c ¡ 0:25 if
hf ¿ 0.

Four-node axisymmetric elements with reduced integration are used in the calculations. A uniform
mesh is generated such that there are 5 and 30 divisions through the thickness of the face sheets and
the core, respectively, but 80 divisions along the radius for the whole plate. Additional studies showed
that re7ned meshes with more elements did not appreciably improve the accuracy of numerical
results. For the speci7c model, the numerical error for the maximum de5ection based on the present
meshing is believed to be less than 1%.

3.3. Numerical results for sandwich plates and comparison with solid plates of equal mass

Fig. 7 presents the normalized maximum de5ection �max=R attained at the center of each face
sheet as a function of the relative core density, J�c, for three levels of zero-period impulses applied
uniformly to the top face sheet. Each triangular point represents a calculation for a speci7c value
of J�c. All of the sandwich plates in Fig. 7 have the same mass. The top face sheet de5ects more
than the bottom sheet due to compaction of the core. Typically, the nominal compressive strain in
the core, de7ned as compressive deformation per unit core thickness, is between 10% and 20%,
except for the lowest core densities where the compaction strain reaches as much as 50%. At each
of the three blast impulse levels, the smallest maximum de5ection occurs for a relative core density
J�c ≈ 0:08. At lower core densities and, therefore, higher face sheet mass, the core undergoes so
much compaction that it is not able to maintain the spacing of the face sheets such that the sandwich
e=ect is eroded. At core densities above J�c = 0:08, core mass is added at the expense of face sheet
mass, rendering the faces too weak to be e=ective. A full optimization, wherein the core thickness,
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Fig. 8. The response duration of the sandwich plates in Fig. 7.

Hc, is also varied, has not been carried out, and, thus, no conclusion should be drawn as to the
optimal core density.

The plates in Fig. 7 are not likely to sustain impulses greater than I = 40 kN s because of un-
acceptably large de5ections, even if necking or fracture did not intervene. Companion plots of the
time, T , to attain the maximum de5ection are given in Fig. 8. The corresponding time for the solid
plate, T = 3 ms, essentially independent of I . The shortest response time for the sandwich plate is
less than that for the solid plate and is associated with a relative core density close to that giving the
smallest de5ection. Note that even the shortest response time is still long compared to the typical
blast pressure duration of a fraction of 10−4 s.

To reveal the relative advantage of sandwich plate construction, the results in Fig. 7 have been
replotted in Figs. 9a and b by normalizing the maximum de5ection of the sandwich plate by the
maximum de5ection of the solid plate of the same mass, (�max)solid, that is subject to the same
zero-period impulse. The greatest relative performance advantage of the sandwich plate is seen
for the lower impulse levels, although there is still an advantage at the highest level of impulse
considered. Over the range of impulses considered, the maximum de5ection of a sandwich plate
with J�c ≈ 0:08 is between 50% and 85% of the corresponding solid plate. As stated earlier, at times
subsequent to attaining the maximum de5ection, the plate continues to vibrate elastically, but most
of the energy imparted by the impulse is dissipated in plastic deformation by the time when the
maximum de5ection is attained (typically more than 85%).

Apart from the small amount of energy stored as residual stress or as vibratory motion, essentially
all the initial kinetic energy imparted to the plates is absorbed by plastic deformation. In comparing
the performance of the sandwich plate with the solid plate it is important to distinguish between the
initial impulse imparted to the plates and their initial kinetic energies. In this study, we have deliber-
ately compared the plate responses under identical zero-period momentum impulses, consistent with
the blast pressure pulse acting for a time short compared to the response time of the plates. As noted
earlier, the initial kinetic energies imparted to the two plates are di=erent because the momentum
pulse is distributed uniformly throughout the entire solid plate at t=0, while the momentum impulse
is initially con7ned to the top face sheet in the case of the sandwich plate. By (19), the ratio of the
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initial kinetic energies is
KEsolid

KEsandwich
=

1
2

(
1− J�c

Hc

h

)
: (20)

For the example in Fig. 9, with J�c =0:08, KEsolid=KEsandwich =0:34. Therefore, it follows from Fig. 9
that the sandwich plates absorb about three times as much energy as their solid counterparts, while
at the same time experiencing smaller de5ections.

3.4. Energy absorption in sandwich plates

Signi7cantly larger energy absorption in the sandwich plate relative to the corresponding solid
plate can be attributed to several factors that are revealed by the time histories of plastic dissipation
in the face sheets and core of the sandwich plate in Fig. 10. The time histories are for the plate
with J�c = 0:08 and I = 32 kN s. In the 7rst phase of the response, lasting until t ≈ 0:2 ms, the top
face sheet 5ies into the core, resulting in core compaction and signi7cant energy dissipation. By the
end of the 7rst phase, the two face sheets are moving at approximately the same velocity and most
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core compaction ceases. As the plate de5ection increases, plastic dissipation is increasingly due to
stretch. Further details are discussed below.

(1) Core compression constitutes a major contribution to energy dissipation. Although the crushing
strength of the core is only a small fraction of �Y , the average compaction strain is between 10% and
20%. In the stretching phase of the response, Fig. 10 indicates there is additional plastic dissipation
of energy in the core due to in-plane stretch, although this is only a small fraction of the dissipation
during crushing. Stretch dissipation in the core is an artifact of the constitutive model used to
represent the core in the present study. It would not occur if the tetragonal core were more accurately
modeled.

(2) After the compaction phase has ended and as long as de5ections, �, are still less than about
the sandwich thickness, Hc, the response of the sandwich plate is dominated by bending. The top
face sheet experiences in-plane compression while the bottom face undergoes in-plane tension. As
even larger de5ections develop, stretching takes over and the in-plane stresses become tensile in both
faces. Thus, the top face sheet undergoes reversed plastic deformation with compressive straining
followed by tensile straining resulting in enhanced energy absorption. The solid plate undergoes a
similar transition from bending to stretching but at much smaller de5ections that are on the order
of h. No plastic deformation on the top surface of the solid plate occurs during the bending phase
of the corresponding solid plates. Moreover, in the bending regime, the bending strength of the
sandwich plate far exceeds that of the solid plate.

3.5. Strains in the face sheets and core

Apart from large strains occurring in the top face sheet at the outer edge of the plate, the strains
in the face sheets are for the plates in Fig. 7 are modest. The maximum stretching strain in the
bottom face sheet at attainment of �max for J�c ≈ 0:08 is 0.62% for I =24 kN s, 2.9% for I =32 kN s,
and 5.1% for I = 40 kN s. Figs. 11a and b display radial distributions of the radial strain, ,rr , and
transverse shear strain, ,rz, of the top and bottom face sheets corresponding to the attainment of
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face sheet (b).

�max for the sandwich plate with J�c = 0:08 and I = 32 kN s. The strain distributions in the bottom
face sheet are unexceptional with no component exceeding 0.03. Strain localization involving both
stretching and transverse shear strain components occurs at the outer edge of the top plate. The large
strains might well result in fracture of the top face sheet at the outer edge. Due to necking down
of the top face sheet at this location, the load carrying capacity of this sheet is already reduced.
Nevertheless, the bottom face sheet has not experienced appreciable increases in strain at the outer
edge and is fully intact.

As remarked in Section 1, the numerical code used in the present study is capable of computing
necking localization, as illustrated in Fig. 11. In spite of the fact that an elastic–perfectly plastic
representation for the material has been used, no other tendency for necking has been observed.
This is thought to be due to the fact that the deformations are dominated by inertia. Quasi-static
simulations of uniform pressure loading of the same elastic–perfectly plastic plates indicate a much
higher susceptibility to necking localization. The localization of strain at the outer edge of the top
face sheet is clearly an issue of concern to be addressed in subsequent work. Factors not taken into
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account here such as strain hardening and material rate-sensitivity will in5uence the tendency to
localization, as will details of the core constitutive behavior. More realistic support conditions will
also be a factor in localization.

Crushing localization in the core also occurs. For the largest blast, I = 40 kN s, crushing strains
on the order of 50% occur across the entire radial extent of the plate in a zone of thickness roughly
0:2Hc just below the top face sheet. About 12 elements span this localization region in the thickness
direction. Outside this zone of crushing localization the strain is much less (but still well into the
plastic range) such that the average compaction strain in the core is 15%. This localization does
not have a direct interpretation for a truss core. It is, instead, an artifact of replacing the discrete
core truss elements by a continuum model. Deformations akin to a crushing localization may indeed
occur in a truss core, but the present model cannot be expected to capture them. The present model
correctly accounts for energy dissipation in the core under the assumption that the crushing strength
is constant at �c

Y , even when localization occurs. We have explored the robustness of the comparison
between sandwich and solid plate in Fig. 9 by repeating selected calculations with the introduction
of a modest amount of strain hardening into the crushing stress–strain curve for the core. The strain
hardening reduces, but does not eliminate, the localization. More signi7cantly for present purposes,
the results presented in Fig. 9 are virtually una=ected by these alterations.

4. Concluding remarks and recommendations for further research

The preliminary study conducted in this paper suggests that sandwich plates with su3ciently
strong cores have the potential to sustain substantially larger uniform impulses than solid plates of
the same material and weight. A limited number of systematic comparisons for clamped circular
plates have been made to highlight the relative advantages of sandwich construction, but no e=ort
has been made to optimize the sandwich plates. Nor has there been any e=ort to explore any core
geometry other than the tetragonal truss core. Strain hardening and strain-rate sensitivity are almost
certainly of importance but have not been taken into account in either the face sheets or the core.

The present study has been hindered by the lack of an accurate continuum constitutive relation that
can be used to model the core. Strength characteristics of the tetragonal core are highly anisotropic.
The prediction of a crushing localization highlights the need for development of constitutive relation
for the core that is able to more faithfully represent, or mimic, details of the deformation of the
truss elements. The core model used here ignores several factors that are likely to be important
and, possibly, bene7cial to the capabilities of the sandwich plate. These include strain hardening,
strain rate-sensitivity and, especially, local “inertial sti=ening” of individual truss elements. The
development of a relation that captures anisotropy, rate-dependence and inertial e=ects in the core
is a priority.

Optimization studies at several levels are essential if the most e=ective sandwich structures are
to be discovered. The present study has bought out the combined importance of core strength and
energy absorption, highlighting the need for further research to identify the most e=ective core
geometry (truss, honeycomb, etc.). In addition to core geometry, core thickness and relative density
should be considered in the optimization process. There is a complicated interplay between face sheet
thickness, initial kinetic energy, energy absorption and 5uid–structure interaction. As emphasized in
the paper, a well-designed sandwich plate out performs a solid plate of the same weight even though
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the sandwich plate must absorb more than twice the energy. In the paper to follow this one, it will
be shown that there is a signi7cant additional relative advantage of sandwich construction when
blasts occur in water due to 5uid–structure interaction. The possibility of designs having face sheets
of di=erent thickness should be considered. Among sandwich plates of constant weight subject to
a speci7ed zero-period impulse, the thinner the face sheet towards the blast, the higher the initial
kinetic energy imparted to structure. This energy must be absorbed by plastic deformation of the
entire plate. By increasing the thickness of the face sheet towards the blast relative to the other
sheet, one may be able to achieve a more e=ective design for blasts in air. The situation for water
blasts is likely to be di=erent. Optimization clearly has a role to play here as well.

Finally, it must be emphasized that the most e=ective designs are likely to depend in a signi7cant
way on additional aspects not considered here. These include other plate shapes, support conditions,
and other loading conditions such as localized blasts.
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