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EDGE EFFECTS IN THIN FILM DELAMINATION
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Abstract—Thin films bonded to a substrate often sustain large in-plane residual stresses that are transferred
to the film via shear stresses on the interface near their edges. These edge zones play a significant role in
film delamination. A new method is introduced to analyze both the residual stress distribution in a film near
its edge and the energy release rate and mode mix for an interface delamination crack emerging from, or
converging upon, an edge. Two two-dimensional configurations are considered: (a) a film whose edge lies
in the interior of the substrate and (b) a film whose edge is aligned with the edge of the substrate (i.e. the
film/substrate geometry is a quarter-plane). There are significant differences between the two cases. For the
former, (a), the energy release rate approaches the steady-state, limiting rate for a long interface crack when
the crack has extended less than one film thickness. By contrast, the energy release rate in case (b) remains
far below the steady-state rate until the crack extends to ten or more film thicknesses from the edge. In case
(b), the edge effect provides a significant protection against edge delamination, whereas in case (a) it does
not. Elastic mismatch between the film and the substrate is significant in case (b), but not in case (a). A
second set of behaviors is investigated wherein the interface crack approaches the edge of the film from the
interior. For both types of edges, the energy release rate drops well below the steady-state rate at remaining
ligament lengths that are very large compared to the film thickness, approaching zero as the delamination
converges on the edge. Analytic features which account for the various behaviors will be highlighted, and
practical implications for thin film delamination will be discussed. 2001 Acta Materialia Inc. Published
by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Thin films are often employed in a stressed state. The
origins of the stress can be epitaxy, growth processes
(e.g. crystalline coalescence in physical or chemical
vapor deposition), thermal expansion mismatch, dif-
ferential densification (e.g. constrained sintering), and
others. In some applications the magnitude of the
stress can be as large as several GPa. The stress is
transferred to the film via shear stress on the interface
near the film edges (Fig. 1). The stress concentration
near the edge makes the film susceptible to delami-
nation from the substrate. When the stress in the film
is compressive, buckling above an initial interface
flaw may provide enough driving force to delaminate
the film. When the film is in residual tension, delami-
nation can initiate preferentially along the film edge
[1]. The present work assumes that the film is under
uniform tension with magnitudes0 well away from
the edge, directed perpendicularly to the crack edge.
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Fig. 1. Film/substrate system illustrating the role of the shear
traction on the interface near the edge of the film.

The component of stress parallel to the crack edge
does not influence any of the results presented in the
paper. Thus, for example, the results will apply to a
film under an equi-biaxial stress states0 or to a film
that is only stressed perpendicularly to the edge.

When the tip of an interface edge crack (Fig. 2)
is sufficiently far away from the edge, steady-state
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Fig. 2. Four geometries studied in this paper. Delaminations
emerging from the film edge: (a) interior edge, and (b) edge
at a corner. Delaminations converging on an edge: (a) interior

edge, and (b) edge at a corner.

propagation prevails with energy release rate inde-
pendent on crack length being

Gss 5
(12v2

f )s2
0h

2Ef

, (1)

with Ef andvf as the Young’s modulus and Poisson’s
ratio of the film, andh the film thickness. This is
simply the elastic energy per unit area in the film
released, subject to the plane strain constraint. If
Gss>Gi, whereGi is the interface toughness at the rel-
evant mode mix, spontaneous thin film delamination
would be expected to occur given a sufficiently large
initial crack. Whether or not this happens will depend
on the initiation conditions along the edges, which is
one of the main motivations underlying the present
study.

Two two-dimensional plane strain configurations

are considered in this paper: (a) a semi-infinite film
whose edge lies in the interior of the substrate plane
(Fig. 2(a)), and (b) a semi-infinite film whose edge is
aligned with the edge of the substrate (i.e. the
film/substrate geometry is a quarter-plane) (Fig. 2(b)).
Previous studies have discussed some aspects of these
problems, but have not uncovered the significant dif-
ferences between them [1, 2]. If the film/substrate
system hasGss>Gi, the edge effect in case (b) provides
a substantial barrier to the initiation of edge delami-
nations, but not in case (a).

The film displays a different type of behavior when
the crack approaches one film edge from interior (Fig.
2(c) and (d)). The crack tip and the edge “sense” each
other from a remarkably large distance. As they
become close, the remaining residual stress in the film
decreases and the energy release rate drops. A propa-
gating interface crack (Gss>Gi) will stop as it
approaches an edge when the energy release rate
drops to the level of the interface toughness. Zhuket
al. [3] exploited this edge effect in the experimental
measurement of the interface toughness of a Ni-poly-
mer bi-layer bonded to a silicon substrate. He, Evans
and Hutchinson [4] termed such behavior “convergent
debonding” and showed that it also arises in contexts
other than thin films. The method developed in this
paper is used to study the two cases in Fig. 2(c)
and (d).

The residual stress distribution itself can affect the
non-mechanical properties of microelectronic devices
(e.g. Ramirezet al. [5]). For this reason we devote
some attention to the determination of the residual
stress distribution in the film in the vicinity of an
edge, although not at the finest level. When two film
edges (or a crack and an edge) are close, each edge
senses the other and the residual stress in the film
drops. The interaction will be displayed, providing
further insight into the behavior underlying conver-
gent debonding.

Another motivation underlying the present paper is
the desire to develop a simple and reliable method
for analyzing thin films. A thin film on a substrate is
similar in some respects to the problem of a stiffener
on a sheet or half plane [6, 7]. The membrane model
used for stiffeners has been used to describe thin films
[8]. In the membrane model, only shear traction on
the interface is considered while normal traction is
ignored. While it captures certain features of the
behavior with fidelity, this model does not give the
right mode mix when a crack emerges from the edge.
Moreover, the shear stress distribution prediction
along the interface is less accurate than might be
desired. Shield and Kim [9] used elementary beam
theory (or, equivalently, plate theory) to model the
film, thereby introducing the normal traction on the
interface. This model gives rise to a complex stress
singularity at the crack tip, even when the thin film
and the substrate are the same material. The model
that will be introduced in this paper is constructed to
give the exact form of the singularity at the interface
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crack tip. It employs beam (or plate) theory in one
step of the analysis, but it does so in a way that does
not introduce significant quantitative errors. While the
new model is slightly more complicated to describe
than the earlier models, its formulation and the
numerical method required for its solution are each
quite similar.

The plan of this paper is as follows: In Section 2,
the new thin film model is introduced and the govern-
ing equations for problems in Fig. 2 are formulated.
Section 3 provides the results that distinguish between
the edge conditions in the two cases. Stress distri-
butions for finite width films are reported in Section
4, highlighting the interaction between the edges.
Convergent debonds are studied in Section 5. The
paper concludes with other illustrations in Section 6.

2. THE MODEL

The reference residual stress in the film remote
from the ends is assumed to be uniform and tensile
when the width of the film is sufficiently great. This
reference residual stress,s0, is assumed to be due to
a strain mismatch between the film and substrate. For
a thin film with finite width, 2L, a standard represen-
tation introduced for analysis purposes employs the
superposition of a uniformly stressed film (Fig. 3(a))
with the “reduced problem” (Fig. 3(b)) wherein the
film is attached to the substrate and subject to a com-
pressive loadings0 on its ends. Since the problem of
Fig. 3(a) is trivial, attention shifts to the solution of
the reduced problem. Denote the traction components
along the interface between the film and substrate by

Fig. 3. Definition of the reduced problem in (b).

syy(x) and sxy(x). The plane strain version of the
reduced problem in Fig. 3(b) is under consideration
here.

The essential step in the new model is the represen-
tation of the reduced problem as the sum of the three
sub-problems shown in Fig. 4: the trivial problem for
the free-standing film under uniform compression in
Fig.4(a); a semi-infinite upper half space with the
properties of the film and subject to tractionssyy(x)
andsxy(x) in the interval (2L, L) along its bottom in
Fig. 4(b); and a free-standing film with specially
chosen tractions along the three faces indicated in Fig.
4(c). The tractions on the three surfaces in Fig. 4(c)
are chosen to be equal and opposite those induced in
the problem of Fig. 4(b) along the same three planes
defining the film. With this choice, it is clear that the
superposition of the three problems gives precisely
the desired traction conditions indicated for the
reduced problem at the top of Fig. 4. The problems
in Fig. 4(a) and (b) will be solved exactly, and the
substrate is treated exactly in coupling it to the combi-
nation of sub-problems in Fig. 4. If the problem in
Fig. 4(c) were solved exactly, the superposition of the
three solutions would provide the exact solution to
the reduced problem. Instead, we will solve the prob-
lem in Fig. 4(c) approximately using beam (plate)
theory to represent the film. We will demonstrate that
this approximation introduces relatively little inaccur-
acy in the quantities of interest in this paper.

Fig. 4. Three sub-problems used in constructing the solution
to the reduced problem.
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The solutions of Fig. 4(a) and (b) are well known.
Let (u, v) be the displacement components on the
interface. In Fig. 4(a),

(du/dx)(a) 5 2
s0

Ēf

, (dn/dx)(a) 5 0, (2)

whereĒ 5 E/(12 n2). The superscript (a) denotes the
contribution from the problem in Fig. 4(a) in the
superposition procedure. The superscripts (b) and (c)
are used next for contributions from the problems in
Fig. 4(b) and (c).

For the half plane problem depicted in Fig. 4(b),
the expressions for the derivatives of displacement
along the interface are known in terms ofsyy(x)
andsxy(x):

(du/dx)(b) 5
122nf

12nf

syy(x)
Ēf

2
2
pĒf

E
L

2L

sxy(x)
x2x

dx (3a)

(dv/dx)(b) 5 2
122nf

12nf

sxy(x)
Ēf

2
2
pĒf

E
L

2L

syy(x)
x2x

dx,

(3b)

where the integrals exist in the sense of their Cauchy
principal values. Traction free condition along the
surface outside the interval (2L, L) has been
accounted for in equation (3).

The problem in Fig. 4(c) is solved using beam
(wide plate) theory. Again, the objective is to obtain
a representation analogous to equation (2) and equ-
ation (3) for the expressions of the derivatives of the
displacements. The applied tractions in Fig. 4(c) are
those needed to cancel the tractions on the corre-
sponding surface cuts (dashed lines) in Fig. 4(b), as
illustrated in Fig. 5. Consider a normal tractionsyy(x)
exerted on a line element dx along the bottom at pos-
ition (x, 0) in Fig. 5(a). From the point force solution
(see [10]), the induced tractions on the other three
surfaces all “radiate” from the point (x, 0) (Fig. 5(a)).
Consider a cross section in Fig. 5(b) at positionx.
The resultant forces per unit thickness equivalent to
the reversed tractions (Fig. 5(b)) to the left of the
cross section, dFx and dFy, are

dFx 5
syy(x)dx

2p
(12cos 2a) (4a)

dFy 5 2
syy(x)dx

2p
(2p22a 1 sin 2a) (4b)

wherea 5 cotan21[(x2x)/h] lies between 0 andp.

Fig. 5. Details of the conventions for sub-problems (b) and (c)
in Fig. 4.

The resultant forces are exerted at point (x, 0) (Fig.
5(b)). The corresponding moment at the cross section
caused by the resultant forces is

dM 5 dFx·h/22dFy·(x2x) (5)

The resultant forces and moment corresponding to
the shear traction on the interface in Fig. 5(b) can be
obtained by the same procedure. The transverse stress
sxx at pointx on the interface in Fig. 5(b) is estimated
by integrating along the interface with respect tox to
include the contributions from all the tractions along
the interface in Fig. 4(b):

sxx(x) 5 2E
L

2L

SdFx

h
1

hdM
2ĒfI

D, (6)

whereI 5 h3/12 is the bending inertia for a unit thick-
ness of depth. The first term in the integral corre-
sponds to the average stress at the cross section, and
the second is the stress caused by bending moment.

Adding the contributions from both the shear and
normal tractions, one obtains the derivatives of the
displacements along the interface in Fig. 5(b):

(du/dx)(c) 5
1

2pĒf
E
L

2L

F4
2sin 2a 1 2p22a

h

1 6
(12cos 2a)(x2x)

h2 Gsxy(x)dx (7a)

1
1

2pĒf
E
L

2L

F4
cos 2a21

h
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26
(sin 2a 1 2p22a)(x2x)

h2 Gsyy(x)dx

and

(dv/dx)(c) 5 2E
x

2L

M
ĒfI

dx 1 q0, (7b)

with

M(x) 5 2E
L

2L

[(12cos 2a)(x2x) 1 (2sin 2a

1 2p22a)h/2]
sxy(x)

2p
dx 1 E

L

2L

[(sin 2a 1 2p (8)

22a)(x2x) 1 (12cos 2a)h/2]
syy(x)

2p
dx.

In equation (7b),q0 is a constant to be determined.
The three contributions to the derivatives of displace-
ments in the film along the interface, equations (2),
(3) and (7) combine to give

(du/dx)(f) 5 (du/dx)(a) 1 (du/dx)(b) 1 (du/dx)(c)

(9a)

(dv/dx)(f) 5 (dv/dx)(a) 1 (dv/dx)(b) 1 (dv/dx)(c),
(9b)

where the superscription (f) stands for film.
For configurations in Fig. 2(a) and (c), the substrate

is a semi-infinite half plane and the derivatives of the
displacement along the interface are,

(du/dx)(s) 5
122ns

12ns

syy(x)
Ēs

1
2
pĒs

E
L

2L

sxy(x)
x2x

dx

(10a)

(dv/dx)(s) 5 2
122ns

12ns

sxy(x)
Ēs

1
2
pĒs

E
L

2L

syy(x)
x2x

dx,

(10b)

where superscript (s) stands for “substrate”. Again the
integral is in the interval (2L, L) due to the traction
free condition outside the interval.

The displacements and the tractions are continuous

along the bonded interface, the integral equations
governing the interface tractions are obtained from
the conditions (du/dx)(f) 5 (du/dx)(s) and (dv/dx)(f) 5
(dv/dx)(s). The tractions along the interface should

also satisfy three overall equilibrium conditions for
zero net force and zero net moment acting on the
interface:

E
L

2L

sxy(x)dx 5 0 (11a)

E
L

2L

syy(x)(x 1 L)dx 5 0 (11b)

E
L

2L

syy(x)dx 5 0. (11c)

The Cauchy-type integral equations for the tractions
are solved numerically using the method introduced
in [11]. The displacement jump behind the crack tip
can be obtained using equation (9) and equation (10),
once the tractions have been obtained.

The decomposition of the reduced problem
depicted in Fig. 4 applies as well to the cases involv-
ing interface cracks. In these cases, the use of the
semi-infinite half space in the sub-problem in Fig.
4(b) ensures that the form of the interface singularity
is exactly that of the original problem. This is one of
the essential steps which helps ensure the accuracy of
the method. The other is that none of the loads in the
problem of Fig. 4(c) act on the bottom of the film or
near the crack tip. This is important in ensuring the
accuracy of the beam approximation used in
obtaining equation (7). Finally, while we have intro-
duced an extra problem in the form of the half-space
in Fig. 4(b), its solution is well known and the coup-
ling to the lower half space representing the substrate
leads to integral equations which are similar in form
to those emerging in the earlier methods.

For a semi-infinite thin film, a superposition pro-
cedure similar to that in Fig. 4 and Fig. 5 is readily
constructed. Now, the net surface tractions will be
balanced by the stress in the film at infinity. The final
expressions for the tangential derivatives of the dis-
placements along the interface remain the same,
except the lower and upper limit of the integrals are
now 0 and` with x 5 0 as the left end of the film.
The conditions expressed by equation (11a) and equ-
ation (11b) are replaced by

E
`

0

sxy(x)dx 5 s0h (12a)
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E
`

0

syy(x)xdx 5 2s0h2/2. (12b)

If the substrate is a quarter plane (Fig. 2(b) and
(d)), the derivatives of the interface displacements
with respect tox are (see Appendix A):

(du/dx)(s) 5
122ns

12ns

syy(x)
Ēs

1
2
pĒs

E
`

0

sxy(x)
x2x

dx 1
2

xpĒs
E
`

0

F p2

42p2

1
x/x

1 1 x/x
2k1(x/x)Gsxy(x)dx (13a)

1
2

xpĒs
E
`

0

F 2p
42p22k2(x/x)

2k3(x/x)Gsyy(x)dx,

(dv/dx)(s) 5
122ns

12ns

sxy(x)
Ēs

1
2
pĒs

E
`

0

syy(x)
x2x

dx 1
2

xpĒs
E
`

0

F p2

42p2

1
x/x

1 1 x/x
2k1(x/x)Gsyy(x)dx (13b)

1
2

xpĒs
E
`

0

F 2p
42p2 1 k2(x/x)

2k3(x/x)Gsxy(x)dx,

In the right hand sides of both equation (13a) and
equation (13b), the first two terms correspond to the
half plane solution and the last two integrals represent
the effect of the edge of the substrate. The three ker-
nel functionski(x) (i 5 1, 3) are all regular and finite
functions. They are specified and plotted in Appendix
A. In equation (13), the origin of the coordinate sys-
tem is set at the corner of the substrate. One can show
that the brackets in the second or third integrals in
equation (13a) and equation (13b) all approach zero
as x/x→`. The contributions from the last two inte-
grals in equation (13a) and equation (13b) approach
zero at values ofx remote from the corner. Since the
effects of the substrate edge on interface deformation
decays as 1/(Ēsx), one can anticipate that the energy
release rate for the crack emerging from a corner edge
(Fig. 2(b)) will slowly approach steady state if the
substrate is not very stiff. This will be seen to be
the case.

3. INTERFACE CRACKING FROM A FILM EDGE:
INTERIOR VERSUS CORNER EDGES

The problems in Fig. 2(a) and (b) are considered
first, employing equation (10) for the semi-infinite
substrate and equation (13) for the quarter plane sub-
strate. The integral equations are cast into non-dimen-
sional form by normalizing stresses bys0, lengths by
h, and displacements byhs0/Ēf, where Ē 5 E/(12
n2). The combinations of elastic constants appearing
in the non-dimensional integral equations can be fully
expressed in terms of the two Dundurs parameters:

a 5
Ēf2Ēs

Ēf 1 Ēs

, b 5
1
2
mf(122ns)2ms(122nf)
mf(12ns) 1 ms(12nf)

(14)

wherem 5 E/[2(1 1 n)]. Usually, b plays a second-
ary role in the class of problems under consideration.
Because the discussion of mixed mode effects is sim-
plified whenb 5 0 [12], numerical solution has been
restricted to these cases. The mode I and II stress
intensity factors, andKI and KII , can be computed
directly as the amplitudes of the square-root singular
terms representing the traction distributions. The
energy release rate and measure of mode mix are
given by

G 5
1
2S1

Ēf

1
1
Ēs
D(K2

I 1 K2
II), (15)

tany 5
KII

KI

(b 5 0)

Alternatively, G can be computed by directly calcu-
lating the energy in the system at two slightly differ-
ent crack lengths and forming a numerical derivative.
This method leads to somewhat higher accuracy than
the first of equation (15), and it was used to generate
the numerical results presented in the paper.

3.1. Energy release rate and mode mix

The energy release rate of a crack emerging from
an interior edge(Fig. 2(a)) is within a few percent of
the steady-state limit,Gss, given by equation (1) for
crack lengths,a, which are less thanh/2, as can be
seen in Fig. 6. There is essentially no dependence on
the elastic mismatch parametera when the crack is
longer thanh/2. The solid curves in Fig. 6 are the
predictions of the present model. The solid dots (at
a/h 5 0.1, 0.5, 1 and 2) have been computed using a
finite element model for the case of no elastic mis-
match. These substantiate the present results. Fora/h
even smaller than 0.1,G necessarily must go to zero
as a/h goes to zero, but no attempt has been made
to resolve that dependence. The present model is not
intended for predicting behavior of such short cracks,
as will be discussed further below. The dependence
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Fig. 6. Energy release rate as a function of crack length for a
crack emerging at an interior edge (b50). The solid dots were
calculated using a finite element method for the case ofa50.

of the mode mix for the interior edge has not been
plotted because it also is essentially independent of
crack length fora/h>h/2. The steady-state limit is
yss 5 w(a), where w(a) is given in [12]. In the
absence of elastic mismatch,w(0) 5 52.1°, corre-
sponding to nearly equal proportions of modes I and
II. Look ahead to Fig. 8 to see the influence ofa
on yss.

The main inference to be drawn from the results
in Fig. 6 is that there is a very small barrier to
initiation of crack propagation for an interface crack
emerging from an interior edge. An initial interface
flaw whose length is only a small fraction of the film
thickness will be almost as lethal as a much longer

Fig. 7. Normalized energy release rate as a function of crack
length for a crack emerging at a corner edge. The solid dots

were calculated using a finite element representation.

crack. The situation for a crack emerging from acor-
ner edge(Fig. 2(b)) is very different, as can be seen
in Fig. 7. In this case, the energy release rate has a
slow approach to the steady-state limit as the crack
length increases. The solid curves are the predictions
of the present model, and the solid points are the pre-
dictions from a finite element calculation. The energy
release rate emerges from zero ata/h 5 0 and attains
95% of Gss only whena/h exceeds 10 or more. The
elastic mismatch parameter,a, has a quantitative
influence onG, such that an interface crack between
a compliant film and stiff substrate (a 5 20.5)
approaches steady-state at much shorter crack
lengths, and vice versa fora 5 0.5. Remarkably,
only whena/h 5 40 does the crack attain 90% ofGss

for a film that is three times as stiff as the substrate
(a 5 0.5). It is notable that the mode mix,y, in Fig.
8 is close to its steady-state value at relatively short
crack lengths, typicallya/h 5 1 or shorter, depending
on the elastic mismatch. The influence of elastic mis-
match on the approach to the steady-state limit is well
captured by plotting G/Gss as a function of
Ēfh/(Ēsa). As seen in Fig. 9, the results plotted this
way for the three elastic mismatches nearly collapse
to a single curve forG/Gss>0.6 with an initial slope
of 21.

Together, Fig. 6 and Fig. 7 highlight one of the
main findings in this paper: interior edges of a thin
film are inherently more susceptible to delamination
than corner edges.

3.2. Interface stress distribution

Figure 10(a) and (b) show the tractions along the
interface as computed by the present model for the
configuration shown in Fig. 2(a), a semi-infinite film
with an interior edge. Since a stiffer substrate imposes
stronger constraint on the thin film, the stress near the
crack is higher fora 5 20.5 than the other two

Fig. 8. Measure of mode mix as a function of crack length for
a crack emerging at a corner edge.
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Fig. 9. Energy release rate plotted against the normalization
(12n2

s)Efh/[(12n2
f )Esa].

cases. The normal stress is tensile near the crack tip
and turns compressive within a zone less than one
film thickness.

The model gives the same stress distribution along
the interface in Fig. 2(a) whether or not a crack is
present. The solution is independent of the crack
length, assuming the origin is taken at the crack tip.
The models proposed by Freund and Hu [8] and Shi-
eld and Kim [9] have the same feature. When the
crack length is greater than abouth/4, the actual stress
distribution along the interface is almost the same as
the steady state solution because the effect of the free
detached edge of the film has negligible effect except
within h/4 from the attachment point. Moreover, the
actual interface traction distribution for the case with-
out an interface crack is almost the same as the case
with crack except in a zone near the edge abouth/4
in width. The following observations shed light on
this and related features. The net force and moment
exerted by the detached end of the film on the
attached film to the right ofx 5 0 is zero. Therefore,
an Airy stress function representing the effect of the
detached film on the attached portion can be written
as a series of biharmonic eigen-functions, which are
of the form [13, 14]

Feven5 e2gnx/h(kncos(gny/h) 1 gny/h sin(gny/h))

Fodd 5 e2gnx/h(knsin(gny/h) 1 gny/h cos(gny/h)).
(16)

The slowest decay mode has the real part ofgn being
4.212, indicating the effects of the end load decay
exponentially with a characteristic length abouth/4
and can be ignored when the distance to film edge

Fig. 10. Shear stress (a) and normal stress (b) acting on the
interface ahead of the crack tip for the geometry in Fig. 2(a).

is larger than that characteristic length. This is the
underlying analytical reason that the energy release
rate in Fig. 6 approaches steady-state for cracks of
length under one film thickness. We emphasize again
that no effort has been made to resolve behavior for
even shorter cracks, which can be important in certain
applications. The recent work by Liu, Suo and Ma
[15] provides details of stress distributions in the
immediate vicinity of a film edge when there is no
crack.

Figure 11(a) and (b) compare the stress distri-
butions from the three models for the case of no elas-
tic mismatch, along with a finite element solution for
a crack witha/h 5 5. The stresses are multiplied by
√2px/h to remove the singularity at the crack tip. The
horizontal lines in Fig. 11(a) and (b) represent the



101YU et al.: THIN FILM DELAMINATION

Fig. 11. Normalized shear stress (a) and normal stress (b) acting
on the interface for the geometry of Fig. 2(a) according to three
models (Freund and Hu (FH), Shield and Kim (SK) and the
present model (YHH)) and a finite element calculation (open
circles). The exact limit as the tip is approached is also shown.

exact results forKII /s0√h and KI/s0√h, respectively,
for the steady state crack [12]. The differences among
the solutions are apparent. The present model (YHH)
gives accurate results for both the stress intensity fac-
tors and the full traction distributions. The model of
Shield and Kim (SK) has a similar trend, but with
significant error in prediction of the stress intensity
factors. It is worth noting that the normal stress
diverges quickly from the asymptotic solution asx
increases and turns compressive at about 0.6h. This
suggests that the zone of dominance of the intensity
field tied to KI will be a small fraction of the film
thickness. The ratio of the normal to the shear traction
also changes rapidly whenx increases, indicating that

the mode mix calculated from the limit value at the
crack tip only has a very limited domain of validity.

The traction distributions along the interface as
obtained from the present model for a perfectly
bonded thin film without a crack whose edge is
aligned with the corner of the substrate (Fig. 2(b)) are
plotted as solid curves in Fig. 12 (a) and (b). The
discrete points in Fig. 12(b) for the normal stress are
the results of a finite element calculation. These
further reinforce the accuracy of the present model.

4. STRESSES FOR FINITE WIDTH FILMS

Now the focus will be on the interaction between
the two edges of a finite width film as a prelude to
the converging debond study. The interface traction
for thin film with finite width, 2L, fully bonded to the

Fig. 12. Shear stress (a) and normal stress (b) acting on the
interface for a film whose edge is aligned with a corner of the
substrate (Fig. 2(b), but without a crack). The discrete points

in (b) are the results of a finite element calculation.



102 YU et al.: THIN FILM DELAMINATION

top of a half space (Fig. 3(a)) can also be computed.
Of particular interest is the distribution of the residual
stress averaged through the thickness direction,

savg(x) 5 (1/h)Eh

0

sxx(x,y)dy, which can be calculated

from the shear stress distribution along the interface.
The strong interaction between the two ends is seen
in Fig. 13, where the average residual stress distri-
bution is plotted fora 5 0.5 and20.5. The average
stress has a maximum at the mid point,x 5 0, but it
only approachess0 when the width of the film is
greater than 100h or more, depending on the elastic
mismatch. Similar results were obtained in [9]. The
maximum residual film stress can be significantly
below s0 when the width of the film is in the range
from 5 to 10h.

The long-range interaction between the two edges
can be understood as follows. The two edges com-
municate with each other not only through the film
itself, but also through the substrate. In fact, the stress
relaxation in the film is mainly due to the deformation
of the substrate whenL/hÀ1. If L/hÀ1 and the stress
well away from the edge is of interest, the concen-
trated shear traction near the two edges can be treated
as two equal and opposite point forces acting on the
substrate. By matching the horizontal strain, du/dx, of
the thin film and the substrate at the middle of the
bonded interface, one obtains the following estimate
of the average stress at the middle cross section,savg:

12savg/s0 5
4hĒf

pLĒs

, (17)

Only the lowest order of influence ofh/L has been

Fig. 13. Interaction effect between film edges. Average of the
residual in-plane stress in films extending fromx52L to x5L
for two elastic mismatches. For each pair of curves, the lower

curve is fora50.5.

retained in equation (17). The accuracy of equation
(17) is apparent from Fig. 14, where the solid lines
are plotted using equation (17) and the solid points
represent values ofsavg computed using the present
model. The long range interaction between the edges
is a consequence of the deformation of the substrate,
which in turn is related to the 1/x long range depen-
dence of the strain in the substrate when acted upon
by a concentrated force.

5. CONVERGING DEBONDS

The results for the finite width films in the previous
section have relevance to the problem of an interface
crack approaching an interior edge (Fig. 2(c)). The
interaction of the crack tip and the edge of the film
is similar to that of the two edges. The crack begins
to relax the residual stress and strain energy in the
attached segment of the film when the attachment
width, b, is many times the film thickness. As a
consequence, the energy release rate begins to drop
below the steady state value whenb/h is quite large,
as seen in the curves of Fig. 15(a). A stiff film on a
compliant substrate (e.g.,a 5 0.5) displays a 20%
drop in the energy release rate whenb/h is 25. Even
in the absence of elastic mismatch a similar reduction
occurs whenb/h is 10. This gradual fall off in the
energy release rate was exploited in [3] to measure
the interface toughness of films which had been
stressed to the point whereGss exceeded the interface
toughness. They used measured values ofb/h at arrest
to infer the critical energy release rate. Heet al. [4]
carried out finite element calculations for convergent
debonding of thin films, detailing behavior similar to
that seen in Fig. 15(a). The associated measure of
mode mix is plotted in Fig. 15(b). UnlikeG, y

Fig. 14. Comparison in the reduction of the average residual
stress at the center of a film of width 2L as predicted by the
simple formula Eq. (17) and the predictions of the present

model.
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Fig. 15. Energy release rate (a) and mode mixity (b) for an
interface crack converging on an interior edge (Fig. 2(c)).

remains close to the steady state until the remaining
ligament is relatively small. The significance of this
for testing based on convergent debonding is that the
toughness measured will be associated with the steady
state mode mix, unlessb/h at arrest is less than
about 4.

Results for an interface crack converging on a cor-
ner edge (Fig. 2(d)) are given in Fig. 16(a) and (b).
The behavior is qualitatively similar. Now, however,
the crack tip “feels” the corner edge at even greater
distances than for the interior edge. A 20% reduction
in the energy release rate already occurs when
b/h 5 40 for a 5 0.5. For reasons discussed earlier,
the present model loses accuracy whenb/h is on the
order of unity.

Further evidence to support the very small influ-

Fig. 16. Energy release rate (a) and mode mixity (b) for an
interface crack converging on a corner edge (Fig. 2(d)).

ence that the detached segment of the film has on the
stress distribution (cf. Section 3.2) is provided by the
following observation. The energy release rate of the
interface cracks for the two configurations in Fig.
17(a) and (b) are indistinguishable from one another
when the remaining ligaments satisfyb/h>1/2 [4].
The present model predicts that these two cases have
precisely the same energy release rates. Similarly, one
could also expect that the interface tractions for all
three cases in Fig. 17 are essentially identical except
for the zones on the order of 1/4h very close to the
film edges. As already mentioned, the present model
is not able to resolve such distinctions; it predicts that
the stress distribution for all three cases in Fig. 17 is
the same.
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Fig. 17. Three film geometries that have nearly identical stress
distributions everywhere except within a distance of abouth/4

from the edges.

6. CONCLUDING REMARKS

Edges profoundly influence the stress distribution
and the energy release rates of interface cracks of thin
films. Moreover, there are important differences
between the behaviors of cracks emerging from
interior edges and corner edges. Interface cracks
emerging from an interior edge approach the full ste-
ady state energy release rate equation (1) remarkably
quickly, at distances of a fraction of a film thickness
from the edge. By contrast, a crack emerging from
an edge at the corner of a substrate remains well
below the steady state energy release rate until the
crack length is many times the film thickness. Only
if the film is on a very stiff substrate will the approach
to steady state cracking occur at relatively short crack
lengths. In effect, corner edges provide an intrinsic
protection against the nucleation of interface delami-
nations. Interior edges do not.

Interface cracks converging on an edge begin to
“feel” the edge at distances that are many times the
film thickness, whether the edge is at a corner or in
the interior of the substrate. Delamination cracks
approaching an edge will arrest at a well defined stand
off distance where the energy release rate drops to
the level of the interface toughness. This phenomenon
is manifest in various observations of thin film
delamination. An example is the partial delamination
of residually stressed film strips which was observed
in some of the experiments conducted by Zhuket al.
[3] and sketched in Fig. 18. The width of the strip of
film, 2L, is large compared to the film thickness, say
2L/h>50 In instances when full delamination
occurred, the interface crack starts at one end,
debonds the full width of the strip, and arrests as it
converges on the other end. Many of the strips
behaved in this manner. However, for some strips, the

Fig. 18. Two observed modes of delamination of film strips:
partial-width debonding and full-width debonding. The average
energy release rate for partial-width debonding is larger than
for full-width debonding. (a) Partially delamianted; (b) fully

delaminated.

interface crack emerges from the end of the film and
spreads along the film without debonding the full
width of the film, as depicted in Fig. 18. The propa-
gating partial-width crack arrested as it converged
with the far end of the film. Based on the results
presented in Section 3 and Section 5, one can readily
see that the average energy release rate of the inter-
face crack in the partially delaminated strip must be
greater than that for the fully delaminated case, at a
given reference stress,s0. In other words, partial
delamination is energetically favored above full
delamination in the sense that it could occur at
lower s0.

The modeling approach presented in Section 2 is
somewhat more complicated than earlier models, but,
nevertheless, leads to the same general class of inte-
gral equations obtained in the earlier models and
these can be solved with the same numerical methods.
One obvious virtue of the new approach is that it pre-
serves the precise form of the singularity field of the
interface crack. Equally important, it has been dem-
onstrated to be highly accurate, except for very short
cracks near the edges of the film.

Finally, the residual stress has been assumed to be
tensile in this paper. When the residual stress is com-
pressive, the two crack surfaces will be in contact. In
this case, the relations between the derivatives of the
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displacements and tractions on the interface expressed
in equation (2), equation (3), equation (7), equation
(9) and equation (10) are still valid. The traction free
condition along the crack surface should be replaced
by an appropriate contact condition thereby estab-
lishing the modified integral equations. This will be
pursued elsewhere.
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APPENDIX A

The stresses in a wedge (Fig. 19) with a normal
point forceFn exerting on one of the wedge surfaces
(q 5 a) are obtained using a Mellin transformation
as proposed by Tranter [16].

r(sq 1 sr) 5 Fn

sin 2a sin(a 1 q) 1 2a sin(q2a)
sin2 2a24a2

1
Fn

p E
`

0

HF2
T(x)
G(x)

1
Q(x)
H(x)GcosSx ln

d
rD 1 FS(x)

G(x)

2
P(x)
H(x)GsinSx ln

d
rDJdx

r(sq2sr) 5 2Fn

sin 2a sin(a 1 q) 1 2a sin(q2a)
sin2 2a24a2

Fig. 19. Conventions for the solution for the substrate with a
corner.

1
Fn

p E
`

0

F2
S(x)
G(x)

1
P(x)
H(x)GFx cosSx ln

d
rD

1 sinSx ln
d
rDGdx

rsrq 5
Fn

2pE
`

0

FU(x)
G(x)

2
R(x)
H(x)GFcosSx ln

d
rD (A1)

2x sinSx ln
d
rDGdx

and the stresses in a wedge with a tangential point
force Ft exerting on one of the wedge surfaces

r(sq 1 sr)

5 Ft

2sin 2a cos(a 1 q) 1 2a cos(q2a)
sin2 2a24a2 1

Ft

pE
`

0

HF
2

R(x)
G(x)

1
U(x)
H(x)GcosSx ln

d
rD 1 FO(x)

G(x)

1
V(x)
H(x)GsinSx ln

d
rDJdx

r(sq2sr) 5 Ft

sin 2a cos(a 1 q)22a cos(q2a)
sin2 2a24a2

1
Ft

pE
`

0

HFO(x)
G(x)

2
V(x)
H(x)G 1 xF2

R(x)
G(x)

1
U(x)
H(x)GJsinSx ln

d
rDdx

rsrq 5
Ft

2pE
`

0

HF2
Q(x)
G(x)

1
T(x)
H(x)G 1 xFP(x)

G(x)
(A2)

2
S(x)
H(x)GJcosSx ln

d
rDdx

where

G(x) 5 x sin 2a2sinh(2xa)

H(x) 5 x sin 2a 1 sinh(2xa)

P(x) 5 sin(a2q)cosh((a 1 q)x) 1 sin(a
1 q)cosh((a2q)x)

Q(x) 5 cos(a2q)sinh((a 1 q)x) 1 cos(a
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1 q)sinh((a2q)x)

R(x) 5 sin(a2q)sinh((a 1 q)x)2sin(a 1 q)sinh((a
2q)x)

O(x) 5 cos(a2q)cosh((a 1 q)x)2cos(a
1 q)cosh((a2q)x)

S(x) 5 sin(a2q)cosh((a 1 q)x)2sin(a 1 q)cosh((a
2q)x)

T(x) 5 cos(a2q)sinh((a 1 q)x)2cos(a 1 q)sinh((a
2q)x)

U(x) 5 sin(a2q)sinh((a 1 q)x) 1 sin(a
1 q)sinh((a2q)x)

V(x) 5 cos(a2q)cosh((a 1 q)x) (A3)
1 cos(a 1 q)cosh((a2q)x).

On the surface ofq 5 a, the derivatives of the dis-
placement with respect tor are calculated for both
cases. When the surface is subjected to distributed
normal and shear tractions, the derivatives of dis-
placement with respect tor can be obtained by linear
superposition. After lengthy algebraic manipulation,
one has

du
dr

5
122n
12n

syy(r)
Ē

1
1
rE

`

0

F2a2sin 2a cos 2a
sin2 2a24a2

1
1

2a
xp/2a 1 rp/2a

xp/2a2rp/2a
2

2 sin2 2a
p

k1(x/r)Gsxy(x)
Ē

dx

1
1
rE

`

0

F sin2 2a
sin2 2a24a22

sin2 2a 1 sin 2a
p

k2(x/r)

2
2 sin 2a
p

k3(x/r)Gsyy(x)
Ē

dx

dv
dr

5 2
122n
12n

sxy(r)
Ē

1
1
rE

`

0

F2a 1 sin 2a cos 2a
sin2 2a24a2

1
1

2a
xp/2a 1 rp/2a

xp/2a2rp/2a

2
2 sin2 2a
p

k1(x/r)Gsyy(x)
Ē

dx (A4)

1
1
rE

`

0

F sin2 2a
sin2 2a24a2

1
3 sin2 2a2sin 2a

p
k2(x/r)

2
2 sin 2a
p

k3(x/r)Gsxy(x)
Ē

dx

where

k1(x/x)

5 E
`

0

h2

h2 sin2 2a2sinh2 2ah
cosh 2ah
sinh 2ah

sin(h ln x/x)dh

k2(x/x) 5 E
`

0

h2

h2 sin2 2a2sinh2 2ah
cos(h ln x/x)dh

k3(x/x) 5 E
`

0

h2

h2 sin2 2a2sinh2 2ah

sin(h ln x/x)dh. (A5)

The first term in the right hand side of each equation
in equation (A4) represents the effect of the local
stress on the deformation. It is obtained after calculat-
ing the residue of the corresponding integral. The
integrals in equation (A4) are defined as the Cauchy
principal value where there are Cauchy-type kernels.
The functionsk1, k2, and k3 are all regular and well

defined.
As x/x→`, k1→{p/[4a(sin2 2a24a2)]}, k2→0 and
k3→{p/[2(sin2 2a24a2)]}. For a quarter plane,a 5
p/4, the correspondingk1, k2 and k3 are plotted in

Fig. 20.

Fig. 20. Functions characterizing the behavior for a substrate
with a corner.
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The solutions for the point forces on another sur-
face θ 5 2α are similar to equation (A1) and equ-
ation (A2) with only some change on the signs of
some terms.
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