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EDGE EFFECTS IN THIN FILM DELAMINATION
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Abstract—Thin films bonded to a substrate often sustain large in-plane residual stresses that are transferred
to the film via shear stresses on the interface near their edges. These edge zones play a significant role in
film delamination. A new method is introduced to analyze both the residual stress distribution in a film near
its edge and the energy release rate and mode mix for an interface delamination crack emerging from, or
converging upon, an edge. Two two-dimensional configurations are considered: (a) a film whose edge lies
in the interior of the substrate and (b) a film whose edge is aligned with the edge of the substrate (i.e. the
film/substrate geometry is a quarter-plane). There are significant differences between the two cases. For the
former, (a), the energy release rate approaches the steady-state, limiting rate for a long interface crack when
the crack has extended less than one film thickness. By contrast, the energy release rate in case (b) remains
far below the steady-state rate until the crack extends to ten or more film thicknesses from the edge. In case
(b), the edge effect provides a significant protection against edge delamination, whereas in case (a) it does
not. Elastic mismatch between the film and the substrate is significant in case (b), but not in case (a). A
second set of behaviors is investigated wherein the interface crack approaches the edge of the film from the
interior. For both types of edges, the energy release rate drops well below the steady-state rate at remaining
ligament lengths that are very large compared to the film thickness, approaching zero as the delamination
converges on the edge. Analytic features which account for the various behaviors will be highlighted, and
practical implications for thin film delamination will be discusséd.2001 Acta Materialia Inc. Published

by Elsevier Science Ltd. All rights reserved.

Keywords:Thin films; Delamination

1. INTRODUCTION [ thin film v, E¢

Thin films are often employed in a stressed state. Tt

origins of the stress can be epitaxy, growth process

(e.g. crystalline coalescence in physical or chemici

vapor deposition), thermal expansion mismatch, di

ferential densification (e.g. constrained sintering), ar

others. In some applications the magnitude of th

stress can be as large as several GPa. The stres —»Oxx

transferred to the film via shear stress on the interfa - . T .=

near the film edges (Fig. 1). The stress concentratic y

near the edge makes the film susceptible to delan

nation from the substrate. When the stress in the fil

is compressive, buckling above an initial interfacc X

flaw may provide enough driving force to delaminateig 1. Film/substrate system illustrating the role of the shear

the film. When the film is in residual tension, delami- traction on the interface near the edge of the film.

nation can initiate preferentially along the film edge

[1]. The present work assumes that the film is under

uniform tension with magnitude, well away from The component of stress parallel to the crack edge

the edge, directed perpendicularly to the crack edgdoes not influence any of the results presented in the
paper. Thus, for example, the results will apply to a
film under an equi-biaxial stress statg or to a film

* To whom all correspondence should be addressed. that is only stressed perpendicularly to the edge.

E-mail address: hutchinson@HUSM.harvard.edu When the tip of an interface edge crack (Fig. 2)
(J.W. Hutchinson) is sufficiently far away from the edge, steady-state

substrate v Es
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(a) are considered in this paper: (a) a semi-infinite film

\ whose edge lies in the interior of the substrate plane

[ a (Fig. 2(a)), and (b) a semi-infinite film whose edge is

> aligned with the edge of the substrate (i.e. the

S a e film/substrate geometry is a quarter-plane) (Fig. 2(b)).
Previous studies have discussed some aspects of these

problems, but have not uncovered the significant dif-
ferences between them [1, 2]. If the film/substrate
(b) system ha&.>T';, the edge effect in case (b) provides
a substantial barrier to the initiation of edge delami-
nations, but not in case (a).
— 2 The film displays a different type of behavior when

the crack approaches one film edge from interior (Fig.
2(c) and (d)). The crack tip and the edge “sense” each
other from a remarkably large distance. As they
become close, the remaining residual stress in the film
decreases and the energy release rate drops. A propa-
© gating interface crack G.>I) will stop as it
approaches an edge when the energy release rate
drops to the level of the interface toughness. Zbuk
I al. [3] exploited this edge effect in the experimental
¢ b ’ measurement of the interface toughness of a Ni-poly-
mer bi-layer bonded to a silicon substrate. He, Evans
and Hutchinson [4] termed such behavior “convergent
debonding” and showed that it also arises in contexts
other than thin films. The method developed in this
paper is used to study the two cases in Fig. 2(c)
and (d).
(d) The residual stress distribution itself can affect the
non-mechanical properties of microelectronic devices
. (e.g. Ramirezet al. [5]). For this reason we devote
<—-5—> some attention to the determination of the residual
stress distribution in the film in the vicinity of an
edge, although not at the finest level. When two film
edges (or a crack and an edge) are close, each edge

. . o ____senses the other and the residual stress in the film
Fig. 2. Four geometries studied in this paper. DelammatlorgJ

emerging from the film edge: (a) interior edge, and (b) edg rops. ThE_! InteraCtlon will be. dlsplayed_, providing
at a corner. Delaminations converging on an edge: (a) interidther insight into the behavior underlying conver-
edge, and (b) edge at a corner. gent debonding.
Another motivation underlying the present paper is
the desire to develop a simple and reliable method
propagation prevails with energy release rate indgor analyzing thin films. A thin film on a substrate is

pendent on crack length being similar in some respects to the problem of a stiffener
on a sheet or half plane [6, 7]. The membrane model
G = A-voth (1) used for stiffeners has been used to describe thin films

ss 2E; [8]. In the membrane model, only shear traction on

the interface is considered while normal traction is

ignored. While it captures certain features of the

with E; andv; as the Young’s modulus and Poisson’sehavior with fidelity, this model does not give the
ratio of the film, andh the film thickness. This is right mode mix when a crack emerges from the edge.
simply the elastic energy per unit area in the filmMoreover, the shear stress distribution prediction
released, subject to the plane strain constraint. #long the interface is less accurate than might be
G.>T;, wherel'; is the interface toughness at the reldesired. Shield and Kim [9] used elementary beam

evant mode mix, spontaneous thin film delaminatiotheory (or, equivalently, plate theory) to model the

would be expected to occur given a sufficiently largélm, thereby introducing the normal traction on the
initial crack. Whether or not this happens will dependnterface. This model gives rise to a complex stress

on the initiation conditions along the edges, which isingularity at the crack tip, even when the thin film
one of the main motivations underlying the preserdand the substrate are the same material. The model
study. that will be introduced in this paper is constructed to
Two two-dimensional plane strain configurationgive the exact form of the singularity at the interface
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crack tip. It employs beam (or plate) theory in one,(X) and o,(x). The plane strain version of the
step of the analysis, but it does so in a way that doesduced problem in Fig. 3(b) is under consideration
not introduce significant quantitative errors. While thénere.
new model is slightly more complicated to describe The essential step in the new model is the represen-
than the earlier models, its formulation and théation of the reduced problem as the sum of the three
numerical method required for its solution are eackub-problems shown in Fig. 4: the trivial problem for
quite similar. the free-standing film under uniform compression in
The plan of this paper is as follows: In Section 2Fig.4(a); a semi-infinite upper half space with the
the new thin film model is introduced and the governproperties of the film and subject to tractioog/(X)
ing equations for problems in Fig. 2 are formulatedand o,(X) in the interval L, L) along its bottom in
Section 3 provides the results that distinguish betweétig. 4(b); and a free-standing film with specially
the edge conditions in the two cases. Stress distghosen tractions along the three faces indicated in Fig.
butions for finite width films are reported in Sectiord(c). The tractions on the three surfaces in Fig. 4(c)
4, highlighting the interaction between the edgesre chosen to be equal and opposite those induced in
Convergent debonds are studied in Section 5. Thke problem of Fig. 4(b) along the same three planes
paper concludes with other illustrations in Section &efining the film. With this choice, it is clear that the
superposition of the three problems gives precisely
the desired traction conditions indicated for the
reduced problem at the top of Fig. 4. The problems
The reference residual stress in the film remot® Fig. 4(a) and (b) will be solved exactly, and the
from the ends is assumed to be uniform and tensikibstrate is treated exactly in coupling it to the combi-
when the width of the film is sufficiently great. Thisnation of sub-problems in Fig. 4. If the problem in
reference residual stress,, is assumed to be due toFig. 4(c) were solved exactly, the superposition of the
a strain mismatch between the film and substrate. Fthree solutions would provide the exact solution to
a thin film with finite width, 2, a standard represen-the reduced problem. Instead, we will solve the prob-
tation introduced for analysis purposes employs tHem in Fig. 4(c) approximately using beam (plate)
superposition of a uniformly stressed film (Fig. 3(a)}heory to represent the film. We will demonstrate that
with the “reduced problem” (Fig. 3(b)) wherein thethis approximation introduces relatively little inaccur-
film is attached to the substrate and subject to a coraey in the quantities of interest in this paper.
pressive loadingy, on its ends. Since the problem of
Fig. 3(a) is trivial, attention shifts to the solution of(a)
the reduced problem. Denote the traction componer R
along the interface between the film and substrate | |
o o, >
\ X
ECRAEAC

f—2 e -
| |

2. THE MODEL

(a)

—>|>

o] €0,

(b)
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Fig. 4. Three sub-problems used in constructing the solution
Fig. 3. Definition of the reduced problem in (b). to the reduced problem.
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The solutions of Fig. 4(a) and (b) are well known (a)
Let (u, v) be the displacement components on th
interface. In Fig. 4(a),

(dg® = -2, @ix©=0, )
i i
whereE = E/(1— v?). The superscript (a) denotes the "(E’ 0)
contribution from the problem in Fig. 4(a) in the q, dg

superposition procedure. The superscripts (b) and (
are used next for contributions from the problems i‘(b)
Fig. 4(b) and (c).

For the half plane problem depicted in Fig. 4(b)
the expressions for the derivatives of displaceme \ \ //

along the interface are known in terms of(x)

and oy(X): 1/ Y o
L dFy (E! 0) (X, O)
1-2 2 . dF
(duidn)® = == Vf"yé(x) < J %)z (3a) v
Vi ﬂEffL £—x Fig. 5. Details of the conventions for sub-problems (b) and (c)
in Fig. 4.
L The resultant forces are exerted at poift @) (Fig.
A/ ® = — T2V 2 T(6) 5(b)). The corresponding moment at the cross section
(av/dx) d,
1-v E 7TEf7L &—x caused by the resultant forces is
(3b) _
dM = dF,-h/2—dF,-(x—§) (5)

where the integrals exist in the sense of their Cauchx The resultant forces and moment corresponding to

principal values. Traction free condition along thdN€ shear traction on the interface in Fig. 5(b) can be
surface outside the interval —(,L) has been obtained by the same procedure. The transverse stress

accounted for in equation (3). o, at pointx on the interface in Fig. 5(b) is estimated

The problem in Fig. 4(c) is solved using beanpY integrating along the interface with respectito
(wide plate) theory. Again, the objective is to obtairinclude the contributions from all the tractions along
a representation analogous to equation (2) and edf€ interface in Fig. 4(b):

ation (3) for the expressions of the derivatives of the .

displacements. The applied tractions in Fig. 4(c) are dE. hdM
those needed to cancel the tractions on the corre- ou(X) = j( hX + ﬁ) (6)
sponding surface cuts (dashed lines) in Fig. 4(b), as 2 f

illustrated in Fig. 5. Consider a normal tractiop(§)

exerted on a line element dlong the bottom at pos-

ition (&, 0) in Fig. 5(a). From the point force solutionwherel = h%12 is the bending inertia for a unit thick-
(see [10]), the induced tractions on the other thregess of depth. The first term in the integral corre-
surfaces all “radiate” from the poin€(0) (Fig. 5(a)). sponds to the average stress at the cross section, and
Consider a cross section in Fig. 5(b) at positian the second is the stress caused by bending moment.
The resultant forces per unit thickness equivalent to Adding the contributions from both the shear and
the reversed tractions (Fig. 5(b)) to the left of thewormal tractions, one obtains the derivatives of the

cross section, e, and d, are displacements along the interface in Fig. 5(b):
o(6)dE L
dF, = =22=(1—cos Zr) (4a) 1 —sin % + 27—2
x on o_ 1 sin 2o + o
(du/dx) o J [4 h
—L
(1—cos 2x)(x—&)
. e > 5
dF, = —%zidé(zn—za +sin2)  (4b) * 2 oS (72)
L
n 1 4cos -1
2nE; h

where o = cotam[(x—¢£)/h] lies between 0 andr. bl
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76(sin 2o + 2;]:2—20:)(x—§)]dyy(‘§)d‘5
and
h M
(dv/dx)© = — j de + 0o, (7b)
with

M(X) = — J[(lcos ) (x—&) + (—sin 2o

+ h—za)h/z]%‘f)dg + J [(sin 20 + 27 (8)

—L

“20)(x—8) + (1—cos m)wz]%‘f)dg.

along the bonded interface, the integral equations
governing the interface tractions are obtained from
the conditions (d/dx)® = (du/dx)® and (d/dx)® =
(dv/dx)®. The tractions along the interface should
also satisfy three overall equilibrium conditions for
zero net force and zero net moment acting on the
interface:

Joxy(é)dé =0 (11a)
J o(8)(E + L)dE =0 (11b)
J o (E)dé = 0. (11c)

The Cauchy-type integral equations for the tractions

In equation (7b)g, is a constant to be determined.are solved numerically using the method introduced
The three contributions to the derivatives of displacen [11]. The displacement jump behind the crack tip
ments in the film along the interface, equations (2fan be obtained using equation (9) and equation (10),

(3) and (7) combine to give

(du/d)® = (dud)® + (du/dX)® + (du/dx)©
(9a)

(AVIdX)® = (dvidX)@ + (dv/dx)® + (dvidx)®©,
(9b)

where the superscription (f) stands for film.

once the tractions have been obtained.

The decomposition of the reduced problem
depicted in Fig. 4 applies as well to the cases involv-
ing interface cracks. In these cases, the use of the
semi-infinite half space in the sub-problem in Fig.
4(b) ensures that the form of the interface singularity
is exactly that of the original problem. This is one of
the essential steps which helps ensure the accuracy of
the method. The other is that none of the loads in the
problem of Fig. 4(c) act on the bottom of the film or
near the crack tip. This is important in ensuring the

For configurations in Fig. 2(a) and (c), the substratgccuracy of the beam approximation used in
is a semi-infinite half plane and the derivatives of th@Ptaining equation (7). Finally, while we have intro-

displacement along the interface are,

L

1-2vop(X) = 2 [oxf&)
() = = =SV 7
(durdx 1-v. E + TE. f —dég_x

(10a)

o _  1-2vo,(X) 2 L%&)
(dV/dX)( ) = ﬁ + ;ESJ é_X dé

(10b)

duced an extra problem in the form of the half-space
in Fig. 4(b), its solution is well known and the coup-
ling to the lower half space representing the substrate
leads to integral equations which are similar in form
to those emerging in the earlier methods.

For a semi-infinite thin film, a superposition pro-
cedure similar to that in Fig. 4 and Fig. 5 is readily
constructed. Now, the net surface tractions will be
balanced by the stress in the film at infinity. The final
expressions for the tangential derivatives of the dis-
placements along the interface remain the same,
except the lower and upper limit of the integrals are
now O ande with x = 0 as the left end of the film.
The conditions expressed by equation (11a) and equ-
ation (11b) are replaced by

where superscript (s) stands for “substrate”. Again the

integral is in the interval {L, L) due to the traction

free condition outside the interval.

The displacements and the tractions are continuous

j G E)E = oo (122)
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3. INTERFACE CRACKING FROM A FILM EDGE:
INTERIOR VERSUS CORNER EDGES

oy(6)8dS = —ooh?2. (12b)  The problems in Fig. 2(a) and (b) are considered
first, employing equation (10) for the semi-infinite
substrate and equation (13) for the quarter plane sub-
If the substrate is a quarter plane (Fig. 2(b) andtrate. The integral equations are cast into non-dimen-
(d)), the derivatives of the interface displacementsional form by normalizing stresses by, lengths by

o——3

with respect tox are (see Appendix A): h, and displacements bloy/E; where E = E/(1—
v?). The combinations of elastic constants appearing
© _ 1-2vo,,(X) in the non-dimensional integral equations can be fully
(du/dx)® = v, E expressed in terms of the two Dundurs parameters:

% o

f f [ z _EE L lu(l-2v)—pg1-2v)
4-n* “= Ef + Esl ﬂ a 2,uf(l_vs) + ,U,S(l_Vf)

O

(14)
- 5 ™ kl(é/x)]oxy(é)dé (13a)
2 4 27r whereu = E/[2(1 + v)]. Usually, B plays a second-
XTE- —ka(S/%) ary role in the class of problems under consideration.
0 Because the discussion of mixed mode effects is sim-
_ plified wheng = 0 [12], numerical solution has been
k3(§/x)]ow(e§)d5, restricted to these cases. The mode | and Il stress
intensity factors, an, and K, can be computed
directly as the amplitudes of the square-root singular
1-2v.5,(X) terms representing the traction distributions. The
(av/dx)® = 1. E energy release rate and measure of mode mix are
S given by
2 o(&) 2 j { 2
+ = Oyl dS
Es) |4—n? /1 1
A G- E(E )(K2 (15)
é/ '
— - K
o |
N 2 2r
xrEs) | 4—m?
0 Alternatively, G can be computed by directly calcu-
_ lating the energy in the system at two slightly differ-
k3(§/x)]oxy(x)d§, ent crack lengths and forming a numerical derivative.

This method leads to somewhat higher accuracy than

the first of equation (15), and it was used to generate
In the right hand sides of both equation (13a) anthe numerical results presented in the paper.
equation (13b),_ the first two terms _correspond to th§_1_ Energy release rate and mode mix
half plane solution and the last two integrals represent
the effect of the edge of the substrate. The three ker-The energy release rate of a crack emerging from
nel functionsk (&) (i = 1, 3) are all regular and finite aninterior edge(Fig. 2(a)) is within a few percent of
functions. They are specified and plotted in Appendithe steady-state limitG,, given by equation (1) for
A. In equation (13), the origin of the coordinate syserack lengthsa, which are less thah/2, as can be
tem is set at the corner of the substrate. One can sheeen in Fig. 6. There is essentially no dependence on
that the brackets in the second or third integrals ithe elastic mismatch parameterwhen the crack is
equation (13a) and equation (13b) all approach zetonger thanh/2. The solid curves in Fig. 6 are the
as&/x—o. The contributions from the last two inte-predictions of the present model. The solid dots (at
grals in equation (13a) and equation (13b) approacih = 0.1, 0.5, 1 and 2) have been computed using a
zero at values ok remote from the corner. Since thefinite element model for the case of no elastic mis-
effects of the substrate edge on interface deformationatch. These substantiate the present resultsaffor
decays as 1Hx), one can anticipate that the energyeven smaller than 0.15 necessarily must go to zero
release rate for the crack emerging from a corner edgs a’/h goes to zero, but no attempt has been made
(Fig. 2(b)) will slowly approach steady state if theto resolve that dependence. The present model is not
substrate is not very stiff. This will be seen to bentended for predicting behavior of such short cracks,
the case. as will be discussed further below. The dependence
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1.2 T ‘ crack. The situation for a crack emerging fronca-
- 0 -05 ner edge(Fig. 2(b)) is very different, as can be seen
1 F _gg’,g_ in Fig. 7. In this case, the energy release rate has a
= | o0=0.5 slow approach to the steady-state limit as the crack

length increases. The solid curves are the predictions
of the present model, and the solid points are the pre-
dictions from a finite element calculation. The energy
0.6 release rate emerges from zeraét = 0 and attains
95% of G, only whena/h exceeds 10 or more. The
0.4 elastic mismatch parametey;, has a quantitative
influence onG, such that an interface crack between
0.2 : a compliant film and stiff substratea(= —0.5)
approaches steady-state at much shorter crack
lengths, and vice versa for = 0.5. Remarkably,
only whena/h = 40 does the crack attain 90% Gt
0 05 1 1.5 2 2.5 for a film that is three times as stiff as the substrate
(x = 0.5). It is notable that the mode miy, in Fig.
a/h 8 is close to its steady-state value at relatively short
Fig. 6. Energy release rate as a function of crack length for%raCk Iength_s, ty_plcallya/h =1 .Or shorter, depen_dlng_
crack emerging at an interior edgé=0). The solid dots were ON the elastic mismatch. The influence of elastic mis-
calculated using a finite element method for the casee6. match on the approach to the steady-state limit is well
captured by plotting G/Gss as a function of
Eh/(Es). As seen in Fig. 9, the results plotted this
of the mode mix for the interior edge has not beeway for the three elastic mismatches nearly collapse
plotted because it also is essentially independent @f a single curve foiG/G,s>0.6 with an initial slope
crack length fora/h>h/2. The steady-state limitis  of —1.
Vss = o(c), where o(e) is given in [12]. In the  Together, Fig. 6 and Fig. 7 highlight one of the
absence of elastic mismatcm(0) = 52.1°, corre- main findings in this paper: interior edges of a thin
sponding to nearly equal proportions of modes | anfim are inherently more susceptible to delamination
Il. Look ahead to Fig. 8 to see the influence @f than corner edges.
on Yss
The main inference to be drawn from the result
in Fig. 6 is that there is a very small barrier to Figure 10(a) and (b) show the tractions along the
initiation of crack propagation for an interface cracknterface as computed by the present model for the
emerging from an interior edge. An initial interfaceconfiguration shown in Fig. 2(a), a semi-infinite film
flaw whose length is only a small fraction of the filmwith an interior edge. Since a stiffer substrate imposes
thickness will be almost as lethal as a much longatronger constraint on the thin film, the stress near the
crack is higher foroo = —0.5 than the other two

0.8

G/Gss

O L1 1 1 PO S T T T O T OO O O B RO

§.2. Interface stress distribution

F——__'=7 L
o
! 80
a=0.5
360 v(x=0.5
o C -0.0
B 40 |
= X
20 |
||||‘||||I|||| E
0 T T T T T T T T T T T N T T T I I

1 2 4
0 0 0 30 0 0 2 4 6 8 10
a/h

a/h
Fig. 7. Normalized energy release rate as a function of crack
length for a crack emerging at a corner edge. The solid dofsg. 8. Measure of mode mix as a function of crack length for
were calculated using a finite element representation. a crack emerging at a corner edge.
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1
: 2 a=0
08 F ° a=0.5
i a a=-0.5
% 06 : %%n‘;gou I
g i n%m °
0 i e %o I o
04 = a5 20
0.2
" PO T T T N T NN N M I
0 P T T 1 Ad A a b 2 2 2 2 1 2 2 2 2
0 0.5 1 1.5 2 0 2 4 6 8
Eh(1-vs’)/Esa(1-v)) x/h
Fig. 9. Energy release rate plotted against the normalization
(1-VIEN(L - VP)E] 0.8
cases. The normal stress is tensile near the crack 0.6

and turns compressive within a zone less than ot
film thickness.

The model gives the same stress distribution alor 8 0.4
the interface in Fig. 2(a) whether or not a crack i3
present. The solution is independent of the cract 0.2
length, assuming the origin is taken at the crack tif )
The models proposed by Freund and Hu [8] and Sh
eld and Kim [9] have the same feature. When th 0 5
crack length is greater than abd#, the actual stress
distribution along the interface is almost the same ¢
the steady state solution because the effect of the fr ~ -0.2
detached edge of the film has negligible effect exce|
within h/4 from the attachment point. Moreover, the 0 2
actual interface traction distribution for the case with x/h
out an interface crack is almost the same as the case
with crack except in a zone near the edge abdgdt Fig. 10. Shear stress (a) and normal stress (b) acting on the
in width. The following observations shed light oninterface ahead of the crack tip for the geometry in Fig. 2(a).
this and related features. The net force and moment
exerted by the detached end of the film on the
attached film to the right of = 0 is zero. Therefore, is larger than that characteristic length. This is the
an Airy stress function representing the effect of thénderlying analytical reason that the energy release
detached film on the attached portion can be writtite in Fig. 6 approaches steady-state for cracks of

as a series of biharmonic eigen-functions, which algngth under one film thickness. We emphasize again
of the form [13, 14] that no effort has been made to resolve behavior for

even shorter cracks, which can be important in certain
Deyen = € 7k, COSGYN) + ay/h sin@y/h)) applications. The recent work by Liu, Suo and Ma
[15] provides details of stress distributions in the
Doga = € "(kSiN(Y/N) + ¥y/h cosfry/h)). immediate vicinity of a film edge when there is no
(16) crack.
Figure 11(a) and (b) compare the stress distri-
butions from the three models for the case of no elas-
The slowest decay mode has the real parg,dfeing tic mismatch, along with a finite element solution for
4.212, indicating the effects of the end load decas crack witha/h = 5. The stresses are multiplied by
exponentially with a characteristic length abdu# v2zx/h to remove the singularity at the crack tip. The
and can be ignored when the distance to film eddeorizontal lines in Fig. 11(a) and (b) represent the
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the mode mix calculated from the limit value at the

1 crack tip only has a very limited domain of validity.
The traction distributions along the interface as
-0 obtained from the present model for a perfectly
~ | bonded thin film without a crack whose edge is
aligned with the corner of the substrate (Fig. 2(b)) are
plotted as solid curves in Fig. 12 (a) and (b). The
discrete points in Fig. 12(b) for the normal stress are
the results of a finite element calculation. These
further reinforce the accuracy of the present model.

=

©
™

o
o

©
>

4. STRESSES FOR FINITE WIDTH FILMS
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Now the focus will be on the interaction between
the two edges of a finite width film as a prelude to
the converging debond study. The interface traction
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Fig. 11. Normalized shear stress (a) and normal stress (b) acti 0.4
on the interface for the geometry of Fig. 2(a) according to thre .

models (Freund and Hu (FH), Shield and Kim (SK) and the
present model (YHH)) and a finite element calculation (ope
circles). The exact limit as the tip is approached is also show

exact results folK,/ogvh and K /oovh, respectively,
for the steady state crack [12]. The differences amor
the solutions are apparent. The present model (YHt
gives accurate results for both the stress intensity fa ~ -0.2
tors and the full traction distributions. The model of

Shield and Kim (SK) has a similar trend, but with
significant error in prediction of the stress intensity -0.4
factors. It is worth noting that the normal stres: 0 1 2 3 4 5
diverges quickly from the asymptotic solution a&s

increases and turns compressive at abouih. OTis x/h

S-UQQe.StS that thg zone of dominange of the intenSilt:Yg. 12. Shear stress (a) and normal stress (b) acting on the
flefld tied to K, W”,I be a small fraction of the f”m, interface for a film whose edge is aligned with a corner of the
thickness. The ratio of the normal to the shear tractiofibstrate (Fig. 2(b), but without a crack). The discrete points
also changes rapidly wheqincreases, indicating that in (b) are the results of a finite element calculation.
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top of a half space (Fig. 3(a)) can also be computecetained in equation (17). The accuracy of equation
Of particular interest is the distribution of the residua(17) is apparent from Fig. 14, where the solid lines
stress averaged through the thickness direction, are plotted using equation (17) and the solid points

h ) represent values af,,, computed using the present
OadX) = (1) | ou{xy)dy, which can be calculated model. The long range interaction between the edges

° C&s a consequence of the deformation of the substrate,

jhich in turn is related to the /ong range depen-

ﬁgnce of the strain in the substrate when acted upon
by a concentrated force.

from the shear stress distribution along the interfa
The strong interaction between the two ends is se
in Fig. 13, where the average residual stress dist
bution is plotted foree = 0.5 and—0.5. The average
stress has a maximum at the mid pot: 0, but it

only approachess, when the width of the film is 5. CONVERGING DEBONDS

greater than 100 or more, depending on the elastic . . ) . .
mismatch. Similar results were obtained in [9]. The The results for the finite width films in the previous

maximum residual film stress can be significantl?ecuon have relevance to the problem of an interface

. g crack approaching an interior edge (Fig. 2(c)). The
?r(e;lr?lwgft%mi%e;]n the width of the film is in the rangeinteraction of the crack tip and the edge of the film

The long-range interaction between the two edgé§ similar to that of the two edges. The crack begins

can be understood as follows. The two edges corf relax the residual stress and strain energy in the
municate with each other not only through the fiIrri”‘t_taChed segment qf the film _when_the attachment
dth, b, is many times the film thickness. As a

itself, but also through the substrate. In fact, the stredd ;
consequence, the energy release rate begins to drop

relaxation in the film is mainly due to the deformatiorl) | h d | hifn i ite |
of the substrate whei'h>>1. If L/h>>1 and the stress 2€/0W the steady state value w Is quite large,
as seen in the curves of Fig. 15(a). A stiff film on a

well away from the edge is of interest, the concen- - = ;
trated shear traction near the two edges can be trea dnp.hant substrate (e.gg = 0.5) dlspllays a 20%
op in the energy release rate whgh is 25. Even

as two equal and opposite point forces acting on t et 2 .
substrate. By matching the horizontal strain/dk, of In the absence of elastic mismatch a similar reduction
. gceeurs whenb/h is 10. This gradual fall off in the

the thin film and the substrate at the middle of th | i loited in 131 t
bonded interface, one obtains the following estimat%nergy release rate was exploited in [3] to measure

of the average stress at the middle cross sectigy; the interface toughness of films which had been
" stressed to the point whe@,, exceeded the interface

4hE, tou_ghness. Th_e_y used measured valudstoat arrest
—, (17) to infer the critical energy release rate. deal [4]
nLEs carried out finite element calculations for convergent
debonding of thin films, detailing behavior similar to
that seen in Fig. 15(a). The associated measure of
mode mix is plotted in Fig. 15(b). Unlikes, w

1-0ad00 =

Only the lowest order of influence dflL has been

1 1
X 01 F—
8 5
g [
o001
0 0.001 i
-1 -08 06 -04 -02 O 0.001 0.01 0.1
x/L h/L

Fig. 13. Interaction effect between film edges. Average of thEig. 14. Comparison in the reduction of the average residual

residual in-plane stress in films extending fram—L to x=L  stress at the center of a film of width. Zas predicted by the

for two elastic mismatches. For each pair of curves, the lowaimple formula Eq. (17) and the predictions of the present
curve is fore=0.5. model.
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b Fig. 16. Energy release rate (a) and mode mixity (b) for an
/h interface crack converging on a corner edge (Fig. 2(d)).

Fig. 15. Energy release rate (a) and mode mixity (b) for an
interface crack converging on an interior edge (Fig. 2(c)).

remains close to the steady state until the remaining
ligament is relatively small. The significance of thisence that the detached segment of the film has on the
for testing based on convergent debonding is that ttséress distribution (cf. Section 3.2) is provided by the
toughness measured will be associated with the steal@lowing observation. The energy release rate of the
state mode mix, unlesf/h at arrest is less than interface cracks for the two configurations in Fig.
about 4. 17(a) and (b) are indistinguishable from one another
Results for an interface crack converging on a cowhen the remaining ligaments satisb/h>1/2 [4].
ner edge (Fig. 2(d)) are given in Fig. 16(a) and (b)The present model predicts that these two cases have
The behavior is qualitatively similar. Now, however precisely the same energy release rates. Similarly, one
the crack tip “feels” the corner edge at even great@ould also expect that the interface tractions for all
distances than for the interior edge. A 20% reductiotiiree cases in Fig. 17 are essentially identical except
in the energy release rate already occurs when  for the zones on the order of 1Mvery close to the
b/h = 40 for o = 0.5. For reasons discussed earlieffilm edges. As already mentioned, the present model
the present model loses accuracy whnémis on the is not able to resolve such distinctions; it predicts that
order of unity. the stress distribution for all three cases in Fig. 17 is
Further evidence to support the very small influthe same.
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(a)
Arrested interface crack
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Fig. 17. Three film geometries that have nearly identical stre
distributions everywhere except within a distance of atig4it
from the edges.

6. CONCLUDING REMARKS

Edges profoundly influence the stress distributio
and the energy release rates of interface cracks of thin
films. Moreover, there are important difference&ig. 18. Two observed modes of delamination of film strips:

between the behaviors of cracks emerging fromartial-width debonding and full-width debonding. The average
nergy release rate for partial-width debonding is larger than

interior edges and corner edges. Interface crackg f;il.width debonding. (a) Partially delamianted; (b) fully
emerging from an interior edge approach the full ste- delaminated.

ady state energy release rate equation (1) remarkably
quickly, at distances of a fraction of a film thickness
from the edge. By contrast, a crack emerging frormterface crack emerges from the end of the film and
an edge at the corner of a substrate remains welpreads along the film without debonding the full
below the steady state energy release rate until tedth of the film, as depicted in Fig. 18. The propa-
crack length is many times the film thickness. Onlgating partial-width crack arrested as it converged
if the film is on a very stiff substrate will the approachwith the far end of the film. Based on the results
to steady state cracking occur at relatively short cragiresented in Section 3 and Section 5, one can readily
lengths. In effect, corner edges provide an intrinsisee that the average energy release rate of the inter-
protection against the nucleation of interface delamface crack in the partially delaminated strip must be
nations. Interior edges do not. greater than that for the fully delaminated case, at a
Interface cracks converging on an edge begin tiven reference stressy, In other words, partial
“feel” the edge at distances that are many times tt@elamination is energetically favored above full
film thickness, whether the edge is at a corner or idelamination in the sense that it could occur at
the interior of the substrate. Delamination crackbwer oy.
approaching an edge will arrest at a well defined stand The modeling approach presented in Section 2 is
off distance where the energy release rate drops somewhat more complicated than earlier models, but,
the level of the interface toughness. This phenomenavertheless, leads to the same general class of inte-
is manifest in various observations of thin filmgral equations obtained in the earlier models and
delamination. An example is the partial delaminatiothese can be solved with the same numerical methods.
of residually stressed film strips which was observe@ne obvious virtue of the new approach is that it pre-
in some of the experiments conducted by Ztatlal.  serves the precise form of the singularity field of the
[3] and sketched in Fig. 18. The width of the strip ofinterface crack. Equally important, it has been dem-
film, 2L, is large compared to the film thickness, sapnstrated to be highly accurate, except for very short
2L/h=50 In instances when full delaminationcracks near the edges of the film.
occurred, the interface crack starts at one end, Finally, the residual stress has been assumed to be
debonds the full width of the strip, and arrests as tensile in this paper. When the residual stress is com-
converges on the other end. Many of the strippressive, the two crack surfaces will be in contact. In
behaved in this manner. However, for some strips, thhis case, the relations between the derivatives of the

Delaminated Bonded
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displacements and tractions on the interface expressed ’°
in equation (2), equation (3), equation (7), equation + Fnﬂ S(‘S) P(é)][é co{f In— )
(9) and equation (10) are still valid. The traction free m)[ G@E) HE)
condition along the crack surface should be replaced ©
by an appropriate contact condition thereby estab- + sm(§ In )] £
lishing the modified integral equations. This will be
pursued elsewhere.
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APPENDIX A

The stresses in a wedge (Fig. 19) with a normaind the stresses in a wedge with a tangential point
point forceF, exerting on one of the wedge surfacegorce F, exerting on one of the wedge surfaces
(6 = a) are obtained using a Mellin transformation

as proposed by Tranter [16]. r(c, + o,)
o i o —sin 2 +6) + 2
oy + ) = Fnsm ZaSIn(;ntzi)cj‘ég sin@—o) = F sin Coss?tnz Za) 4a2a cosp— 0!) EH[
EHE TE o VO 1) 4 [29
B [ el (28
TR “Hor{e )
T et o e

__sin 2o cos@x + 6)—2a cosP—ar)
sin 20 sin(e + 6) + 20 sin@—0) r(oo—0r) = F SI? 20— 402

Sir? 20— 40?2 oE v .
leeel -5

o el

I'(O'Q_O'r) = _Fn

0

_R([] Q9 | TE) PE©)

> x “’ZnH[ G(E) H(&)]*g[e@

oo

(A2)

where

G(&) = € sin 2x—sinh(Ze)

H(&) = & sin 2o + sinh(Zo)

P(&) = sin(@—6)cosh(fx + 6)&) + sin(x
+ 0)cosh(px—0)&)

Fig. 19. Conventions for the solution for the substrate with a
corner.

Q(&) = cosx—0)sinh( + B)E) + cosx
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+ 6)sinh(@—6)¢) 5 SO 20ZIN Y e
R(E) = sin(e—8)sinh( + 0)F)~sin@ + O)sinn(@ 2 M 7
—6)%)
where

0O(&) = cos@—0)cosh(fx + 6)E)—cosix
+ B)cosh(px—0)&)

ke(E/%)
. . n? cosh 2xn .
S&) = sin(@—6)cosh(fx + 0)&)—sin(e + B)cosh(fx = an Sir? 20—sinf? 2am sinh 2bmsm(n In &/x)dn
*9)5) 0
T(£) = cos@x—0)sinh(( + 6)&)—cosgx + 0)sinh((x *
—0 _ T]2 .
)E) ko(EX) = an S 2a—sni 2Om\,os(n In &/x)dn

0

U(E) = sin@—8)sinh(lx + 6)E) + sin(
+ 6)sinh((@—0)E)

Ka(El) = J R
V() = cos@—0)cosh(fr + 6)F)  (A3) J 17 Sir¥ 20:=sint¥ 20m
+ cosex + O)cosh(f—0)c). sin(m In &/x)dn. (A5)

On the surface o = «, the derivatives of the dis-

lacement with r t to ar Iculated for both ) . . . .
placeme espect to are calculated for bo tg’@e first term in the right hand side of each equation

cases. When the surface is subjected to distribu 1 equation (Ad) represents the effect of the local

normal and shear tractions, the derivatives of distress on the deformation. It is obtained after calculat-
placement with respect tocan be obtained by linear ing the residue of the c.orresponding integral. The
superposition. After lengthy algebraic manipulation, ) ; ; ’

perp gty &g P integrals in equation (A4) are defined as the Cauchy

one has principal value where there are Cauchy-type kernels.
. The functionsk,, k,, andks are all regular and well
du 1-2vo,fr) 1(|2c—sin 20 cos 2x defined.
o 1-v E T J Sir? 20— 402 As  Elx—», k—{nl/[4a(sir? 2a—402)]}, k,—0 and

o ks—{ 7l[2(sir? 2a—4c?)]}. For a quarter planegq =
N 1 G+ e 2sir? 20 / ]O'Xy(é:)d /4, the correspondings, k, and k; are plotted in
200 57r/2a,r7r/2a T '\1(é r)J E 5

Fig. 20.
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1| sir? 20— 402 Fig. 20. Functions characterizing the behavior for a substrate

0 with a corner.
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ation (A2) with only some change on the signs Of8. Freund, L.B. and Hu, Y., Brown University report. 1988.

some terms. 9. Shield, T. W. and Kim, K. Sint. J. Solids Structure1992,
29, 1085.
REFERENCES 10. Timoshenko, S. and Goodier, J. Nheory of Elasticity
1. Cannon, R. M., Fisher, R. M. and Evans, A. Glater. McGraw-Hill, Inc, 1951.
Res. Soc. Symp. Prod 986,54, 799. 11. Erdoge_m, F., Gupta, G. D. and Cook, T. S.Methods _of
2. Thouless, M. D., Evans, A. G., Ashby, M. F. and Hutchin- Analysis and Solutions of Crack Problenesl. G. C. Shih,
son, J. W. Acta Metall, 1987,35, 1333. Noordhoff, Leyden, 1973, pp. 368-425.
3. Zhuk, A., Evans, A. G., Whitesides, G. and Hutchsinsont2. Hutchinson, J. W. and Suo, Advances in Applied Mech-
J. W.,J. Mater. Res.1998,13, 3555. anics 1992,29, 63.
4. He, M. Y., Evans, A. G. and Hutchinson, J. WActa  13. Fadle, J.Jngenieur-archiv. 1941,11, 125.
Mater., 1997,45, 3481. 14. Horvay, G. and Schenectady, N. ¥. Appl. Mech., Trans.

5. Ramirez, J. C., McNally, P. J., Cooper, L. S., Rosenberg, ASME 1953,57, 87.
J. J., Freund, L. B. and Jackson, T. NEEE Transactions 15. Liu, X. H., Suo, Z. and Ma, QActa Mater, 1999,47, 67.
on Electron Devices1988,35, 1232-1240. 16. Tranter, C. J.Q. J. Mech. Appl. Math.1948,1, 125.



