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Summary

Background: The motor system has the remarkable ability not
only to learn but also to learn how fast it should learn. However,
the mechanisms behind this ability are not well understood.
Previous studies have posited that the rate of adaptation in a
given environment is determined by Bayesian sensorimotor
integration based on the amount of variability in the state of
the environment. However, experimental results have failed
to support several predictions of this theory.
Results: We show that the rate at which the motor system
adapts to changes in the environment is primarily determined
not by the degree to which environmental change occurs but
by the degree to which the changes that do occur persist
from one movement to the next, i.e., the consistency of the
environment. We demonstrate a striking double dissociation
whereby feedback response strength is predicted by environ-
mental variability rather than consistency, whereas adaptation
rate is predicted by environmental consistency rather than
variability. We proceed to elucidate the role of stimulus repeti-
tion in speeding up adaptation and find that repetition can
greatly potentiate the effect of consistency, although unlike
consistency, repetition alone does not increase adaptation
rate. By leveraging this understanding, we demonstrate that
the rate of motor adaptation can be modulated over a range
that encompasses a 20-fold increase from lowest to highest.
Conclusions: Understanding the mechanisms that determine
the rate of motor adaptation could lead to the principled
design of improved procedures for motor training and rehabil-
itation. Regimens designed to control environmental consis-
tency and repetition during training might yield faster, more
robust motor learning.
Introduction

The humanmotor system has the remarkable ability to not only
adapt its output to reduce motor errors but also to adapt the
rate at which this adaptation occurs [1–5]. However, the mech-
anisms by which adaptation rates change are still unclear.

Previous studies that have examined this phenomenon have
posited that adaptation rates are determined by optimal esti-
mation based on the sensory information available to guide
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learning [1, 2, 5, 6]. The idea is that the adjustments that occur
in motor output on the basis of noisy sensory information
about the environment during motor adaptation represent an
ongoing assessment of the motor system’s belief about the
state of the environment that was most recently experienced.
Accordingly, Bayesian inference, in which the relative ampli-
tudes of different types of noise determine how optimal
estimates are made, has been suggested as a framework for
understanding modulations in learning rate. However, several
predictions of this theory have not been borne out experimen-
tally [1, 2, 6]. Here we suggest that motor adaptation rates are
primarily determined not by estimation of the state of the envi-
ronment most recently experienced but by prediction, based
on the tendency of changes in the environment to persist
from one movement to the next, of the state most likely to be
experienced during the next movement.
The contrast between prediction and estimation is made

clear in the Kalman filter, a statistically optimal model widely
used in the analysis of linear systems [7]. This model uses a
two-step process for incorporating new information: estima-
tion and prediction. First, in the estimation step, one computes
a gain factor K (the Kalman gain) by using Bayesian inference
to determine the statistically optimal weighting for updating
the estimate of the current state on the basis of new sensory
information including the relative levels of state noise sx and
sensory input noise su. In the equations below, x(n2) and
x(n+) signify the state estimate before and after this update,
respectively, and the error, e(n), is the difference between
new sensory information and the value predicted for it, x(n2).
Second, in the prediction step, one multiplies a prediction fac-
tor A (the state transition gain) that models how the system
evolves or decays from one state to the next by the result of
the estimation step to make a prediction about the next state
on the basis of the current estimate.

Estimation: xðn+ Þ= xðn2 Þ+KeðnÞ; where K =s2
x
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Putting these two steps together yields a form that closely
resembles a learning rule commonly hypothesized to model
motor adaptation [8–12]:

Estimation and prediction step:

x
�½n+1�2 �=Ax
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�
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Trial-to-trial learning rule for motor adaptation:

xðn+1Þ=AxðnÞ+BeðnÞ

Here, A is a retention or prediction factor, and B is the
apparent trial-to-trial learning rate. Thus, for a linear system
that is capable of estimation and prediction and that is statis-
tically optimal in the face of noise, the apparent, experimen-
tally measurable learning rate (B) should be determined by a
combination of a next-trial prediction factor (A) that character-
izes environmental persistence and a same-trial Bayesian gain
(K) for estimating environmental change on the basis of new
sensory information (B = AK).

http://dx.doi.org/10.1016/j.cub.2014.03.049
http://dx.doi.org/10.1016/j.cub.2014.03.049
mailto:mas@seas.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2014.03.049&domain=pdf


A

B

Moderately consistent
Environment (P7)

Highly consistent
Environment (P20)

Figure 1. Experimental Paradigm

(A) Schematic of experimental setup. Subjects

gripped the handle of a 2D roboticmanipulandum

and performed 10 cm reaching arm movements

in two directions (90� and 270�) on the basis of

targets presented on a vertical screen in front of

them.

(B) Illustration of force field (FF) environments

and adaptation-rate measurement sequence.

Example sections of FF activation patterns for

the anti-consistent, inconsistent, moderately

consistent, and highly consistent learning envi-

ronments are shown. In a subset of the FF cycles

of each environment, we introduced error-clamp

(EC) trials before and after the first FF trial of the

cycle (vertical black bars and blowout area). The

adaptation rate was calculated as the difference

in FF compensation between the post- and pre-

FF EC trials (see Equation 1 in the Experimental

Procedures). The statistical consistency, R(1), of

each environment is shown on the right.
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Adaptation rates are also known to be increased when the
exposure to a particular perturbation is repeated, a phenome-
non termed savings, and recent work has suggested that ac-
tion repetition is what leads to the improved learning when
savings is observed [13]. Thus, here we examine how motor
adaptation rates are modulated by Bayesian estimation gain
(K), next-trial prediction (A), and repetition. Although it is un-
clear whether a statistically optimal linear model such as the
Kalman filter can provide insight into the mechanisms that
determine how quickly the human motor system learns,
because this learning is likely to be neither strictly linear nor
statistically optimal, here we suggest that it can. In particular,
we hypothesize that the motor systemmakes internal environ-
mental-persistence estimates that are highly adaptable and
readily modulate the rate at which motor learning proceeds.
Accordingly, we demonstrate that experimental manipulation
of the extent to which environmental change persists from
one movement to the next can upregulate the rate of motor
adaptation by 3-fold and downregulate it by 5-fold. In experi-
ments where the persistence and the variability of environ-
mental perturbations were systematically manipulated, we
demonstrate a striking double dissociation supporting the hy-
pothesis that prediction is fundamentally different from esti-
mation and is modulated to a greater degree during motor
learning. We find that the next-trial motor adaptation rate is
predicted by environmental persistence but not variability,
whereas the gain in strength of the same-trial feedback
response is predicted by environmental variability but not
persistence. Moreover, in experiments where persistence
and repetition were systematically manipulated, we find that
persistence, measured by environmental consistency defined
as the lag-1 autocorrelation of the environment, alone can
modulate adaptation rates, whereas repetition alone cannot.
However, the combination of persistence and repetition
greatly potentiates the effect of persistence alone, leading to
even greater adaptation.

Results

We began by systematically manipulating the persistence of
the physical environment for movement by cycling different
patterns of velocity-dependent force-field (FF) perturbations
as illustrated in Figure 1B. After performing 200 baseline
reachingmovementswithout perturbation (null trials), subjects
were exposed to one of four different environments (anti-
consistent, inconsistent, moderately consistent, and highly
consistent environments) in which FF perturbation patterns
with varying persistence were experienced. We operationally
defined consistency as a statistical persistence measure
based on the correlation coefficient between the FF strength
in the current trial and that in the previous trial [the lag-1 auto-
correlation,R(1)]. In all experiments, subjects performed active
point-to-point reaching movements in the horizontal plane in
two alternating movement directions in the midline, toward
and away from the chest, while holding the handle of a robotic
manipulandum. Individuals experienced the environments in
both movement directions, and, adaptation rates were
measured for both; the results were then combined. However,
the trial numbers we refer to are within each direction.
During the anti-consistent environment (P1N1), a single pos-

itive FF trial (P1) was followed by a single negative FF trial (N1)
and then by 11–13washout (null) trials. Here the positive-nega-
tive subsequence led to a negative lag-1 autocorrelation [R(1) =
20.30]. During the inconsistent environment (P1), subjects
experienced a single positive FF trial followed by 10–12
washout trials, leading to a near-zero autocorrelation [R(1) =
20.05]. Finally, during moderately and highly consistent envi-
ronments [P7,R(1) = 0.74; and P20,R(1) = 0.90], subjects expe-
rienced blocks of 7 or 20 FF trials, followed by 15–18 or 28–32
washout trials, respectively. The lag-1 autocorrelation for these
last two perturbation sequences is high because most pertur-
bations predict subsequent ones, and it increases as the block
length increases because the self-similarity of a sequence after
a single-trial shift is higher for longer block lengths.
We designed the experiments so that we could directly

compare the adaptation rates induced by each environment.
To accomplish this, we estimated the single-trial adaptation
rate induced by the first FF trial of each cycle by placing er-
ror-clamp (EC) measurement trials (black bars in Figure 1B)
before and after the FF trial in order to determine the change
in motor output associated with the FF exposure (blowout in
Figure 1B) [14, 15]. We referred to this three-trial sequence
as a measurement triplet and used the difference between
the lateral force recorded on the two EC trials in eachmeasure-
ment triplet to measure the change in feedforward motor
output induced by exposure to the intervening FF trial. This
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Figure 2. Upregulation and Downregulation of Motor Adaptation Rates by Environmental Consistency

(A) Average initial adaptation rate for the P1N1, P1, P7, and P20 environments and evolution of adaptation rate in these environments as a function of the

number of FF cycles experienced. Circles indicate actual data from FF cycles where the adaptation rates were measured, and solid lines show a 3 point

moving average. Error bars indicate SEM across all panels.

(B) Lateral-force profiles comprising the single-trial adaptive response for the different learning environments. The average learning-related change in lateral

force across experiments is shown for the first cycle of the experiment (gray) and is compared to the average FF compensation observed in the last half of the

measurement FF cycles in each different environment (colors).

(C) The average initial adaptation rate for all the different learning environments (gray) is compared to the last-half adaptation rates for each environment

(colors). Significance levels are as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

(D) Average perturbed hand paths seen during the first FF trial of the experiment (gray) and in the last half of the cycles in each environment (colors). The

small circles near the midway point indicate the location of the peak speed point.
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allowed us to estimate the single-trial adaptation rate identi-
cally for all environments by comparing the observed change
in force to the change that would be necessary to fully
compensate for the FF perturbation.

Environmental Consistency Can Upregulate and

Downregulate Motor Adaptation Rates
We found that all groups displayed similar adaptation rates on
the initial FF trial (one-way ANOVA, F(3,66) = 0.87, p = 0.46;
0.089 6 0.017, mean 6 SEM for all groups). However, subse-
quent exposure to different levels of environmental consis-
tency resulted in single-trial adaptation rates that diverged
over a range that encompasses a 20-fold increase from lowest
to highest, as shown in Figure 2A. High environmental consis-
tency resulted in increased adaptation rates, whereas low con-
sistency resulted in decreases, as evidenced by the changes in
lateral-force-output patterns associatedwith single-trial adap-
tation in the last half of the training period for each group (Fig-
ure 2B) and adaptation rates estimated from these changes in
force (Figure 2C). Correspondingly, we found that the adapta-
tion rates were significantly different between groups in the
last half of the training period [one-way ANOVA, F(3,69) =
36.46, p = 3.13 10214]. The highly consistent (P20) andmoder-
ately consistent (P7) groups both displayed significantly
increased adaptation rates (0.303 6 0.028, p = 1.5 3 1028

and 0.191 6 0.033, p = 0.0067, respectively) relative to the
initial rate (0.0896 0.017), and the P20 group displayed signif-
icantly faster adaptation than the P7 group (p = 0.0075). In
contrast, the group exposed to the inconsistent environment
(P1) displayed a small, nonsignificant decrease in adaptation
rate (0.058 6 0.010, p = 0.06), and the anti-consistent group
(P1N1) displayed a significantly decreased adaptation rate
(0.015 6 0.009) in comparison to both the initial rate (p =
0.0001) and the rate displayed by the P1 group (p = 0.0014).
Because we randomized the duration of the washout period,
the first perturbation trial in each cycle was somewhat unpre-
dictable, and subjects showed no evidence of the ability to
take advantage of the limited predictability that was present
(see Figure S2 in the Supplemental Information available with
this article online). However, the second (negative) perturba-
tion in P1N1 is perfectly predictable because it always follows
the first, making the P1N1 environment inherently more pre-
dictable than P1, albeit in a negative manner, in line with its
negative environmental consistency [R(1) = 20.30]. Neverthe-
less, we observed a near-zero adaptation rate as opposed to a
negative one in the P1N1 data, suggesting that the motor sys-
tem is unable to make good use of this negative predictability,
at least over the time course of our training paradigm. Overall,
the data demonstrate that highly consistent environments up-
regulate adaptation rates by 3-fold, whereas anti-consistent
environments downregulate adaptation rates by 5-fold.
Together, these results indicate that adaptation rates can be
modulated by more than an order of magnitude over the
course of just a few minutes by changes in environmental
consistency.

Comparing Next-Trial Adaptive Responseswith Same-Trial
Feedback Responses

In order to determinewhether the adaptation rate changes that
we observe are due to changes in prediction versus estima-
tion, we compared next-trial and same-trial perturbation re-
sponses. Our hypothesis was that a change in the prediction
about the persistence of perturbations from one trial to the
next would affect the next-trial adaptive response but not
the same-trial feedback response. However, a change in the
estimation of the size of perturbations would affect both the
same-trial feedback response and the next-trial adaptive
response.
An initial analysis based on data from the P1N1, P1, P7, and

P20 environments yielded intriguing but inconclusive results,
as detailed with statistics in the Supplemental Information. In
short, we used the motor adaptation rate measured during
the trial after each perturbation as a measure of next-trial
response and the reduction in lateral error that was observed
during the perturbation trial itself (with respect to the error
observed on the very first perturbation trial) as a measure of
the same-trial response—i.e., the feedback response strength.
However, the results were unclear. We found that more highly
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consistent environments (P7 and P20) that displayed in-
creases in next-trial motor adaptation rates also showed in-
creases in the strength of same-trial feedback responses.
But the P7 and P20 environments also had the highest vari-
ability, obscuring whether consistency, variability, or both
were responsible for the changes in same-trial and next-trial
responses. Thus, variability and consistency were highly
correlated across these four environments (r = 0.82), prevent-
ing them from being dissociated. Interestingly, next-trial re-
sponses were somewhat more tightly coupled to changes in
environmental consistency (R2 = 0.94) than to changes in vari-
ability (R2 = 0.69), and same-trial responses were more tightly
coupled to changes in environmental variability (R2 = 0.97) than
to changes in consistency (R2 = 0.79), hinting but only hinting
at a double dissociation.

Next-Trial Adaptive Responses Are Driven by

Environmental Consistency, Whereas Same-Trial
Feedback Responses Are Driven by Environmental

Variability
To clearly dissociate the effects of environmental consistency
and variability on adaptation rate and feedback response
strength, we designed two new environments to have high
variability but low consistency. In the first, termed ‘‘random
noise’’ (RN), the FF varied randomly from one trial to the next
(see Figure 3A). The second environment, P1-long (P1L), was
similar to P1 but had 2–4 rather than 10–12 null washout trials
between the isolated FF trials in order to increase their fre-
quency and thus increase environmental variability. RN’s vari-
ability (55.4 N2s2/m2) was greater than that of all the other
environments, whereas its consistency was essentially zero
[R(1) = 0.02] as a result of its random nature. Similarly, P1L’s
variability was high (46.6 N2s2/m2), whereas its consistency
was low [R(1) = 20.45]. Correspondingly, the inclusion of RN
and P1L allows consistency and variability to be dissociated
across the environments we studied by breaking the strong
positive correlation between them; their correlation dropped
from 0.82 to 0.38 (R2 of 0.67 versus 0.14).

If adaptation rate depends on environmental variance, the
RN environment should elicit adaptation-rate increases even
greater than those seen in the P7 and P20 environments, and
P1L should elicit adaptation-rate increases similar to those
seen in P7. On the other hand, if adaptation rate depends on
environmental consistency, neither RN nor P1L should elicit
adaptation-rate increases. Correspondingly, the feedback
response strength elicited by the P1L and RN environments
should be high if it depends on environmental variability, but
it should be low if it depends on consistency.

We found that despite substantially increased variability
(55.4 versus 16.7 N2s2/m2 for RN versus P1 and 46.6 versus
33.2 N2s2/m2 for P1L versus P1N1; see Figures 3B and 3D–
3E), the RN and P1L environments, like P1 and P1N1, elicited
low adaptation rates (0.044 6 0.008 versus 0.058 6 0.010,
p = 0.86 for RN versus P1 and 0.031 6 0.008 versus 0.015 6
0.009, p = 0.09 for P1L versus P1N1). However, this is in line
with similar consistency (0.02 versus 20.05 for RN versus P1
and 20.45 versus 20.30 for P1L versus P1N1). In contrast,
the RN and P1L environments displayed significantly lower
adaptation rates (p < 0.001 for all pairwise comparisons) than
both the P7 and P20 environments (0.191 6 0.033 and
0.303 6 0.028), in accordance with substantially lower consis-
tency (0.02 and20.45 for RN and P1L versus 0.74 and 0.90 for
P7 and P20, despite similar variability (55.4 and 46.6 versus
45.9 and 53.0 N2s2/m2). These results provide compelling
evidence for the idea that environmental consistency rather
than variability determines adaptation rates. Correspondingly,
the R2 value for the relationship between adaptation rate and
environmental consistency remains essentially unchanged at
90% when the RN and P1L data are included [F(1,4) = 35.32,
p = 0.004; see Figure 3D], and similar results are observed
when the consistency of the kinematic error rather than the
consistency of the FF environment is considered (see Fig-
ure S3). However, the R2 value between adaptation rate and
variability drops precipitously from 69% to 16% [F(1,4) =
0.76, p = 0.43] when we include the RN and P1L experiment
data as illustrated in Figure 3E. Moreover, a bivariate regres-
sion of consistency and variability onto adaptation rate reveals
a significant effect of consistency but not variability [F(1,3) =
22.3, p = 0.018 for consistency and F(1,3) = 0.068, p = 0.81
for variability]. This bivariate regression accounts for 90% of
the variance in the full data set, a 0% improvement over con-
sistency alone but a 74% improvement over variability alone,
as shown in Figure 3F. See Table S2 for the regression coeffi-
cients and additional detail.
When we instead examined changes in feedback response

strength, we found that RN and P1L elicited levels (41.8% 6
6.7% and 35.7% 6 3.4%) that were far greater than those of
P1 and P1N1 (26.3% 6 11.0% and 9.8% 6 3.2%, p < 0.0015
for all pairwise comparisons; see Figures 3C and 3G–3H) and
more like those observed in the P7 and P20 environments
(22.2% 6 9.1% and 21.5% 6 4.1%, respectively). This is in
line with levels of environmental variability in RN and P1L
(55.4 and 46.6 N2s2/m2, respectively), which were substantially
higher than environmental variability in P1 and P1N1 (16.7 and
33.3 N2s2/m2, respectively) but similar to that in P7 and P20
(45.9 and 53.0 N2s2/m2, respectively). However, this result is
at odds with similar consistency for RN and P1 (0.02 versus
20.05) and for P1L and P1N1 (20.45 versus 20.30) but
reduced consistency for RN and P1L compared to P7 and
P20 (0.02 and 20.45 versus +0.74 and +0.90), suggesting
that, unlike next-trial adaptation, same-trial feedback
response strength depends on environmental variability rather
than consistency. Correspondingly, the R2 value for the rela-
tionship between feedback response strength and environ-
mental variability remains high at 82% when the RN and P1L
data are included [F(1,4) = 17.88, p = 0.013, see Figure 3H].
However, the R2 value between feedback response strength
and environmental consistency drops sharply from 58% to
0% [F(1,4) = 0.00, p = 0.99] when we include the RN and P1L
data, as illustrated in Figure 3G. Moreover, a bivariate regres-
sion of consistency and variability onto feedback response
strength reveals a significant effect of variability but not of con-
sistency [F(1,3) = 59.03, p = 0.0046 for variability and F(1,3) =
8.34, p = 0.063 for consistency].This bivariate regression ac-
counts for 95% of the variance in the full data set, a 95%
improvement over consistency alone but only a 13% improve-
ment over variability alone, as shown in Figure 3I. See Table S3
for the regression coefficients and additional detail.
Taken together, these findings indicate a striking double

dissociation, in which the motor adaptation rate is determined
by environmental consistency rather than variability but the
feedback response strength is determined by environmental
variability rather than consistency (Figures 3F and 3I). This
finding is in line with a recent study by Yousif and Diedrichsen
[16], who showed that adaptive changes in feedback
responses could be observed in both consistent and inconsis-
tent environments, whereas changes in feedforward adapta-
tion were only present in consistent environments. The
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Figure 3. Environmental Consistency Modulates Next-Trial Motor Adaptation Rates but not Same-Trial Feedback Control

(A) Schematic depiction of learning environments, including the random noise (RN) environment. Note that the RN environment was designed to have high

variability as in the highly consistent environment (P20) but at the same time a near zero consistency as in the inconsistent learning environment (P1).

(B and C) Adaptation rate and feedback response strength (percent reduction in kinematic error) in the last half of the P1N1, P1, RN, P7, and P20 environ-

ments. Statistical comparisons between RN and the other environments are shown (*p < 0.05, **p < 0.01, and ***p < 0.001). Error bars indicate SEM in all

panels.

(D and E) The relationships between adaptation rate and environmental consistency (D) or variability (E) across experiments. Both before (gray solid line) and

after inclusion of the RN and P1L data (black solid line), environmental consistency explains a large fraction of the variance in motor adaptation rate: R2 >

89% in both cases. However, inclusion of the RN and P1L data reduces the ability of environmental variability to explain changes in adaptation rate; it re-

duces the R2 value from 69% to only 16%. The gray dotted horizontal line indicates the initial adaptation rate before exposure to the different environments.

(G andH) The relationship between feedback response strength and environmental consistency (G) or variability (H) across experiments in a format similar to

that in (D) and (E). Both before and after inclusion of the RN data, environmental variability explains a large fraction of the variance in feedback response

strength: R2 = 82%when the RN and P1L data are included and R2 = 95%without these data. However, inclusion of the RN and P1L data reduces the ability

of environmental consistency to explain changes in feedback response strength; it reduces the R2 value from 58% to 0%.

(F and I) Summary of the strength of the relationships (R2) between adaptation rate (F) or feedback response strength (I) and consistency or variability. The

first pair of bars summarizes the univariate regression analyses shown in (D), (E), (G), and (H). The third and fourth bars summarize the corresponding bivar-

iate regressions. Here the third bar shows the improvement in R2 when a univariate analysis based on consistency (C, blue) is augmented by variability

(V, orange). The fourth bar shows the improvement when a univariate analysis based on V is augmented by C. Full results of the bivariate analysis are shown

in Tables S2 and S3.
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positive relationship between environmental variability and
feedback response strength is in line with several previous
studies [17–21] and consistent with the idea that the variance
of an environment informs the variance of the prior expectation
for Bayesian integration [22–25]. Moreover, the extremely tight
coupling we find between feedback response strength and
environmental variability indicates that the weak relationships
we observe (1) between feedback response strength and envi-
ronmental consistency and (2) between feedforward adapta-
tion rate and environmental variability cannot simply result
from the imprecise or noisy characterization of feedback
response strength or environmental variability. The specific



A

B C

Highly Consistent (P20)
   
Moderately Consistent (P7)

Moderately Consistent Long (P7L)

Inconsistent (P1)

Inconsistent Long (P1L)

Figure 4. Increased Repetition Does Not Result

in Increased Adaptation Rates in Blocked Envi-

ronments

(A) Comparison of the P20 (red), P7 (light green),

P7L (dark green), P1 (light blue), and P1L (dark

blue) environments. Notice that although the

number of FF cycles is the same (27) for both

the P20 and P7 learning environments, the num-

ber of FF trials experienced is different, 540

versus 189. Correspondingly, the number of FF

cycles for the P1 learning environment is 45 (i.e.,

only 45 FF trials). The P7L and P1L environments

were designed tomatch the number of FF trials of

the P20 environment (540) and thus assess the in-

fluence of the number of FF trials on the observed

adaptation-rate increases.

(B) Lateral force profiles comprising the single-

trial adaptive response in the P20, P7, P7L, P1,

and P1L environments. Note that the subjects in

the P7L environment, despite experiencing the

same number of FF trials as those in the P20 envi-

ronment, compensated less than those exposed

to the P20 environment. Subjects exposed to the P1L environment compensated even less. The inset shows the average adaptation rates in the P20,

P7, P7L, P1, and P1L experiments in the last third of each environment. Error bars indicate SEM in all panels. Notice that subjects in the P20 environment

exhibited adaptation rates that were significantly greater than those of subjects in all other environments.

(C) Mean angular error, a second measure of motor adaptation, in late FF cycles in the P20, P7, and P7L environments. The error in trials 4–7 (gray shaded

region) of the FF cycles was significantly lower in the P20 environment than in the P7 or P7L environments. The inset quantifies these differences. Error bars

indicate SEM. Significance rates are as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
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effect of environmental consistency on adaptation rate sug-
gests that consistency drives changes in the motor system’s
predictions about the persistence of environmental perturba-
tions from one trial to the next, which would affect next-trial
adaptation, without driving changes in the motor system’s
estimation of perturbation size, which would affect same-trial
feedback responses.

Increases in Motor Adaptation Rate Are Not Explained by

the Amount of Environmental Exposure
We next examined whether the improved adaptation levels we
observed could be attributed to savings, which refers to the
faster relearning of a previously learned task [10, 26–29].
Although our P7 and P20 experiments presented the same FF
repeatedly, the durations of individual FF blocks were rather
short (20 trials atmost) in comparison to theparadigms inwhich
savings has been demonstrated for motor adaptation [13, 26,
29], and the partial adaptation achieved in our experiments as
a result of the relatively short FF exposures precludes the rein-
forcement of successful performance that has been suggested
to be a key ingredient for the instantiation of savings [13]. In
fact, subjects only learn 50%–70% of the force field by the
last trial of the training blocks in the P7 and P20 environments
whereadaptation rate increaseswereobserved (seeFigure4C).
Correspondingly, we thought it unlikely that savings could be
responsible for the faster adaptation observed in the P7 and
P20 experiments. Nevertheless, we investigated two experi-
mental manipulations to carefully examine the possibility.

Because the amount of savings should depend on the
amount of training, we examined whether the total duration
of the exposure to the FF environment could explain the
observed increases in adaptation rates, as would be predicted
by a savings mechanism. This possibility is compatible with
the finding that the P20 environment elicited the largest adap-
tation rates because P20 exposed subjects to a greater num-
ber of FF trials than subjects in the other groups were exposed
to. This was the case because the P1 and P7 experiments were
designed to match or exceed the P20 experiment in the
number of cycles (45, 27, and 27, respectively) rather than FF
trials (45, 189, and 540, respectively). We thus examined ver-
sions of the moderately consistent- and inconsistent environ-
ment experiments, P7-long (P7L) and P1-long (P1L), that were
lengthened in order to match the number of FF trials experi-
enced in the P20 environment (540). We increased the number
of cycles from 27 to 77 for the P7L environment and from 45 to
540 for the P1L environment and reduced the number of
washout trials somewhat to avoid experiment durations
greater than 4 hr (see Figure 4A and Experimental Procedures).
The P1L and P7L environments both displayed significantly

lower adaptation rates than P20 (0.030 6 0.009 and 0.252 6
0.038 versus 0.3336 0.027;mean6SEM for the last third of tri-
als for P1L, P7L, and P20, respectively; p < 1028 and p = 0.046
for comparisons against P20). P1L also showed a lower adap-
tation rate than P1 (0.030 6 0.009 versus 0.062 6 0.010, p =
0.011), in line with even lower environmental consistency [R(1)
of 20.45 for P1L versus R(1) of 20.05 for P1] but in contrast
to increased training (540 cycles for P1L versus 45 cycles for
P1). The kinematic-error learning curves displayed in Figure 4C
provide additional evidence for an increased adaptation rate in
the P20 group compared to P7 and P7L. Comparison of trials 4
through 7 in these normalized learning curves (the shaded
region) indicates a significantly greater reduction in kinematic
error in theP20group than inP7L (p=0.011). Thesefindings indi-
cate that the P20 environment elicits greater adaptation rates
than the inconsistent and moderately consistent environments
when experimentswere equated on the basis of either the num-
ber of cycles (P20 versus P1 or P7) or the number of trials (P20
versus P1L or P7L). Thus, the amount of exposure cannot ac-
count for the adaptation-rate differences observed between
the inconsistent, moderately consistent, and highly consistent
environments, as would be predicted by a savings mechanism.

Specificity of Adaptation-Rate Increases for the
Experienced Environment Dynamics

Although we found that differences in environmental consis-
tency rather than differences in the amount of repetition
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Figure 5. Specificity of Adaptation-Rate In-

creases for the Experienced Dynamics

(A) Illustration of the P7L-opposite (P7L-Opp, yel-

low) experiment, in which a single oppositely

directed FF perturbation was presented at the

end of the P7L environment. The adaptation rate

for this trial was compared to the adaptation

rate displayed in the last third of trials in P7L

(green).

(B) Comparison of the average initial single-trial

adaptive response (gray) with that observed for

the last third of the P7L trials (green) and the

P7L-opposite trial (yellow). Note that in the P7L-

opposite trial, subjects produced a force com-

pensation that was largely inappropriate for the

FF experienced.

(C) Hand trajectories during the null trials immedi-

ately following FF blocks (P7L-catch; blue, aver-

age trajectories for each subject; pink, trajectories of trials where each subject experienced their maximum deviation) are compared to hand trajectories

during the single P7L-opposite trial (yellow). Thin lines indicate data from individual subjects; thick lines indicate data averaged across subjects. Note

that the P7L-catch trajectories that deviated themost are similar to the P7L-Opp ones, indicating that, although the FF experienced during the P7L-opposite

trial was completely novel, the errors it elicited were not.

(D) Peak lateral errors experienced during the P7L-catch and P7L-opposite trials. Although on average each subject experienced weaker errors during P7L-

catch trials (blue), the largest P7L-catch errors for each subject (pink) were similar to the errors experienced during P7L-opposite trials. Inner error bars

indicate SEM, whereas outer error bars indicate the standard deviation across subjects.
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explain the pattern of learning-rate changes observed across
different environments (see Figure 4 above), we wondered
whether repeated exposure to the same dynamics might
interact with environmental consistency. In particular, does
the relationship between adaptation rate and environmental
consistency that we observe across environments require
some degree of repetition for the trained dynamics? To inves-
tigate this possibility, we began by measuring the adaptation
resulting from a single exposure to a completely novel FF—a
FF opposite to the one that subjects were repeatedly trained
on—after exposure to an environment that would increase
adaptation rate. Specifically, we inserted an opposite FF trial
at the end of the P7L experiment (P7L-opposite), as illustrated
in Figure 5A. The idea was that only adaptation-rate upregula-
tion that was entirely independent of repetition could result in
full transfer of the adaptation-rate increases observed in P7L
to the P7L-opposite trial. However, we found that the adaptive
response to the P7L-opposite trial was in the samedirection as
the response for the previous FF exposures despite the fact
that the P7L-opposite FFwas opposite in direction to these ex-
posures (Figure 5B). Thus, the P7L-opposite response was
inappropriately directed, so that if an adaptation rate was
calculated from it, that rate would be significantly negative in
value (p < 0.001); however, one might question whether an
inappropriately directed response should be characterized
by an adaptation rate. Instead, the adaptive responses elicited
by P7L-opposite trials are more in line with repetition of the
adaptive responses elicited during the P7L training than trans-
fer of the response gains associated with this training, which
were oppositely directed. However, it should be noted that
the amplitude of the P7L-opposite responses falls short of am-
plitudes observed during P7L training (Figures 5B, 6C, and 6D),
suggesting that the P7L-opposite responses might not be ex-
plained by repetition alone.

We next examined whether the inappropriately directed
P7L-opposite responses were associated with the novelty of
the experienced dynamics or of the associated motor errors.
By design, the experienced dynamics were completely novel,
opposite of the only FF previously experienced. In contrast,
motor errors with the same direction as the ones experienced
during the P7L-opposite trial would be expected at the
beginning of the washout period following each FF block.
However, because subjects do not fully adapt by the end of
each block (Figure 4C), the amplitude of the error on the first
trial of washout (W1) might be substantially smaller than that
experienced during the P7L-opposite trials. Indeed, we found
that themeanW1 trajectory for each participant displayedmo-
tor errors that were aligned with, but 63% smaller than, the er-
rors experienced during the P7L-opposite trials (blue versus
yellow in Figures 5C and 5D, with no cases in which mean
W1 errors were within 40% of the P7L-opposite errors). How-
ever, W1 trials displayed variable trajectories from one block
to the next even within the same individual, and it turns out
that the upper limit of this variability (measured as the maxi-
mally displacedW1 trial for each individual during the last third
of P7L exposure) is largely indistinguishable (8.9% smaller, on
average) from the P7L-opposite motor errors (pink versus yel-
low in Figure 5C and 5D; in 83% of cases, maximumW1 errors
were within 25% of the P7L-opposite errors). Thus, whereas
the experienced dynamics during P7L-opposite trials were
completely novel, the motor errors that participants experi-
enced were similar to errors sometimes experienced at the
beginning of each washout block. However, the adaptive
response following themaximally displacedW1 trials reduced,
rather than increased, the subsequent displacement for all in-
dividuals in the P7L experiment, reflecting positive rather than
negative adaptation rates for the W1 trials. Thus, the inappro-
priately directed P7L-opposite response cannot be attributed
to the motor errors elicited on these trials and must instead be
related to the novel dynamics experienced or the combination
of the novel dynamics and the motor errors.

Repetition Contributes to, but Is Not Required for,
Consistency-Driven Adaptation-Rate Upregulation

The adaptation-rate reductions observed in the P1L environ-
ment compared to P1 or to baseline indicate that repetition
without consistency does not increase learning rates. How-
ever, the finding that P7L-opposite responses reflect repeti-
tion after exposure to an environment in which repetition and
consistency are combined raises the possibility that the com-
bination of consistency and repetition might be required for
the learning-rate increases observed in high-consistency
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Figure 6. Synergistic Interaction between Repetition and Consistency for Learning-Rate Upregulation

(A) Illustration of the random walk (RW) environment (orange trace). Note that this environment was designed to have a variance that is similar to that of the

random noise (RN) environment (57.71 versus 55.37) but at the same time to have a consistency similar to that of themoderately consistent (P7) environment

(0.76 versus 0.74) without having its repetitive structure.

(B) Lateral-force profiles and average adaptation levels (inset) for the single-trial adaptive response in the second half of training for the RW, RN, P1, P1L, and

P7 environments. Note that the force compensation in the RW environment (orange) is greater than that during low consistency (RN, P1, and P1L; p < 0.01 in

all cases), indicating that consistency, even without repetition, leads to higher adaptation rates. However, the learning in RW does not reach the level of that

in P7 (p < 0.01), indicating that repetition can enhance consistency-modulated learning-rate increases. Error bars indicate SEM in all panels. Significance

levels are as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

(C) Repetition and consistency-driven responses combine to produce the observed P7L-opposite response. A response predicted by the hypothesis that

both consistency and repetition contribute distinct components to the adaptation (combined-CR transfer, pink dashed curve) matches the P7L-opposite

response (yellow curve) much better than a response predicted by the hypothesis that consistency enables repetition-based learning (R-only transfer, pur-

ple dashed curve).

(D) Same as (C) but for the P20 experiment, illustrating how the P20-opposite response matches the response predicted by the combined-CR hypothesis

rather than that predicted by the R-only hypothesis.
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environments. Thus, we tested whether learning-rate upregu-
lation can occur in a highly consistent environment without
repetitious exposure to specific dynamics. In particular, we
studied an environment based on a damped random walk
(RW) where dynamics randomly varied without repetition
from one trial to the next, but rather than varying around zero
(as in RN), they varied around a fixed fraction of the previous
trial’s dynamics (see Supplemental Experimental Procedures).
This resulted in a slowly drifting pattern (see Figure 6A), which
we parameterized so that consistency [R(1) = 0.76] was similar
to P7 [R(1) = 0.74] but much higher than RN [R(1) = 0.02]; how-
ever, variability (57.7 N2s2/m2) was approximately matched to
both RN (55.4 N2s2/m2) and P7 (45.9 N2s2/m2).

We found that the RW environment elicited adaptation rates
(0.0976 0.012) that were significantly higher than those for RN
(p = 0.0004) and the other environments involving low consis-
tency, P1 (p = 0.0079) and P1L (p = 0.00003), as shown in
Figure 6B, in line with the higher consistency of the RW
environment. However, its adaptation rate was significantly
lower than that observed in P7 (p = 0.0094), where a similar
consistency was combined with repetition. These findings
indicate that environmental consistency alone can elicit
learning-rate increases; however, when consistency is com-
bined with repetition, even greater increases occur.
To examine the mechanism by which consistency and repe-

tition combine in the P7 environment, we can re-examine the
P7L-opposite data in light of the RW results. Here, we consider
three possibilities: first, that repetition enables consistency-
based learning (C-only hypothesis); second, that consistency
enables repetition-based learning (R-only hypothesis); and
third, that both consistency and repetition contribute distinct
components to the adaptation (combined CR hypothesis).
The P7L-opposite data provide a unique opportunity for exam-
ining these hypotheses because consistency-based gain
modulations and the repetition of previously learned adaptive
responses lead to opposite predictions, and these predictions
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can be made without reference to the P7L-opposite data
themselves—instead, the R-only prediction can be derived
from P7L, and the C-only prediction from RW, and the com-
bined CR prediction from a combination of the two. We can
immediately reject the C-only hypothesis, that repetition
further enables pure consistency-based learning, because
consistency-based adaptation-rate transfer to the P7L-oppo-
site trial would predict an appropriately directed response
that is opposite to what we observe. The R-only hypothesis,
that high consistency enables pure repetition-based learning,
correctly predicts an inappropriately directed response for
P7L-opposite; however, the amplitude of the predicted
response (Figure 6C, purple) is considerably larger than that
for P7L-opposite (yellow). In contrast, the combined CR hy-
pothesis, where both consistency and repetition contribute
distinct components to the adaptation, appears to explain
both the amplitude and direction of the P7L-opposite
response. Here, a flipped version of the RW data (2RW) data
provides an estimate of how the consistency-based compo-
nent of learning should transfer to P7L-opposite, whereas
the difference between the P7L and the RW data (P7L 2 RW)
provides an estimate of the repetition-based component of
learning. Figure 6C shows that the prediction generated from
combining these components [2RW + (P7L 2 RW); pink] ex-
plains the P7L-opposite data more closely than the R-only
and C-only predictions would. However, it should be noted
that, although certainly closer to the combined-CR prediction,
the P7L-opposite data fall between the R-only and combined-
CR predictions, suggesting that this analysis might not be
definitive. Thus, to further examine the issue, we examined
opposite-FF responses in a group of 16 subjects who experi-
enced a single opposite-FF trial after exposure to the P20 envi-
ronment. These P20-opposite data (Figure 6D) also match the
prediction of the combined CR hypothesis considerably better
than the R-only or C-only predictions. Taken together, these
data suggest that environments that combine repetition and
consistency elicit a combination of consistency-based and
repetition-based adaptation. In the P7 and P20 conditions
these contributions act in synergy; however, in the P7L-oppo-
site and P20-opposite conditions, these contributions act in
opposition.

Discussion

We find that experimental manipulation of environmental con-
sistency allows for adaptation-rate modulation that spans an
order of magnitude (203). In particular, we show that a highly
consistent environment, in which external disturbances tend
to persist from one trial to the next, elicits learning rates that
are 3-fold greater than baseline, whereas an anti-consistent
environment, in which these disturbances fluctuate in a nega-
tively correlated manner, elicits learning rates that are 5-fold
lower than baseline. Moreover, we find that whereas environ-
mental variability determines feedback response strength
but not motor adaptation rate, environmental consistency de-
termines motor adaptation rate but not feedback response
strength. This striking double dissociation gives insight into
the specificity of mechanisms for same-trial control versus
next-trial adaptation. However, consistency can be achieved
through repetition, and the somewhat surprising results of
the P7L-opposite experiment suggested a key role for repeti-
tion in the adaptive responses we observed. Thus, we closely
examined the interactions between consistency and repeti-
tion. We find that even in the absence of repetition, increased
consistency elicits highly significant increases in learning (RW
versus RN), but in the absence of consistency, increased repe-
tition fails to elicit increased learning (P1L versus P1 versus
RN), suggesting that consistency rather than repetition is
primarily responsible for the learning-rate increases we
observed. However, we find that consistency-modulated
learning-rate increases are greatly magnified when repetition
is combined with increased environmental consistency, indi-
cating a strong synergistic effect between repetition and
consistency.
The idea that the consistency of the environment modulates

the rate of motor adaptation is in line with the idea that forming
a prediction of the degree to which environmental change
should persist from trial to trial is a critical step in determining
the rate of adaptation. In an anticonsistent or inconsistent
environment, themotor systemwould benefit froma low adap-
tation rate in order to avoid overlearning from current distur-
bances that do not positively predict future disturbances.
However, in a highly consistent environment, the motor sys-
tem would benefit from rapid adaptation because distur-
bances experienced during one trial would be highly predictive
of future disturbances. Our results show that themotor system
adjusts its rate of adaptation in a way that is consistent (pun
intended) with these ideas.

Interactions between Environmental Consistency
and Repetition

Our results reveal a surprising synergy between consistency
and repetition in the learning environment. The initial set of ex-
periments, which employed a blocked design in which a sin-
gle-amplitude FF alternated with a null environment (P1N1,
P1, P7, and P20), demonstrated large increases in adaptation
rate as consistency increased. However, the increased num-
ber of FF trials in each block resulted in increased repetition
of the FF in the more highly consistent environments where
the block length was increased (45 versus 189 versus 540 FF
trial repetitions for the P1, P7, and P20 experiments, respec-
tively). We thus performed the P1L and P7L experiments
(540 FF trials each) to determine whether the additional repe-
tition present in the P20 experiment was responsible for the
increased adaptation rate it elicited. But in both cases the
adaptation rates were smaller than those in the P20 environ-
ment (p < 0.0001 for P1L and p = 0.046 for P7L) and not larger
than the corresponding environments with less repetition (P1L
actually shows a lower learning rate than P1 [p = 0.011]; P7L is
not different than P7 [p = 0.22]). This suggests that the
extremely high learning rate observed in P20 was due to its
increased environmental consistency, rather than to
increased repetition relative to the original P1 and P7 environ-
ments, and that increased repetition alone does not improve
learning rates, especially when consistency is low (P1 versus
P1L). To further study the effect of repetition, we created
two environments (RW and RN) in which the amplitude of
the FF varied randomly over a continuous spectrum so that,
strictly speaking, no repetition was present except in the
probe trials themselves. This allowed us to examine the effect
of environmental consistency in the absence of repetition.
Here we found that the moderately consistent [R(1) = 0.76,
similar to P7], zero-repetition RW environment elicited an
adaptation rate that was significantly greater (p = 0.0004)
than that observed in zero-repetition RN environment in which
there was low consistency [R(1) = 0.02], as shown in Figure 6.
However, the adaptation rate observed for RW was signifi-
cantly lower (p = 0.009) than for the P7 environment, to which
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it was matched in consistency, suggesting that the combina-
tion of consistency and repetition leads to faster learning than
consistency alone.

Together, our results show that increasedenvironmental con-
sistency improves adaptation rates, bothwhen repetition is low
(RWversusRN)andwhenrepetition ishigh (P20versusP7L;P7L
versus P1L). In contrast, increased repetition fails to increase
adaptation rates when consistency is low (P1 versus RN; P1L
versus P1), but increased repetition does increase adaptation
rates when consistency is moderate or high (either P7 or P7L
versus RW). The substantial effect of repetition when consis-
tency is high is in line with the inappropriately directed learning
we observe during the P7L-opposite trial at the end of the P7L
experiment, suggesting that repetition might lead to a stereo-
typic adaptive response when a large error is encountered,
regardless of the direction of the error. This is in line with the
idea that repetition-enabled recall of actions can lead to savings
in motor adaptation [13]. In summary, we find that both consis-
tency and repetition play a role in the modulation of adaptation
rates.Weshowthat repetitionalonedoesnot lead toan increase
in adaptation rate but that consistency alone does lead to an in-
crease in adaptation rate; however, together they lead to an in-
crease in adaptation rate that is about double that elicited by
consistency alone, indicating a synergistic effectbetween these
two key features of the learning environment.

One interpretation of these results (the C-only hypothesis) is
that the primary effect that consistency has on adaptation rate
is potentiated by repetition. A very different interpretation (R-
only) is that the primary effect that repetition has on adaptation
rate is inhibited at low levels of environmental consistency.
A third possibility (combined-CR) is that repetition and con-
sistency contribute distinct components to the adaptive
response but that the repetition-based component requires
consistency. Interestingly, we show that these interpretations
make distinct predictions for the P7L-opposite and P20-oppo-
site data. Of particular interest is that the combined-CR hy-
pothesis predicts responses that sum contributions from
appropriately directed consistency-driven rate increases and
inappropriately directed repetition-enabled recall. In contrast,
the responses that the R-only hypothesis predicts for the P7L-
opposite and P20-opposite data are identical to the responses
in the P7L and P20 environments. We find that the predictions
of the combined-CR model match both the P7L-opposite and
P20-opposite data better than the predictions of the R-only
model, suggesting that adaptive responses are characterized
by an additive combination of consistency-driven learning-
rate increases and repetition-enabled recall; however, addi-
tional work might be needed to definitively answer this
important question.

Attempts to Manipulate Measurement Noise and State
Noise to Alter Adaptation Rates

Previous studies that have investigated the modulation of
motor adaptation rates have focused on the estimation of
the identity of the experienced perturbations [1, 2, 5]. Theoret-
ically, this estimation should be based on the appropriate
weighting of the uncertainty about the state of the environment
(state noise, i.e., variance on the prior expectation) relative to
uncertainty about the fidelity of sensory information (measure-
ment noise, i.e., variance on the likelihood).

According to optimal Bayesian estimation, the gain on the
sensory information should decrease when the measurement
noise rises, and it should increase when the state noise rises
[1, 2, 5, 23]. Correspondingly, studies have attempted to
manipulate state noise and measurement noise in order to
modulate the rate of adaptation [1, 2, 5]; however, these ma-
nipulations have not yielded consistent results. One set of ap-
proaches for manipulating state and measurement noise has
involved perturbing the visual feedback about hand position
by using a sequence that varied from one trial to the next either
as white noise or a random walk [1, 2]. Here the idea was that
measurement noise, like white noise, should be independent
from one trial to the next, whereas state noise should accumu-
late like a random walk, and that the sensorimotor system
would leverage this dichotomy by parsing the trial-to-trial vari-
ability in sensory information into independent and accumu-
lating components to estimate the levels of measurement
noise and state noise. However, there is no compelling reason
to believe that this occurs. Instead, we suggest that the senso-
rimotor system’s estimate of measurement noise should be
affected by the quality of the sensory feedback rather than
its pattern across trials. For example, when a child tracks the
motion of a firefly at night, she can clearly identify the location
of each flash, despite having little idea where each flash will
appear. Thus, the random pattern of flashes does not dictate
high measurement noise. Only a blurred view of a flash would
introduce uncertainty about the firefly’s current location.
Correspondingly, experiments using randomized white-noise
perturbations in an attempt to manipulate the sensorimotor
system’s estimate of measurement noise have consistently
failed to show the predicted decreases in adaptation rate [1,
2]. In contrast, when studies have attempted to increase the
motor system’s estimate of measurement noise by degrading
the intrinsic quality of visual feedback, decreases in adapta-
tion rate have been consistently observed [2, 5].
Moreover, studies of sensorimotor integration for same-trial

feedback responses have convincingly showed that a white-
noise perturbation sequence leads to Bayesian integration in
which state noise (the prior expectation) rather than measure-
ment noise (the likelihood) is increased by the perturbation
variance [22–25, 30]. In fact, state noise has been taken to fully
reflect the variance of the perturbation sequence in these
studies. This leaves us with the conclusion that the motor sys-
tem does not parse trial-to-trial variability in sensory feedback
into independent and accumulating components to differen-
tially estimate the levels of measurement noise and state
noise; instead, it takes the entire variability as an estimate of
state noise.
But then, how can we explain that studies have found that

accumulating random-walk perturbations result in faster adap-
tation rates than white noise perturbations [1, 2]? A key obser-
vation is the fact that random-walk perturbations display a lag-
1 autocorrelation that approaches 1 for long exposures and are
thus, in our parlance, highly consistent, whereas white-noise
perturbations display a low-consistency, near-zero lag-1 auto-
correlation. Therefore, changes in environmental consistency
can provide a unifying explanation for the current set of results
and for adaptation-rate increases previously observed with
random-walk perturbations. This interpretation is also in line
with the finding that in dynamic environmentswhere the spatial
complexity has a frequency that is likely to exceed that of the
basis elements for adaptation, learning rates are consistently
reduced [31] because high spatial complexity could make an
environment appear inconsistent.

Implications for Retention of Motor Memories

The idea that forming a prediction of the degree to which envi-
ronmental change should persist from trial to trial is a critical
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step in determining the rate of adaptation also has implications
for the retention of motor memories. The basic trial-to-trial
learning rules presented in the Introduction (see the last two
equations) suggest that when error feedback is withheld,
retention of the current memory will, like the learning rate,
depend on the prediction factor, A. Thus, the current results
predict that consistency-modulated increases and decreases
in learning will be accompanied, respectively, by increases
and decreases in retention, i.e., decreases and increases in
decay. Future work will investigate this idea.

Implications for Rehabilitation
The findings described in the present study might enable the
design of more effective rehabilitation protocols for stroke
patients. The first four weeks after stroke is the time window
during which rehabilitation has the greatest impact on the
functional recovery of patients [32–34]. Therefore, an interven-
tion that improves the rate of motor learning during this initial
period might help patients achieve better functional recovery,
possibly via the design of motor rehabilitation paradigms that
upregulate motor learning through the use of highly consistent
environments.

Experimental Procedures

Subjects performed 10 cm point-to-point reaching movements in the 90�

and 270� directions in the horizontal plane with their dominant hands while

grasping the handle of a 2-link robotic manipulandum (Figure 1A). Subjects

first performed 200movements to obtain familiarity with the task. Afterward,

in certain movements, the subjects’ trajectories were disrupted by velocity-

dependent curl FFs. We assessed the level of adaptation by using error-

clamp (EC) trials (i.e., wemeasured the force pattern that subjects produced

when their lateral errors were held to near-zero values in an error clamp) [10,

35–38]. We calculated adaptation rates by obtaining the difference between

the adaptation coefficient (x) [10, 35–38] for the EC trial following the first FF

trial in a measurement cycle (ECPost) and the adaptation coefficient for the

EC trial preceding this force-field trial (ECPre):

Adaptation rate= xðECPostÞ2 xðECPreÞ (1)

Learning environments with different levels of consistency (operationally

defined as the lag-1 autocorrelation [R(1)] of the environment) and variability

allowed us to study the environmental modulation of adaptation rate.

Consistency: Rð1Þ=E½ðFFn 2 mFFÞðFFn+1 2 mFFÞ�
�
s2
FF (2)

In the anti-consistent environment [P1N1; R(1) =20.3], 21 subjects expe-

rienced 50 cycles each with a single positive FF trial, followed by a single

negative FF trial, followed by 11–13 washout (null) trials. In the inconsistent

environment [P1; R(1) = 20.05], 12 subjects experienced 45 cycles with a

single positive FF trial, followed by ten to 12 washout trials. In the moder-

ately consistent environment [P7; R(1) = 0.74], 12 subjects experienced 27

cycles with seven positive FF trials, followed by 15–18 washout trials. In

the highly consistent environment [P20; R(1) = 0.90], 28 subjects experi-

enced 27 cycles with 20 positive FF trials, followed by 28–32 washout trials.

Two additional groups completed extended versions of the P1 and P7 ex-

periments modified to include the same number of FF trials used in the

P20 experiment [P1L; R(1) = 20.45 and P7L; R(1) = 0.73]. Twelve P1L sub-

jects experienced 540 cycles with a single positive FF trial, followed by

one to three washout trials, and 18 P7L subjects experienced 77 cycles

with seven positive FF trials, followed by ten to 14washout trials. In addition,

we added a single negative FF trial, surrounded by EC trials, after the last FF

cycle in P7L and in a subset of P20 (P7L- and P20-opposite) to assess the

adaptation rate associatedwith this novel perturbation. To assess the adap-

tation rate during exposure to the learning environments, we randomly inter-

spersed EC trials before and after the positive FF trial to form measurement

triplets in a subset of the FF cycles in these experiments (40%, 44%, 44%,

44%, 22%, and 45% in P1N1, P1, P7, P20, P1L, and P7L, respectively).

Thirteen subjects experienced a random-noise environment [RN; R(1) =

0.02] in which the FF trials varied randomly and magnitudes were deter-

mined according to a normal distribution with a standard deviation of
7.5 N/(m/s). Measurement triplets consisting of a single positive or negative

FF trial, in which the FF had the same magnitude [15 N/(m/s)] as in the cycle

experiments described above, were randomly interspersed aster 3% of tri-

als so that we could assess the adaptation rate. Finally, 23 subjects experi-

enced a random-walk environment[(RW; R(1) = 0.76) where the FF trials

followed a random walk with a carryover coefficient of 0.88 and a noise

termwith a standard deviation of 2.7 N/(m/s). As with RN, we usedmeasure-

ment triplets after 4% of trials to assess the adaptation rate. Please refer to

the Supplemental Experimental Procedures for additional details.

Supplemental Information

Supplemental Information includes four figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.03.049.
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