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To reduce the risk of slip, grip force (GF) control includes a safety margin above the force level ordinarily sufficient for the expected load
force (LF) dynamics. The current view is that this safety margin is based on the expected LF dynamics, amounting to a static safety factor
like that often used in engineering design. More efficient control could be achieved, however, if the motor system reduces the safety
margin when LF variability is low and increases it when this variability is high. Here we show that this is indeed the case by demonstrating
that the human motor system sizes the GF safety margin in proportion to an internal estimate of LF variability to maintain a fixed
statistical confidence against slip. In contrast to current models of GF control that neglect the variability of LF dynamics, we demonstrate
that GF is threefold more sensitive to the SD than the expected value of LF dynamics, in line with the maintenance of a 3-sigma confidence
level. We then show that a computational model of GF control that includes a variability-driven safety margin predicts highly asymmetric
GF adaptation between increases versus decreases in load. We find clear experimental evidence for this asymmetry and show that it
explains previously reported differences in how rapidly GFs and manipulatory forces adapt. This model further predicts bizarre non-
monotonic shapes for GF learning curves, which are faithfully borne out in our experimental data. Our findings establish a new role for
environmental variability in the control of action.
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Introduction
A skilled cellist masterfully controls the dynamics of his bow via a
finely tuned pattern of motor output that ensures that the bow
slides at the right speed, touching the right string, at the right
time, with the right amount of force. Yet as Pablo Casals, the
preeminent cellist of the early 20 th century, learned all too well,
this remarkable control fails completely if one loses grip on the
bow, even momentarily. In his highly anticipated 1907 Vienna
debut, a stage-frightened Casals lost his grip, sending his bow
flying into the audience. The accommodating Viennese concert-
goers quickly returned the bow, and Casals went on to deliver a
landmark performance. Yet, among thousands of flawlessly exe-
cuted movements, that single bow slip was what he remembered
50 years later (Goldsmith, 1956).

Casal’s story invites us to consider the importance of robust
grip force (GF) control that generally prevents accidental slips.
Indeed, how does the brain avoid making them all the time? To
prevent such accidents, GFs generally include a safety margin

above the force level usually sufficient to maintain grasp, reduc-
ing the chance that unexpected perturbations, misestimation of
load forces (LFs), or errors in GF production result in slippage
(Westling and Johansson, 1984).

Previous work has suggested that the predictive control of GF
acts to maintain a constant GF/LF ratio, which, in line with the
maintenance of a safety margin, is consistently higher than the
so-called slip ratio, the minimum GF/LF ratio that avoids slip
(Johansson and Westling, 1984, 1988; Cole and Johansson,
1993). Moreover, previous work has generally maintained that
both the overall GF/LF ratio and the ratio margin [(GF/LF)
minus slip ratio] are proportional to the slip ratio (Westling and
Johansson, 1984), making the GF safety margin proportional to
the expected slip force. Thus the current theory corresponds to a
margin described by a fixed safety factor, like that widely used in
engineering design (ACI Committee 318, 2005; NASA, 2008). For
example, with a 20% safety factor, a bridge built for a 1000 ton
load would be designed to withstand 1200 tons, or when holding
a 5 kg object, one would apply a GF sufficient for 6 kg.

We hypothesize that the CNS does not maintain a fixed safety
factor for GF control, but instead adaptively controls the safety
margin based on on-line estimates of the uncertainty about en-
vironmental dynamics. This allows the motor system to effi-
ciently balance effort against the risk of slip. We can afford to keep
the safety margin small without risking slip when environmental
variability is low, but would benefit from maintaining a large
safety margin to prevent frequent slips when variability is high—
analogous to the notion that, when driving, one should keep a
larger distance from erratically behaving vehicles. Quantitatively,
a variability-based safety margin could provide a fixed statistical
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confidence level against failure, removing the
dependence on environmental variability.

Altogether, we propose that GF con-
trol is based on an additive combination
of what is directly known about the envi-
ronment (its expected dynamics) to esti-
mate the ordinarily sufficient action, and
the known unknown (the environment’s
variability) to size a safety margin based
on statistical confidence. Because a
safety margin of 2–3 SDs would be re-
quired to maintain 95–99% confidence
bounds (Wasserman, 2004), this hy-
pothesis would predict GF to be more
sensitive to the SD of the environment
than to its mean, a radical departure
from current thinking in which envi-
ronmental variability has no role (Jo-
hansson and Westling, 1984, 1988; Cole
and Johansson, 1993; Flanagan and
Wing, 1993, 1997; Flanagan et al., 2003).

In contrast to GF control, safety mar-
gins do not readily apply to manipulatory
force (MF) control, because both exces-
sive and inadequate forces result in motor
errors. Accordingly, MF control is largely
based on estimates of the expected value
of dynamics (Scheidt et al., 2001; Taka-
hashi et al., 2001; Mawase and Karniel,
2012) without a safety margin. We thus
designed a series of experiments to com-
pare how the control of GFs and MFs is
affected by environmental variability.

Materials and Methods
Participants and ethics statement
A total of 70 healthy individuals without
known neurological disease (21 male, age
22.1 � 4.4 years) participated in the two exper-
iments. All subjects were naive to the purpose
of the experiments and provided informed
consent. Two subjects were (self-reportedly)
left handed, but used their right arm for the
experiment, as the task did not require using
the dominant hand. All experiment protocols
were approved by the Harvard University
Committee on the Use of Human Subjects in
Research.

General task
Participants grasped a custom-designed GF
measurement device using a pinch grip (Fig.
1A). This object consisted of two load cells
(LRF300, Futek Advanced Sensor Technology)
connecting two rubber-coated parallel grip
surfaces 28.3 mm apart. We restricted subjects’
choice of grasp position to avoid grasp-
configuration-dependent differences in GF ad-
aptation (Fu et al., 2010) that might obscure
effects related to differences in experienced dy-
namics. This device was attached to a robotic
manipulandum (Interactive Motion Technol-
ogies) in such a way that it could freely rotate
about the vertical axis, allowing an orientation
lateral to movement direction to be main-
tained throughout each movement (Fig. 1A).
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Figure 1. GFs and MFs in variable environments. A, Diagram of the grasping device (left) and top view of the experiment setup.
B, Top view of the grasped object illustrating the forces exerted on and by the subject during movement. Rightward MFs can
compensate leftward LFs and compressive GFs maintain grasp. C, D, MF compensation in a low-variability (C) or a high-variability
(D) environment, both with the same expected value �LF. The optimal MF level is equal to the expected value of the perturbation,
which minimizes the amount of overcompensation and undercompensation in both cases. E, F, GF control in the same environ-
ments. The GF required to avoid slip has a mean value of the mean load divided by the coefficient of friction (�LF/�) in both cases.
However, note that, in 50% of the cases, using this expected value (vertical dashed line) would result in slip whenever the required
GF exceeded this value. In a low-variability environment (E), using a GF (GF*) that incorporates a small safety margin above this
expected value ensures that the chance of slippage is low (dark green area under the bell curve). However, in a high-variability
environment (F ), a larger safety margin would be required to maintain a low slip probability. This leads to the hypothesis that GF
control includes a safety margin that scales with environmental variability.
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While grasping the object, subjects performed 10 cm reaching arm move-
ments toward or away from the chest aimed at 1 cm circular targets
displayed on a vertically oriented LCD screen in front of them. During
each movement, the subject’s hand position was represented by a 3-mm-
diameter cursor. Subjects were trained to strive for a movement duration
of 500 � 50 ms, based on visual feedback about movement speed follow-
ing each trial. Subjects were instructed to move directly to each target,
and to maintain a fixed grasp orientation as illustrated in Figure 1A.
After a short familiarization session, a leftward LF consisting of static
and dynamic components was applied to the object according to the
following equations (Eq. 1):

� Fx

Fy
� � � F0

0 � � � 0 b
� b 0 �� vx

vy
�

where F0 is the static offset and b is the strength of a viscous force field
(FF), which could change from one trial to the next. In Equation 1, y is the
axis tangential to the movement direction, with positive y away from the
body, whereas x is lateral to it with positive x toward the right. We made
the static force offset F0 large enough to ensure that the overall LF would
always remain leftward, even for negative values of b (Fig. 2C). Experi-
ments consisted of baseline and training sessions, with breaks every 6 –7
min. Each trial consisted of two movements, one toward (270° direction)
and one away from the chest (90° direction). Note that, throughout this
manuscript, we refer to “positive b” as one that increases the magnitude
of the exerted LF regardless of the movement direction (i.e., a “positive b”
would refer to b � 0 for 270° movements and to b � 0 for 90° move-
ments). Thus, the sign of b in Equation 1 is correct when 270° movements
are considered, whereas for 90° movements this sign has to be inverted.

Our experiments consisted of three main conditions (Exps. 1a, 2a, and
2b) and three controls (Exps. 1b, 1c, and 2c). These data were obtained
from five groups of participants, which did not overlap in membership.
One group performed both Experiments 1c and 2c, and the other four
participant groups each performed single experiments (1a, 1b, 2a, and
2b, respectively).

Experiments 1a, 1b, and 1c
Experiments 1a, 1b, and 1c were designed to investigate the effect of
environmental variability on GF and MF control. In Experiment 1a (N �
11), the force offset F0 was held constant at 4 N, while the viscous FF
coefficient b was varied from trial to trial; b was drawn from a Gaussian
distribution with mean zero and SD �b, which depended on the type of
experiment block: zero-variability, low-variability, medium-variability, and
high-variability blocks corresponding to �b � 0, 1.8, 3.6, or 5.4 Ns/m
(Fig. 2 A, B). During the baseline period, b was set to zero (i.e., only the
offset force was experienced). After the baseline period, participants were
exposed to 18 50-trial blocks. The first and last were zero-variability
blocks and the middle 16 randomly alternated between the zero-
variability, low-variability, medium-variability, and high-variability
conditions such that each was presented four times. Brief �1 min rest
breaks were instituted every 50 trials and occurred 10 trials before the
onset of each block. Experiment 1b (N � 23) was similar to Experiment
1a except that F0 � 3 N, �b � 0, 1.2, 2.4, or 3.6 Ns/m, blocks were 100
trials in duration, and there were a total of eight training blocks, all
randomly ordered, such that each variability condition was presented
twice. Because the blocks were longer, breaks were given both 10 trials
before and 40 trials after the onset of each block, to maintain 50-trial
intervals between breaks. Experiment 1c (N � 17) was similar to Exper-
iment 1a except that b was drawn from a Gaussian distribution with a
mean that was �3.75 Ns/m, and a 240-trial constant �3.75 Ns/m FF
epoch (Exp. 2c; see below) was inserted between the 18-block experiment
period and baseline.

Experiments 2a, 2b, and 2c
Experiments 2a, 2b, and 2c were designed to investigate how a sudden
change in the environment would affect GF and MF control. For Exper-
iments 2a and 2b, the force offset F0 was held constant at 3 N. Following
the 80-trial baseline period, b was switched from zero to a value of �7.5
Nm/s at the onset of the 240-trial training period. In Experiment 2a (N �
18) participants trained with leftward FFs that we deem positive (�FF)

because they increase the LF relative to F0 (b � �7.5 Ns/m and �7.5
Ns/m for 270° and 90° movement directions, respectively), whereas in
Experiment 2b (N � 18) participants trained with rightward FFs that we
deem negative (�FF) because they decrease the LF relative to F0. We
inserted short rest breaks every 64 trials, and the training period began 16
trials after a break to dissociate any effect of the break from the onset of
the FF. Experiment 2c (N � 17) was similar to Experiment 2a except that
it was immediately followed by another experiment (1c), the force offset
F0 was held constant at 4 N, and the FF strength was b � �3.75 Ns/m
instead of �7.5 Ns/m.

Data analysis and computational modeling
Data inclusion criteria. Trials in which the peak velocity was �0.2 m/s or
�0.5 m/s (�0.4% of trials in total) were excluded. In Experiment 2, we
found strong GF increases in the first few trials following each rest break.
To remove this postbreak artifact, we omitted the first four trials after
every break from our main analyses for all experiments.

Estimation of adaptation levels for MFs and GFs. We measured MFs
during error-clamp (EC) trials (Scheidt et al., 2000; Smith et al., 2006)
interspersed with a frequency of 1 in 5 in a pattern that was random but
which avoided consecutive EC trials. These trials minimize lateral error
via the implementation of a virtual force channel with a high lateral
stiffness of 6000 N/m to isolate the feed-forward component of adapta-
tion. We estimated the MF adaptation level on each EC trial by regressing
(Smith et al., 2006; Joiner and Smith, 2008; Yousif and Diedrichsen,
2012) the baseline-subtracted (baseline defined as 250 to 100 ms before
movement onset) force profile onto the velocity profile for that trial (on
which the FF would have been based). The regression coefficient ob-
tained is an estimate of the value of b that the measured MF would have
compensated for during each trial, because the viscous FFs we use scale
the velocity profile by b (Eq. 1).

We measured GFs during all trials using the measurement device de-
scribed in the General task paragraph. The device consisted of two load
cells sandwiched between the two grip surfaces (Fig. 1A). GFs were mea-
sured as the sum of the readings from these two load cells. We assessed
the level of GF adaptation on each trial using the same method as for MFs:
we regressed each baseline-subtracted GF profile onto the corresponding
velocity profile for that trial and used the resulting regression coefficient
as a measure of GF adaptation. To calculate the force adaptation level
associated with each variability block, in Experiments 1a, 1b, and 1c, we
averaged the regression coefficients obtained from Trial 16 to the end of
the block. We omitted the first 15 trials to exclude potential aftereffects
from the variability level during the preceding block. However, as we
note in the Results section, changing the size of this selection window did
not yield meaningful differences in results.

Estimation of the sensitivity of MFs and GFs to the SD and mean of LF
dynamics. We estimated the sensitivity of GF and MF to the SD of envi-
ronmental dynamics (i.e., the GF/�LF and MF/�LF sensitivities, respec-
tively) in Experiment 1, where we measured GF and MF responses to
different variability levels. Sensitivity to SD corresponded to the slope of
Figure 3A for GF and Figure 3D for MF, as it was defined as the change in
force level divided by the change in SD from Experiment 1, as shown in
the following equation:

Sensitivity to standard deviation �
	F

	�LF

Correspondingly, we estimated the sensitivity of GF and MF to the mean
of environmental dynamics (i.e., the GF/�LF and MF/�LF sensitivities,
respectively) in Experiment 2, where we measured asymptotic GF and
MF adaptation to one of three different step changes in the mean FF: 7.5
Ns/m (Exp. 2a), �7.5 Ns/m (Exp. 2b), and 3.75 Ns/m (Exp. 2c). Sensi-
tivity to the mean corresponded to the slope of Figure 3B for GF and
Figure 3E for MF, as it was defined as change in GF between baseline and
asymptote adaptation, divided by the corresponding change in the mean,
as shown in the following equation:

Sensitivity to the mean �
	F

	�LF
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Computational model of combined mean-driven and variability-driven
adaptation. Based on the results of Experiments 1a, 1b, 1c, 2a, 2b, and 2c
presented in Figures 2 and 3, which show that GFs are sensitive to both
the mean and variability of environmental dynamics, we developed a
model to explain how GFs respond to a step change in environmental
dynamics. This model posits GF control to be the sum of two compo-
nents, one driven by an internal estimate of the expected LF and the other
driven by an estimate of LF uncertainty. We refer to this as the additive
combination of expected value and uncertainty (ACEVU) model. The
model posits that the mean, �, and SD, �, of the environmental dynamics
(i.e., the variable b) at each trial k are both estimated based on an expo-
nential memory window with time constant � (see Eq. 2). This is in line
with recent work suggesting that the motor system registers a memory of
squared errors that decreases exponentially from trial to trial (Landy et
al., 2012); however, we note that any window type that weighs recent
memories more heavily than older ones would yield qualitatively similar
results. The computations required to generate the exponentially win-
dowed estimates of � and � required for the ACEVU model are shown in
the following equation (Eq. 2):
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Note that Equation 2 can be rewritten recursively as follows (Eq. 3):

�̂
k � 1� � A � �̂
k� � B � b
k�

�̂2
k � 1� � A � �̂2
k� � B � 
b
k� � �̂
k��2

A �
1 � ek/�

1 � e
k�1�/� , B � 
1 � e1/��
ek/�

1 � e
k�1�/�

The recursive formulation presented in Equation 3 illustrates an iter-
ative implementation of mean and variability estimates that computes
the effect of an exponential memory window without requiring the
maintenance of separate memories for all of the individual movements in
the memory window. Note that for k sufficiently large (i.e., when the
mean and variance have been estimated for a large number of trials
compared with �), the coefficients A and B can be simplified and no
longer depend on k, as shown in the following equation (Eq. 4):

A � e�1/�, B � 1 � e�1/�

Estimating the mean-driven and variability-driven components of the
adaptation curves. We began by calculating the shape of the force profiles
F(t) for the specific mean-driven and nonspecific variability-driven com-
ponents of GF and MF adaptation by performing a common versus
differential mode decomposition of the leftward and rightward FF force
profiles, as shown in the following equation (Eq. 5):

FC �
1

2

F� � F��

FD �
1

2

F� � F��

Such that F� � FC � FD and F� � FC � FD (Eq. 6). Here, the common
mode FC (half of the sum) between the leftward and rightward FF force
profiles (F� and F�, respectively) isolates the nonspecific component
of force profiles, whereas the differential mode FD (half of the differ-
ence) between these force profiles isolates the environment-specific
component.

We then estimated the trial-to-trial adaptation curves for the
perturbation-specific and perturbation-nonspecific components for
each of the 36 subjects in Experiment 2a/2b by regressing GFs in each trial
simultaneously onto the shapes of both the specific and nonspecific com-
ponents (see Fig. 6 B, D, gray curves).

Examining effects of EC-induced environmental variability. The external
force patterns experienced during EC trials depend on the force applied
by the subject and therefore do not exactly match the force applied dur-
ing regular FF trials. Thus, having EC trials interspersed with the
constant-value FF training trials in Experiment 2 would introduce addi-
tional variability in the effective FF, and this could result in increased
variability-driven adaptation according to the ACEVU model. Thus, the
increased variability-driven response observed early during training in
Experiment 2 might be driven by variability that stemmed from the
presence of EC trials rather than variability stemming from the abrupt-
ness of FF onset as modeled in Figure 4. To examine whether this addi-
tional variability caused by the EC trials early in Experiment 2 training
might account for the overshooting and wrong direction behavior that
we observe in Figure 5, we analyzed GF adaptation during training before
the first EC trial would have an effect. This allowed us to dissociate the
potential effects of EC-induced training period variability from the ef-
fects of variability driven by the sudden onset of the training period,
because EC-induced training period variability could not be present be-
fore the first EC trial was experienced. Specifically, we examined GF
adaptation on Trials 2 and 3 of the training period, the first 270° and 90°
movement direction EC trials, respectively. For the �FF case, we esti-
mated the amount of overshoot by comparing the adaptation levels on
these trials to the corresponding asymptotic adaptation for each subject.
For the �FF case we estimated the amount of wrong-direction adapta-
tion by comparing the adaptation levels on these trials to the baseline.

Statistical comparisons
We used paired t tests for all statistical comparisons between adaptation
levels and sensitivity estimates across conditions within groups of partic-
ipants, and unpaired t tests for comparisons between adaptation levels
and sensitivity estimates across groups of participants. We used boot-
strapping for analyses where we expected the distribution of the data to
be highly non-normal. Specifically, we used bootstrapping for ratio esti-
mation, as the ratio between random variables is known to produce a
distribution that can be far from normal, even when the random vari-
ables themselves are normally distributed (Marsaglia, 1965). We also
used bootstrapping for estimating the time constants of task-specific
adaptation for GFs and MFs using exponential fits. We chose this method
instead of performing a t test between parameters derived from fits to
individual subject data, because the high noise in these individual data
leads to low confidence about the corresponding individual parameters.

Results
We began by studying changes in the control of GF and MF when
the mean and variability of LF dynamics are systematically ma-
nipulated to examine the hypothesis that GF control is more
sensitive to the variability than the expected value of LF dynam-
ics. We then examined how variability-driven responses affect the
changes in GF and MF control observed after sudden changes in
LF dynamics. With this understanding, we investigated whether
variability-driven GF adaptation can explain previous results
suggesting that GF control adapts faster than MF control (Flana-
gan et al., 2003).
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Effects of increased environmental
variability on GFs and MFs
While previous work has focused on the
adaptive responses of both GFs and MFs
to changes in the expected value of envi-
ronmental dynamics (Flanagan and
Wing, 1993, 1997; Shadmehr and Mussa-
Ivaldi, 1994; Wolpert and Kawato, 1998;
Wolpert et al., 1998; Kawato, 1999;
Krakauer et al., 1999; Smith et al., 2006;
Danion and Sarlegna, 2007; Sing et al.,
2009; Yokoi et al., 2011; Yousif and
Diedrichsen, 2012), here we hypothesize
that safety margins, which apply to GF but
not MF control, are specified based on the
variability rather than the expected value
of environmental dynamics, leading to
fundamental differences between the con-
trol of MFs and GFs. In particular, this
would predict the control of GFs, but not
MFs, to be strongly modulated by envi-
ronmental variability.

To hold steady against a load, the mo-
tor system must apply an MF equal and
opposite to the LF: a weaker MF would
result in acceleration in the direction of
the LF, whereas a stronger MF would ac-
celerate the object against the load. Ac-
cordingly, a strategy that yields efficient
MF control, minimizing the risk of accel-
erating toward either direction, would be
to exert an MF that continually approxi-
mates the expected value of the LF during
the course of each movement. This idea
is in line with previous work showing
that under variable dynamic environ-
ments, MFs adapt to the expected value
of the perturbation (Scheidt et al., 2001;
Takahashi et al., 2001) and that under
variable visuomotor transformations,
movements adapt to the expected value
of the transformation (Burge et al.,
2008; Saijo and Gomi, 2012), indepen-
dent of the amount of variability in both
cases.

To apply this strategy to GF control, however, would mean
that the planned GF would often be insufficient to maintain grasp
because producing a GF equal to the expected value of the re-
quired GF (i.e., the expected value of the orthogonal LF divided
by the coefficient of friction, �) would result in compromised
grasp whenever the required GF exceeds its expected value. This
exposes a key dichotomy between the control of GFs and MFs:
whereas undercompensating and overcompensating MFs both
result in motion errors, undercompensating GFs result in grasp
errors while overcompensating GFs do not (Fig. 1). A strategy for
improved GF control would thus reduce the risk of slip by pro-
gramming GFs to be greater than the expected value of the re-
quired GF (Johansson and Westling, 1984, 1988; Cole and
Johansson, 1993). The specification of the size of this GF safety
margin can be viewed as a tradeoff between the increased effort
associated a higher margin and the reduced risk of slip that it
affords. Here we hypothesize that when GFs are not limited by
strength or fatigue, the safety margin for GF control is specified

based on a fixed level of statistical confidence. Figure 1 illustrates
that this hypothesis predicts higher safety margins as uncertainty
increases, because the risk of slip at a fixed GF level would in-
crease with higher uncertainty (Fig. 1E,F).

To investigate the fixed statistical confidence hypothesis, we
tested the prediction that the safety margin for GF control would
be modulated by environmental variability. We designed a task in
which subjects were exposed to environments with different
amounts of variability. Subjects performed rapid point-to-point
reaching movements while grasping a small object with physical
dynamics that changed randomly from one trial to the next, with
the amplitude of these random changes systematically varying
from one block to the next, as illustrated in Figure 2A–C. In this
task, the direction of the LF was orthogonal to the grasp axis so
that GF levels, rather than finger configuration, determined
whether the object slipped (Fig. 1A,B). In addition to specifying
the orientation of grasp relative to the LF, we restricted the pos-
sible grasp locations, as freedom to vary the finger configuration

Figure 2. GFs, but not MFs, scale with the level of environmental variability. A, Design of Experiment 1a. Following a baseline
period (data not shown) participants were exposed to environments that randomly changed in variability from one 50-trial block
to the next, as illustrated. Specifically, the viscosity (b) of a velocity-dependent FF perturbation was drawn from a normal distri-
bution with mean zero and SD (�) that assumed one of four values (see Materials and Methods). Note that the zero-� variability
blocks contain some nonzero values for b; these occur on EC trials, on which no predetermined FF is applied. Instead, the manipu-
landum applies the forces required to maintain a straight handpath. Using these forces, we estimated the effective b that the robot
applied in these trials (see Materials and Methods). B, SD (�) of the values of b for each block, illustrating the four distinct variability
levels. C, Example FFs (blue arrows) presented to subjects on individual movements (black arrows) for different values of b. Note
that a force offset F0 prevents even a strongly negative b from reversing the direction of the net load force. D, Mean GF profiles for
each of the four variability levels, showing increasingly stronger forces as � increases. E, Changes in GF for the three nonzero
variability levels compared with the zero-� variability level. Error bars indicate SEM across subjects. The right panel shows the
average amplitude of these changes for a short time window (�50 ms) around the peak speed point. F, Baseline-referenced
adaptation levels (mean � SEM) for the GF profiles in E, showing significant increases in GF levels with variability. *p � 0.05,
**p � 0.01, ***p � 0.001. White asterisks indicate comparisons with the baseline level. Note how the separation between
different variability groups is even more clear than in the right panel of E, despite the fact that here adaptation levels are based on
the transient changes in GF during movement, and thus these comparisons do not benefit from the separation between premove-
ment levels suggested in E. G–I, Same as D–F but for MF. Note that, similar to E, H shows error bars indicating SEM; however, they
are small enough that they are largely obscured by line width and the fluctuations of the MF on the time axis.
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can influence the applied GF (Fu et al., 2010). Thus, subjects
could modulate GF to prevent slip and independently modulate
MF to control the motion of the object. After a practice period of
150 trials in which participants were familiarized with the basic
task, they were exposed to 16 50-trial blocks with different levels
of variability. During each block, the strength (b) of a viscous curl
FF environment (Eq. 1) was varied from one trial to the next by
drawing b from a Gaussian distribution with mean zero and SD �.
� was fixed within each block at one of four possible values: 0, 1.8,
3.6, and 5.4 Ns/m, and four blocks were presented for each �
value during the 16-block session, in a randomized order. To give
subjects time to adapt to each variability level, we focused our
analysis on the last 70% of the data from each block (see Materials
and Methods). It should be noted, however, that the adaptation
was fairly rapid and so other choices for the window size yield
similar results.

Critically, we applied a leftward static force offset of 4 N (Eq. 1,
F0) throughout the experiment on top of the time-varying FF
perturbation to ensure that the net direction of the force would
always remain leftward even for negative values of b as shown in
Figure 2C. This ensured that negative values of b required smaller
GFs than baseline to prevent slip, whereas positive values of b
required higher GFs. Without this offset, negative values of b
would result in rightward forces, whereas positive values of
b would generate leftward forces, with increased GF required to
maintain grasp in both cases. Moreover, since load-increasing
and load-decreasing values of b were equally likely, any symmet-
ric positive versus negative trial-to-trial learning (Scheidt et al.,
2001; Takahashi et al., 2001; Braun et al., 2009) would balance
out. As we estimated variability-driven responses based on the
average responses during each variability block, the net effect of
trial-to-trial learning predicted by current models of motor ad-
aptation (Thoroughman and Shadmehr, 2000; Donchin et al.,
2003; Smith et al., 2006; Joiner and Smith, 2008; Lee and
Schweighofer, 2009; Sing et al., 2009; Sing and Smith, 2010)
should be near zero.

Increased environmental variability leads to increases in GF
control but not MF control
We found that the average GF profiles displayed in each block
systematically increased with variability. This is evident in both
the raw GF profiles (Fig. 2D) and baseline-subtracted GF profiles,
which show the variability-induced changes from the zero-
variability baseline blocks (Fig. 2E). The pattern of variability-
induced GF change was similar in shape for all nonzero variability
levels, but its amplitude grew systematically as � increased.
Changes in GF began at movement onset and peaked near the
peak velocity point, when the effect of the LF from the viscous
curl FF perturbation would be the strongest (due to the velocity-
dependent FF perturbation). The amplitude of these GF changes
scaled with the variability level, peaking at 1.5 N for the high-
variability blocks (Fig. 2E).

To quantify the magnitude of variability-induced changes in
both GF and MF, we computed adaptation coefficients for each
movement for both GF and MF. These adaptation coefficients
were based on linear regressions of the corresponding GF or MF
force profile onto the LF profile (Scheidt et al., 2000; Smith et al.,
2006; Joiner and Smith, 2008; Gonzalez Castro et al., 2011, 2014;
Joiner et al., 2011; Yousif and Diedrichsen, 2012; Sing et al., 2013;
Wu et al., 2014; see Materials and Methods). We found that sub-
jects exhibited significantly greater GF adaptation in the low-�,
medium-�, and high-� blocks compared with the zero-� blocks
(p � 0.001 in all three cases, one-tailed paired t tests; Fig. 2F).

Moreover, the GF adaptation was greater in both the medium-�
and high-� blocks than the low-� blocks (p � 0.01 in both cases),
and greater in the high-� blocks than the medium-� blocks (p �
0.05, one-tailed paired t tests).

In contrast, we found no consistent changes in MF control
with variability. The subject-averaged MF profiles were essen-
tially identical for different amounts of variability (Fig. 2G), and
the variability-related changes in MF shown in Figure 2H were
small. Correspondingly, the MF adaptation coefficients were not
significantly different from zero (Fig. 2I). In particular, note that
the high-� environments display MF levels that are essentially the
same as the zero-� environment (p � 0.48, two-tailed paired t
test; Fig. 2G,H). These findings indicate that when the mean
dynamics are held constant, GF but not MF control systemati-
cally depends on the variability of environmental dynamics.

GF control is even more sensitive to changes in the LF
variability than the mean LF
Since previous work maintained that GF is controlled based on
the expected LF, we wanted to know how the strength of the
dependence of GF on LF variability observed in Experiment 1a
compares to the dependence of GF on the expected value of the
LF. To that end, we estimated the sensitivity (i.e., the slope of the
relationship) that GF control displays with respect to both the SD
(�LF) and the mean (�LF) of the LF. Across the four different
variability levels (zero, low, medium, and high) in Experiment 1a,
we found the relationship between subject-averaged GF levels
and �LF to be approximately linear, with a strong positive corre-
lation between GF levels and �LF (R 2 � 0.99; slope � 1.02; Fig.
3B, squares and solid line). When we estimated the GF/�LF sen-
sitivity for all 11 individual participants, we found positive slopes
for all 11, with an average value of 1.02 � 0.21 (mean � SEM
across subjects, p � 0.001, one-tailed paired t test; Fig. 3B,D).
Note that these slopes are all dimensionless because the levels of
GF adaptation and �LF are both quantified in the units of FF
strength (newton-seconds per meter).

To put the amplitude of the GF/�LF sensitivity into perspec-
tive, we estimated the GF/�LF sensitivity by measuring GF re-
sponses to systematic changes in the LF environment. To that
end, we presented subjects with a deterministic step change in the
environmental dynamics, changing the viscosity coefficient (b) of
a viscous curl FF from zero to a constant value of either �7.5
Ns/m (Exp. 2a, leftward, n � 18) or �7.5 Ns/m (Exp. 2b, right-
ward, n � 18) for 240 trials following a 160-trial baseline period
with b � 0 (Fig. 3A). Note that, like in Experiment 1a, a leftward
static offset force was present throughout to ensure that LFs were
reduced in magnitude rather than reversed in direction during
rightward �FF trials (Fig. 2C). We found highly significant and
nearly symmetric changes in GF during asymptotic adaptation
(last 60 trials) in Experiments 2a and 2b (2.46 � 0.51 Ns/m, p �
0.0002 and �2.36 � 0.74 Ns/m, p � 0.0055, respectively; two-
tailed paired t tests; Fig. 3C). These changes in GF correspond to
sensitivity estimates (slopes) of 0.33 � 0.07 and 0.31 � 0.10 for
individuals in Experiments 2a and 2b, respectively, and 0.32 �
0.06 for the combined data (Fig. 3C,D). Remarkably, these values
are threefold lower than the sensitivity of GF to changes in vari-
ability observed in Experiment 1a (1.01 � 0.19; Fig. 3, compare B,
C), indicating LF variability to be a stronger determinant of GF
control than mean LF.

We conducted three additional experiments to determine the
robustness of the finding that GF control is more sensitive to �LF

than to �LF. We first checked whether the stability of GF adapta-
tion in the 50-trial blocks from Experiment 1a was sufficient for
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accurate GF/�LF sensitivity estimates. In Experiment 1b (Fig. 3A),
variability was modulated from one block to the next like in
Experiment 1a, but with longer (100 vs 50 trials) and correspond-
ingly fewer (8 vs 16) blocks. Experiment 1b yielded sensitivity
estimates of 1.15 � 0.17 across individuals (p � 10�6, one-tailed
paired t test), similar to the ones obtained from Experiment 1a
(Fig. 3B,D), suggesting GF/�LF sensitivity estimates to be stable
for blocks of 50 trials or greater.

In a second additional experiment (Exp. 2c), we checked
whether the GF/�LF sensitivity estimates from Experiments 2a
and 2b would be consistent with the sensitivity observed from a
smaller change in �LF. Because Experiments 2a and 2b were based

on changes in �LF with a magnitude (7.5 Ns/m) that was greater
than the �LF changes examined in Experiments 1a or 1b (	4.1
Ns/m), examining a smaller change in �LF allowed us to compare
GF/�LF and GF/�LF sensitivity estimates using similar displace-
ments for �LF and �LF. This also allowed us to examine the lin-
earity of the relationship between GF and �LF. Experiment 2c
mirrored 2a, except that the FF amplitude (b) was halved (�3.75
vs �7.5 Ns/m). The results showed an asymptotic adaptation
level in the last 60 trials of the 240-trial FF exposure that was
almost exactly half of that observed in Experiment 2a (1.16 �
0.42 vs 2.46 � 0.51 Ns/m). This corresponds to nearly identi-
cal GF/�LF sensitivity estimates for Experiments 2a, 2b, and 2c
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Figure 3. GFs are threefold more sensitive to changes in the variability than changes in the expected value of environmental dynamics. A, Comparison between the design of Experiments 1a, 1b,
2a, 2b, and 1c/2c. Examples of training schedules are shown. The duration of variability blocks in Experiment 1b is double that of Experiment 1a. Experiments 2a and 2b present a step increase or
decrease of the FF, respectively. Experiment 1c/2c begins with a step increase in the FF, which persists for 240 trials (Exp. 2c) and is then followed by the addition of a variable FF component (Exp.
1c) in an analogous fashion to Experiment 1a. Note that, for clarity given the small size of the plots in this panel, the effective FF strength b during EC trials is not shown, in contrast to Figure 2A. B,
Baseline-referenced adaptation levels (mean � SEM) for GF for each of the four types of variability blocks and each experiment (1a, 1b, and 1c) plotted against the corresponding increases in the
SD of b with respect to the baseline. The black lines indicate linear fits to the data (thin dashed lines, in order of increasing density: Exps. 1a, 1b, and 1c; thick solid line: overall data from all 3
experiments). The three groups display similar slopes for GF versus � and indicate that GF is sensitive to environmental variability. C, Baseline-referenced adaptation levels (mean � SEM) for GF for
Experiments 2a, 2b, and 2c, plotted against the corresponding changes in the mean of b with respect to the baseline. The colored lines indicate linear fits to the data for each experiment (the black
line indicates the linear fit to the overall data from all 3 experiments). Note that these fits lie on top of each other, indicating that the sensitivity of GF to the � is linear over the range of changes in
� that we examined. The aspect ratio is the same as in B, illustrating that the sensitivity of GF to � (i.e., the slope of the fits) is substantially smaller than the sensitivity of GF to � (the slope of the
fits in B). D, GFs show significantly greater sensitivity to the SD, �, compared with the mean, �, of environmental dynamics. In the left panel, we calculate sensitivities to � based on the slopes in
B. In the right panel, we calculate sensitivities based on the high-variability blocks from Experiments 1 and 1c, where the magnitudes of the baseline-referenced changes in � were similar to
magnitude of the baseline-referenced changes in � from Experiment 2c (3.75 Ns/m). **p � 0.01, ***p � 0.001. E–G, Manipulatory forces are not sensitive to changes in the SD, but only to the
mean of environmental dynamics. The format of E–G parallels the format of B–D.
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(0.33 � 0.07, 0.31 � 0.10, and 0.31 � 0.11 Ns/m, respectively),
suggesting a fixed level of GF/�LF sensitivity up to at least 7.5
Ns/m, in line with a linear relationship between GF and �LF.
Comparison of the GF/�LF sensitivity estimates from the
high-� blocks in Experiment 1a and the GF/�LF sensitivity
estimate from 2c revealed the former to be significantly greater
than the latter (1.04 � 0.21 vs 0.31 � 0.11, p � 0.0043, one-
tailed unpaired t test; Fig. 3D, right). This is in line with the
idea that GF is substantially more sensitive to the variability
than the expected value of the LF environment, even when
displacements for �LF and �LF are similar (4.1 and 3.75 Ns/m,
respectively).

In a third additional experiment (Exp. 1c), we checked
whether the GF/�LF sensitivity estimates from Experiments 1a
and 1b would be consistent with the sensitivity observed when GF
variability was centered around a nonzero mean. We performed
this experiment immediately after Experiment 2c in the same
session with the same participants, which also enabled us to com-
pare GF/�LF and GF/�LF sensitivity estimates in the same partic-
ipants. Note that we used a value of �3.75 Ns/m for �LF in 1c to
maintain continuity with the FF training in 2c. Again, we found
GF to be more sensitive to �LF than �LF (0.78 � 0.11 vs 0.31 �
0.11, p � 0.0013, one-tailed paired t test; Fig. 3D, right), consis-
tent with our previous findings. Also consistent with our previous
findings, we found the GF/�LF sensitivity in Experiment 1c to be
similar to that from Experiments 1a and 1b in that an ANOVA
revealed no significant differences in GF/�LF sensitivity across
experiments (F(2,48) � 1.46, p � 0.24).

Analogous analysis of the MF data from Experiments 2a, 2b,
and 2c revealed highly significant asymptotic adaptation of MF
levels to changes in �LF [Exp. 2a (b � �7.5 Ns/m): 6.66 � 0.27
Ns/m; Exp. 2b (b � �7.5 Ns/m): �7.14 � 0.15 Ns/m; Exp. 2c
(b � �3.75 Ns/m): 3.15 � 0.25 Ns/m, p � 10�6 in all three cases,
two-tailed paired t tests; Fig. 3F]. Note the nearly symmetric in-
creases and decreases in the adaptive responses for Experiments
2a and 2b. These MF levels correspond to MF/�LF sensitivity
estimates of 0.89 � 0.04, 0.95 � 0.02, and 0.84 � 0.07, for Exper-
iments 2a, 2b, and 2c, respectively (Fig. 3G). The similarity be-
tween these estimates corresponds to the nearly linear
relationship between MF and �LF observed in Figure 3F. In con-
trast, the overall MF/�LF sensitivity we observed in Experiments
1a, 1b, and 1c was much smaller and not different from zero
(0.002 � 0.020, p � 0.9, two-tailed paired t test; Fig. 3E,G) in line
with the lack of MF modulation observed in Figure 2G–I when
variability was increased.

GF control maintains a safety margin based on
statistical confidence
Remarkably, our findings show not only that GF control is sen-
sitive to the SD of environmental dynamics, but that this sensi-
tivity is higher (p � 10�6, two-tailed unpaired t test between
Exps. 1a, 1b, and 1c vs Exps. 2a, 2b, and 2c) than the sensitivity to
the environment’s mean dynamics as illustrated in Figure 3
(2.82 � 0.27-fold higher, estimated using bootstrap when com-
bining the data from Exps. 1a, 1b, 1c, 2a, 2b, and 2c). Since the
GF/�LF sensitivity acts to scale the GF safety margin against slip
by the LF variability, the ratio between the GF/�LF sensitivity and
the GF/�LF sensitivity can be used to determine the statistical
confidence associated with the observed safety margin (see Ma-
terials and Methods). In particular, the ratio of 2.82 � 0.27 that
we observed corresponds to GF control in a variable environment
that is 2.82 SDs above that required for the expected value of
dynamics. For normally distributed environmental perturba-

tions, like the ones administered in Experiments 1a, 1b, and 1c,
this corresponds to a z-score of 2.82 � 0.27, which amounts to
�99% confidence interval against slip. Unfortunately, the precise
frequency of slippage incidents is difficult to measure experimen-
tally as these incidents usually result in microslips, which subjects
rarely notice and often correct almost instantaneously (Johans-
son and Westling, 1984, 1987). In fact, we were not able to detect
any instances of loss of grasp from slip during movement in our
experiments. The low likelihood of overt slippage we observed is
consistent with the high statistical confidence against slip that we
report here.

A computational model for understanding how GF control
responds to both the mean and variability of LF dynamics
We next investigated how the adaptation of GF levels to environ-
mental variability might manifest following a sudden but endur-
ing change in the environment as in Experiment 2. We
hypothesized that the motor system might estimate the current
levels of the mean and the variability of the LF environment based
on a window of recent experience. If this is the case, a recent
sudden change in the environment should increase the motor
system’s estimate of variability because some trials in the window
would be at the previous perturbation level and others would be
at the new perturbation level. This increase should wane after
prolonged exposure when most or all of the trials in the recent
memory window would be associated with the new environment.
The ACEVU model, illustrated in Figure 4, posits that the overall
adaptive response simply reflects the sum of a mean-driven and a
variability-driven component, based on windowed estimates of
the expected value and the variance of the environment.

While the exact shape of the memory window is not crucial for
the model, we used an exponentially decaying memory window
to estimate both the mean and the variability of the environment
because it describes an estimation process that weighs past expe-
riences less and less as they become more distant. This window
shape is also compatible with linear state-space models of trial-
by-trial adaptation with finite retention (retention coefficients
�1), and it captures the approximately exponential learning
curves that have been observed for motor adaptation. Moreover,
a recent study found evidence that subjects track the variance of a
visuomotor perturbation using an exponential memory window
(Landy et al., 2012).

On-line estimates of the mean and variability of the environ-
ment for the ACEVU model in response to a step change in the
environment are illustrated in Figure 4. Following the step, the
mean estimate changes monotonically, asymptotically approach-
ing a level appropriate for the new environment (Fig. 4A) in a
symmetric manner that is specific for positive and negative steps.
In contrast, the variability estimate increases transiently as dis-
cussed above, but in an identically positive manner after either
step change (Fig. 4B). Thus a critical feature of the ACEVU model
is that the mean-driven component of GF adaptation produces
opposite responses for opposite changes in the environment (i.e.,
positive vs negative FFs), whereas the variability-driven compo-
nent produces identical responses, which cannot be specific to the
direction of the step change. This is the case because the variance
of a signal is equal to the variance of its opposite. Figure 4C,D
shows how estimates of the expected value and variability would
combine in contributing to the adaptation of GF and MF
throughout the time course of this adaptation. In these predic-
tions, MFs and GFs both respond to changes in the mean of the
environment as previous studies have shown (Flanagan and
Wing, 1993, 1997; Scheidt et al., 2001; Takahashi et al., 2001;
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Mawase and Karniel, 2012); however, only GFs respond to
changes in the variability, based on the results of Experiment 1.

Uncertainty versus variability
Our instantiation of the ACEVU model (Eq. 2) uses a running
estimate of variability to estimate the amount of uncertainty
about environmental dynamics. Variability and uncertainty are
closely related: for example, the systematic block-to-block ma-
nipulation of variability in Experiments 1a–1c results in corre-
sponding changes in the uncertainty about the LFs likely to be
encountered in the environment. It should be noted, however,
that variability and uncertainty, though related, are distinct qual-
ities. Variability is easy to rigorously and specifically define as the
statistical variance around the mean of the data. However uncer-
tainty is trickier: it is related to the unpredictable part of the
variability. Thus, to estimate uncertainty, the properties of the
predictor must be understood. This would allow uncertainty to
be defined as the statistical variance of the difference between
actual and predicted values of the environment rather than the
variance of actual values alone. The running estimate of the mean
experienced load in the ACEVU model can be seen as a LF pre-

diction relative to which environmental variability is computed.
This bases the ACEVU model on an estimate of uncertainty
rather than the variability around a fixed mean. In fact, neither
the width of the LF prediction window nor the form of the pre-
diction itself (i.e., using a predictor not based on an exponential
time window) need be analogous to that for variability estimation
as in the instantiation of the model in Equation 2, highlighting
the dichotomy between LF prediction and the estimation of un-
certainty around that prediction.

The ACEVU model predicts nonmonotonic adaptation
The superposition of a specific �-driven and a nonspecific
�-driven component of the adaptive response in the ACEVU
model results in a series of counterintuitive predictions for GF
adaptation. In combining separate contributions from �-driven
and �-driven adaptation, our model predicts that positive per-
turbations (increases in LF) will yield adaptation curves that rise
especially rapidly but overshoot their asymptotic levels before
settling (Fig. 4C). According to the model, the rapid rise will
occur because during initial adaptation, the task-specific
�-driven and task-nonspecific �-driven components will both
contribute to an increase in GF levels. However, the �-driven
contribution will fall off as training proceeds, and an over-
shoot will result if this fall off outpaces the continued rise of
the task-specific �-driven component.

Perhaps even more counterintuitive is a second prediction
also illustrated in Figure 4C: that decreases in LF will initially lead
to increases in GF. This will occur if the increase in GF due to the
nonspecific �-driven component of adaptation to a negative per-
turbation outweighs the reduction in GF due to the task-specific
�-driven component. Prolonged training with a decreased LF
will then eventually lead to a reduction of GF levels toward those
appropriate for the environment as the nonspecific �-driven
component subsides. Thus the ACEVU model remarkably pre-
dicts an initial adaptive response in the “wrong” direction fol-
lowed by a reversal resulting in appropriately decreased GF levels
when decreased LFs are encountered.

Unlike GF control, nonspecific �-driven adaptation should not
contribute to MF control according to the results of Experiment 1,
which show MF to be insensitive to �LF. Consequently our model
predicts that MF adaptation curves will be fully determined by task-
specific �-driven adaptation and thus be monotonically directed
toward an asymptotic level appropriate for each new environment
be it positive or negative as shown in Figure 4D.

GFs adapt to an additive combination of uncertainty and the
expected value
To examine how GFs and MFs actually evolve following a sudden
change in physical dynamics, we analyzed the full time course of
the adaptation data from Experiment 2. For the leftward �FF
group, we found that the GF learning curve displayed a clear
overshoot. It reached a maximum value at �10 trials after expo-
sure before settling at a significantly lower asymptotic adaptation
level as shown in the blue GF profiles in Figure 5A,B and the blue
learning curve in Figure 5C (adaptation levels of 7.90 � 1.15
Ns/m vs 2.46 � 0.51 Ns/m for the first 20 trials of adaptation vs
the last 60, p � 0.001, two-tailed paired t test; Fig. 5D). Individ-
ually, 16 of the 18 participants in the �FF group displayed higher
average GFs in the first 20 trials than in the last 60 of the FF
training epoch.

For the rightward �FF group, the initial adaptation resulted
in seemingly inappropriate increases in GF above baseline, which
persisted for �40 trials before the adaptive responses appropri-
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Figure 4. Predictions of a model for the adaptation of GFs and MFs based on distinct mean-
driven and variability-driven components. A, B, Running estimates of mean and variability
during a step change in environmental dynamics. These estimates weigh recent memories
more strongly than older ones using an exponentially shaped memory window. The mean
estimate (A) will tend monotonically toward the post-step value, whereas the SD estimate (B)
will transiently increase, rising rapidly following the step change and then receding as memo-
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components of the adaptive GF response following a positive (�FF) or negative (�FF) change
in environmental dynamics. Critically, whereas the mean-driven component will follow positive
or negative changes in environmental dynamics, the variability-driven component will be pos-
itive for changes in either direction. Thus our ACEVU model, which incorporates these two
components, predicts asymmetrical, nonmonotonic GF adaptation curves. A positive FF would
elicit overshooting adaptation (blue) due to complementary mean-driven and variability-
driven components, whereas a negative FF would elicit bimodal adaptation (red) due to oppos-
ing mean-drive and variability-driven components. D, Same as C but for MFs. As MFs are
insensitive to the variability of environmental dynamics, the variability-driven component will
be zero throughout adaptation, leading to monotonic adaptation curves resulting in predictions
of symmetrical, monotonic adaptation for the ACEVU model for both positive and negative
changes in environmental dynamics.
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ately decreased below baseline levels, where they slowly settled to
asymptote as shown in Figure 5C. Correspondingly, the adapta-
tion level during the first 20 trials was significantly greater than
baseline, whereas the adaptation level during the last 60 was sig-
nificantly lower than baseline as shown in the red GF profiles in
Figure 5A,B and the red learning curve in Figure 5C (adaptation
levels of �3.80 � 0.75 Ns/m vs �2.36 � 0.74 Ns/m, p � 0.0001
and p � 0.01, respectively, two-tailed paired t tests; Fig. 5E).
Individually, the GF level was higher than baseline in 16 of 18
subjects during the first 20 trials, and lower than baseline in 15 of
18 subjects during the last 60 trials. Both the direction reversal

observed in the �FF data (red) and the pattern of overshoot and
subsequent fall off observed in the �FF data (blue) were remark-
ably well predicted by the ACEVU model displayed in Figure 4,
which combines nonspecific �-driven adaptation and FF-specific
�-driven adaptation.

It should be noted that EC trials were interspersed with FF
trials during training, perhaps complicating the findings. These
trials are less disruptive to training than catch trials on which FF
perturbations are withheld (Thoroughman and Shadmehr, 2000;
Smith and Shadmehr, 2005) because motor errors that drive
learning are held near zero for EC trials in contrast to the large
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Figure 5. GFs, but not MFs, exhibit asymmetric, nonmonotonic adaptation curves following opposite perturbations. A, B, Baseline-referenced GF profiles early and late (mean of first 20 vs last
60 trials) following the onset of positive (A, leftward) and negative (B, rightward) FF perturbations. Note that in B, the early response is opposite of what is appropriate for the applied FF, whereas
the late response is appropriately directed. The shaded areas represent SEM across subjects. The gray vertical line represents the 95% confidence interval for movement onset. C, Corresponding GF
adaptation curves based on the adaptation coefficient (see Materials and Methods). Each datapoint in the adaptation curve represents a bin of four trials in each of the two movement directions (8
movements in total). GFs initially increase in both FFs, but eventually reach asymptote at levels that are approximately equal and opposite (2.46 � 0.51 Ns/m for the �FF and �2.36 � 0.74 Ns/m
for the �FF). This corresponds to overshooting adaptation for the �FF group and bimodal adaptation for the �FF group as predicted by the model in Fig 4C. The colored horizontal lines in the
bottom of the graph indicate the learning periods shown in A and B: early training (first 20 trials, blue for �FF and red for �FF) and late training (last 60 trials, cyan for �FF and orange for �FF).
D, E, GF levels for the early and late (mean of first 20 vs last 60 trials) stages of adaptation. F–J, Same as A–E but for MF, illustrating symmetric, monotonic adaptation patterns as predicted by the
model in Fig. 4D.
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errors often associated with catch trials.
However to hold lateral errors near zero,
an external force must be applied by the
robot arm on EC trials, which effectively
cancels the lateral force output of the
learner. Because learning is generally par-
tial, this external force pattern can be
viewed as a certain fraction of the force
level applied during FF trials, introducing
some variability in the effectively applied
FF between FF and EC trials, and thus per-
haps increasing variability-driven adapta-
tion in line with the ACEVU model. Thus,
the increased variability-driven response
early during training in Experiment 2
might be driven by variability that
stemmed from the presence of EC trials
rather than variability stemming from the
abruptness of FF onset as modeled in Fig-
ure 4. However, when we examined our
data to determine whether this was the
case, we found evidence for both key pre-
dictions of the ACEVU model even before
the first EC trial could affect the variability
estimate: a GF overshoot in the �FF
group (5.6 � 2.3 Ns/m overshoot, p �
0.012) and adaptation toward the wrong
direction in the �FF group (�5.1 � 1.3
Ns/m, p � 0.0006). This indicates that the
overshooting and wrong direction learn-
ing we observe do not require the presence
of EC trials. However, we cannot rule out
the possibility that the amplitude of these
effects is exaggerated by it.

MFs adapt chiefly to the expected value
of environmental dynamics
In contrast to GF adaptation, we found
MF adaptation to be characterized by
highly symmetric, monotonic responses
to increases and decreases in LF, as evi-
denced by the MF learning curves dis-
played in Figure 5H and the force profiles
displayed in Figure 5F,G. Accordingly, the amplitude of the av-
erage MF adaptation level during the first 20 trials was signifi-
cantly lower in magnitude than the average adaptation level
during trials 181–240 (leftward FF: 4.56 � 0.24 Ns/m vs 6.66 �
0.27 Ns/m, p � 10�4; rightward FF: �3.92 � 0.21 Ns/m vs
�7.14 � 0.15 Ns/m, p � 10�6, two-tailed paired t-tests; Fig.
5 I, J). The highly symmetric learning curves indicate that there is
little nonspecific adaptation, with MF adaptation highly specific
to the experienced environment. This is consistent with the idea
that the nonspecific component of the adaptive response arises
from �-driven adaptation, which we found to be minimal for MF
in Experiment 1.

Robustness of results using different metrics
To ensure that our observations were not specifically related to
the adaptation coefficient metric we used to quantify FF adapta-
tion, we repeated the analysis using an even simpler metric: the
GF observed when the effect of b on the LF produced by the
imposed environment was maximal (Sing and Smith, 2010;
Pekny et al., 2011; Joiner et al., 2013). We found that the learning

curves derived from this measure were essentially identical in
shape to those displayed in Figure 5C,H (R 2 � 0.97 for the �FF
and �FF GF learning curves and for the �FF and �FF MF learn-
ing curves).

Decomposition of GFs into perturbation-specific and
perturbation-nonspecific components
Based on the ACEVU model, task-specific adaptation should dif-
ferentially affect the adaptive responses to two opposite pertur-
bations, whereas the task-nonspecific adaptation will be common
to both. We used this fact to decompose the experimentally ob-
served adaptive responses to the �FF and �FF environments
into specific (differential) and nonspecific (common) compo-
nents (see Materials and Methods). Specifically, we applied this
differential versus common component analysis to the GF pro-
files [GF(t)] in Experiment 2 to determine the specific and non-
specific components of these profiles (Fig. 6A,C). This analysis
reveals that over the course of adaptation, the amplitude of the
nonspecific common-mode GF profile rises from baseline during
initial adaption and wanes as adaptation proceeds. Despite the
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changes in amplitude, the shape of the common-mode GF profile
remains remarkably constant as training progresses (Fig. 6A,B,
colored lines). The extent of this shape consistency is apparent
when amplitude-normalized force profiles are compared with
each other in Figure 6B. Critically, this shape is strikingly similar
to the shape of the GF profiles observed in Experiment 1a, when
the effects of environmental variability were measured (R 2 values
between 0.92 and 0.99 for the six common-mode profiles shown
normalized in Fig. 6B, and R 2 � 0.98 for the mean of these). Note
that the GF profile from Experiment 1a is shown as the dark gray
dashed line in Figure 6B for reference. The close match between
the shapes of the force profiles for the transiently occurring
common-mode component of the step response from Experi-
ment 2 and the variability-driven adaptive response directly mea-
sured in Experiment 1a is consistent with the idea that the
transient nonspecific component the GF learning curve reflects
the motor system’s estimate of environmental variability as pre-
dicted by the ACEVU model.

On the other hand, the task-specific differential mode com-
ponent of the GF profile assumes a shape very close to the shape
of the viscous LF profile (Fig. 6C,D). This similarity increases
with training, with R 2 values increasing to 0.91 by the end of the
training period (R 2 � 0.93 for the average profile). Thus the
shapes of the force profiles associated with the specific and non-
specific components of the GF adaptation data from Experiment
2 were more closely matched to the mean LF profiles observed in
Experiments 2a and 2b and the variability-driven changes in GF
observed in Experiment 1a, respectively, than to each other (R 2

values of 0.93 and 0.98, respectively, vs an R 2 of 0.50). This find-
ing provides direct experimental support for the theoretical links
posited in the ACEVU model between task-specific adaptation
and expected value estimation on one hand and between task-
nonspecific adaptation and variability estimation on the other.

Learning curves for the specific and nonspecific components
of GF and MF adaptation
We then leveraged our knowledge about the shapes of the force
profiles associated with the nonspecific (Fig. 6A,B) and task-
specific (Fig. 6C,D) components of adaptation to estimate the
learning curves associated with each component. Instead of the
standard practice of singly regressing the adaptive responses onto
the shape of the viscous load force profile to estimate an adapta-
tion coefficient, as in Figure 5, we simultaneously regressed the
adaptive responses we observed onto the shapes of both the
common-mode and differential-mode components (see Materi-
als and Methods), to obtain learning curves for nonspecific
(green) and task-specific (purple) adaptation, respectively, for
both GF (Fig. 7A) and MF (Fig. 7B). This analysis reveals that the
task-specific differential-mode component of adaptation (pur-
ple) displays a monotonic increase toward an asymptote, follow-
ing a similar time course for both GF and MF (Fig. 7C for a direct
comparison). In contrast, the task-nonspecific common-mode
component (green) for the GF is transient (it displays a rapid
increase toward a sharp peak and then a gradual decay toward
baseline) and present only during GF adaptation. This is consis-
tent with the mirror-opposite MF learning curves observed for
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the leftward and rightward FF groups in Figure 5I, which suggest
fully-specific MF learning, and with the finding in Experiments 1a
and 1b that MFs are unrelated to environmental variability.
Remarkably, we find that the shapes of these task-specific and
task-nonspecific components of the GF learning curves (Fig.
7 A, B) closely match the predictions of the ACEVU model
(Fig. 4) for distinct mean-driven and variability-driven re-
sponses based on exponentially windowed running estimates
of these quantities.

The decomposition of the learning curves into task-specific
and task-nonspecific components provides the opportunity to
compare the rate of task-specific GF and MF adaptation. We
observed a strong similarity between the learning curves for the
task-specific (purple) adaptation for GF and MF (r � 0.84), sug-
gesting similar adaptation rates (Fig. 7C, which compares
asymptote-normalized task-specific learning curves). Corre-
spondingly, fitting single exponentials to these learning curves
revealed no difference between the time constants for task-
specific GF versus MF adaptation (35.1 � 19.6 vs 26.6 � 2.6 trials,
p � 0.334, estimated using bootstrap; Fig. 7C, inset). Moreover,
we found no differences between normalized adaptation levels
for GF and MF at trials 5, 10, 20, and 40, estimated using five-trial
bins (p � 0.5 in all cases, two-tailed paired t test; Fig. 7E). To-
gether these findings indicate that the FF-specific components of
GF and MF adapt at essentially the same rate.

Discussion
The current results show that the variability of LF dynamics plays
a crucial role in GF control, in contrast to previous work, which
primarily focused on how the predictive control of GF depends
on the expected value of environmental dynamics. In Experi-
ment 1, we found that modulating LF variability has no effect
on MF control but can drive large, systematic changes in GF
control (Fig 2). In fact, we found GF control to be threefold
more sensitive to the SD of the environment than its mean (Fig
3), in line with providing 3-� statistical confidence against slip
and suggesting that variability-driven effects may play an even
more important role in GF control than the expected value of
the load.

We next examined how variability-driven GF control might
affect the responses to sudden deterministic (step) changes in the
environment. The ACEVU model, which instantiates our hy-
pothesis that GF adaptation is based on a superposition of dis-
tinct adaptive responses to the mean and variability of the LF
environment, predicts surprisingly unusual asymmetric and
nonmonotonic learning curves following sudden changes in load
(Fig. 4). Experimental data directly confirm these unusual pre-
dictions, demonstrating adaptation that begins in the wrong di-
rection when the load decreases, and overshoots its asymptote
when the load increases (Fig. 5). We used ACEVU to specifically
decompose GF adaptation into the force profile components as-
sociated with �-driven and �-driven learning and to determine
the corresponding learning curves (Figs. 6, 7). Interestingly, the
distinct shapes of these force profile components were predicted
by the GF responses to environmental variability directly mea-
sured in Experiment 1 and the shape of the expected dynamics,
respectively (Fig. 6). This decomposition also revealed, on one
hand, that �-driven nonspecific learning is present in GF adap-
tation but absent in MF adaptation, but, on the other, that
�-driven task-specific learning proceeds at remarkably similar
rates for GF and MF adaptation (Fig. 7), indicating that previ-
ously reported differences in adaptation rate for GF versus MF

arose from the failure to take variability-driven GF control into
account.

Future work will be needed to pin down the mechanisms by
which variability-driven GF control is achieved. It is possible that
variability-driven changes in GF control could be achieved with-
out direct estimates of environmental variability. For example,
asymmetric trial-to-trial adaptation or asymmetric GF carryover
effects could both lead to variability-driven changes in GF
control that do not require internal estimates of environmen-
tal variability per se. If the adaptive responses that increase
GFs following movements with larger than expected LFs are
stronger than the responses that decrease GFs following move-
ments with small LFs, higher variability environments, which
would have more very large and more very small LFs, would
result in trial-to-trial adaptation that is systematically biased
toward GF increases. Along similar lines, GFs have been
shown to carryover from one trial to the next (Quaney et al.,
2003), and if this carryover were larger for above-average than
for below-average GFs, higher variability environments might
result in carryover that is systematically biased toward GF
increases. Preliminary analysis of the current data suggests that
GF carryover is small and that trial-to-trial adaptation is largely
symmetric, making these asymmetry related hypotheses less
likely. But this is yet to be systematically investigated. An attrac-
tive hypothesis is that the motor system specifically constructs a
running estimate of environmental variability or uncertainty,
and directly uses such an estimate in GF control. However, even if
this were the case, the mechanisms by which uncertainty is esti-
mated remain to be uncovered.

Previous ideas about safety margins for GF control
Our results challenge the longstanding idea that, in precision grip
tasks, the motor system maintains a constant GF/LF ratio (Jo-
hansson and Westling, 1984; Westling and Johansson, 1984), re-
sulting in a safety margin that is a fixed fraction of the expected LF
dynamics and is thus insensitive to LF uncertainty. In contrast,
our data show that GF is threefold more sensitive to LF variability
than to the expected LF, resulting in GF/LF ratios that are readily
modulated by environmental uncertainty rather than remaining
fixed.

The sensitivity of GF control to environmental variability may
have been difficult to appreciate in previous studies due to a focus
on static paradigms that are likely to incur substantially smaller
uncertainty than paradigms that focus on transient dynamics
during rapid motion. For example, the predominant paradigm
for studying GF control has involved the maintenance of a single
static posture during slow lift-and-hold tasks (Johansson and
Westling, 1984, 1987, 1988; Westling and Johansson, 1984; Cole
and Johansson, 1993). However, even in these tasks, the role of
variability in driving GF control may have been underappreci-
ated. In particular, the finding that the safety margin for GF con-
trol scales linearly with the LF in a static hold task (Westling and
Johansson, 1984; Cole and Johansson, 1993) may be a variability-
driven rather than an expected value-driven effect. Although
variability was not explicitly manipulated, both the force variabil-
ity associated with motor output (Jones et al., 2002) and the
perceptual variability associated with weight estimation (Holway
and Pratt, 1936; Weber, 1978) scale linearly with the load. In fact,
Weber’s Law, which maintains that perceptual uncertainty is
generally proportional to intensity, was originally based on stud-
ies of weight perception (Weber, 1978). These observations make
it clear that in static tasks, the safety margin for GF control is
simultaneously proportional to weight estimate variability, mo-
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tor output variability, and the LF itself. It would be interesting to
determine which of these effects dominate.

Previous findings comparing the rates of GF and
MF adaptation
A key finding from Experiment 2 is that GF adaptation is not
consistently faster than MF adaptation, as previous work has sug-
gested (Flanagan et al., 2003). We find that the environment-
specific mean-driven response that is present in both MF and GF
control adapts at essentially identical rates for MF and GF. The
apparent difference between the rates of overall GF and MF ad-
aptation observed when only LF increases were examined has
been taken as general evidence for a GF rate advantage and used
to support the idea that a forward model for predicting the sen-
sory consequences of environmental dynamics adapts faster than
an inverse model (Flanagan et al., 2003). However, the current
findings suggest this conclusion to be problematic. Instead, faster
adaptation for GF compared with MF is confined to instances in
which the LF increases, with the opposite observed when LF de-
creases. The mechanism here is that variability-driven responses
act to increase GF whenever the environment changes, regardless
of whether that change would require smaller or larger GFs. Thus,
this nonspecific variability-driven adaptive response synergizes
with environment-specific mean-driven adaptation when LF in-
creases, but interferes with it when LF decreases, leading to dra-
matic differences in adaptation rates. However, this dichotomy
does not occur with MF adaptation, because MF is insensitive to
environmental variability. Our findings also provide explana-
tions for previous results showing that GFs are paradoxically in-
creased following initial exposure to microgravity (Augurelle et
al., 2003) and that real-time feedback responses can lead to in-
creased GF following sudden, unexpected increases or decreases
in LF (Danion, 2007). These results mirror the current findings,
and suggest that variability-driven changes in GF control govern
real-time feedback responses as well as feedforward motor adap-
tation. Moreover, the finding that environment-specific MF and
GF adaptation proceeds at essentially identical rates suggests a
unified mechanism for the adaptation of internal models for the
expected environmental dynamics in the control of manipulatory
and grip forces.

Uncertainty-driven control of GFs and muscular
cocontraction
Uncertainty-driven safety margins, like the ones we observed in
the control of GF, may explain previous observations about the
control of cocontraction of antagonist muscle pairs. Like GF con-
trol, antagonist muscle control consists of specific and nonspe-
cific components: reciprocal activation (which drives the exerted
MF and is specific to the expected environmental dynamics) and
cocontraction (which has no effect on the net MF and is nonspe-
cific to environmental dynamics; Feldman, 1980; Franklin and
Wolpert, 2011). Cocontraction increases the mechanical stiffness
of the limb in resisting unexpected perturbations, allowing for
improved control in uncertain environments (Franklin et al.,
2003, 2004, 2008; Milner and Franklin, 2005). While not provid-
ing a frank safety margin that prevents errors from unexpected
perturbations, the increased ability to reduce errors stemming
from unexpected perturbations that is afforded by cocontraction
make it like a “soft” safety margin that suppresses such unex-
pected perturbations, raising the possibility that cocontraction
may be controlled in a fashion similar to the mechanism we de-
scribe for GF. Indeed, several key features of cocontraction are
consistent with uncertainty-driven control. Cocontraction in-

creases immediately after detection of an unexpected load
(Smeets et al., 1990) and, more generally, while moving in dy-
namic environments of increased trial-to-trial variability (Taka-
hashi et al., 2001), but only transiently following step changes in
dynamics (Milner and Cloutier, 1993; Thoroughman and Shad-
mehr, 1999; Franklin et al., 2003, 2004).

Impact of neurologic disease on uncertainty-driven
GF control
Increased uncertainty for GF control can also reflect imprecise
sensory information about the environment, or imprecise con-
trol of motor output. Thus the current results based on the ma-
nipulation of environmental variability predict that increased
sensory or motor uncertainty will also increase GF safety mar-
gins, leading to consistently higher GF. This may explain why
both healthy subjects under anesthesia (Westling and Johansson,
1984; Cole and Abbs, 1988; Nowak et al., 2001) and patients with
a range of sensorimotor dysfunction exhibit elevated GF safety
margins. In particular, elevated GFs have been reported in pa-
tients with multiple sclerosis (Iyengar et al., 2009), Parkinson’s
disease (Fellows et al., 1998; Wenzelburger et al., 2002), carpal
tunnel syndrome (Zhang et al., 2011; Afifi et al., 2012), peripheral
deafferentation (Nowak et al., 2003), and cerebral stroke
(Hermsdörfer et al., 2003; Dubrowski et al., 2005; Anens et al.,
2010).

Uncertainty estimation and metacognition
Estimates of uncertainty— or, inversely, confidence—about the
state of the environment related to one’s decisions or actions have
traditionally been classified as metacognitive abilities which en-
compass “what we know about what we know” (Metcalfe and
Shimamura, 1994; Nelson, 1996; Hacker, 1998). But metacogni-
tive abilities have been considered to be exclusive to humans and
primates (Metcalfe, 2008), whereas recent work on decision mak-
ing in rodents has identified behavioral and neural correlates of
confidence (Foote and Crystal, 2007; Kepecs et al., 2008; Terrace
and Son, 2009; Kepecs and Mainen, 2012). This should not come
as a surprise when considering motor control, given the long-
standing hypothesis that the motor system relies on internal es-
timates of variability and uncertainty for motor planning. It has
been widely hypothesized that movements are specifically
planned to minimize the task-relevant component of motor vari-
ability, possibly in combination with effort (Harris and Wolpert,
1998; Todorov and Jordan, 2002; Izawa and Shadmehr, 2008;
Izawa et al., 2008; Braun et al., 2009). Moreover, the strength of
on-line movement corrections has been shown to depend both
on the certainty associated with sensory information and one’s
prior beliefs about the environment in a manner consistent with
Bayesian integration (Körding and Wolpert, 2004; Körding et al.,
2004; Franklin et al., 2012). This integration often occurs without
awareness as simple neural computations can provide the re-
quired variability estimates (Ma et al., 2006; Kepecs et al., 2008;
Kiani and Shadlen, 2009; Kepecs and Mainen, 2012; De Martino
et al., 2013). For example, variability estimates like the ones used
in the ACEVU model can arise from a simple trial-by-trial update
rule, whereby the current estimate of variability can be expressed
as a weighted combination of the previous variability estimate
and a rectified version of current sensory information (Eqs. 2 and
3). Thus uncertainty estimates need not be the exclusive domain
of high-level cognitive endeavors; in fact, our work illustrates that
they are indeed an integral part of the machinery involved in
performing basic motor actions that do not require explicit spec-
ification, like controlling grip forces. Moreover, the exquisite sen-
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sitivity of GFs to environmental variability that we demonstrate
identifies GF control as a valuable paradigm for probing the ner-
vous system’s estimates of uncertainty. Going forward, this estab-
lishes a new tool for better understanding the mechanisms
underlying the estimation of uncertainty in the nervous system
about which little is currently known.

Notes
Supplemental material for this article is available at http://www.seas.
harvard.edu/motorlab/Hadjiosif_and_Smith_safety_margin_paper/
Supplementary_Materials.pdf. Figures and analysis show (1) force
profiles in Experiment 1b, (2) the robustness of results under differ-
ent metrics, (3) individual subject responses, (4) GF responses for EC
versus normal FF trials in Experiment 1a, illustrating sensitivity to
variability in both cases, (5) premovement GF levels, and (6) an ex-
amination of possible trial-to-trial carryover effects for GF. This ma-
terial has not been peer reviewed.
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