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The human brain can engage both explicit and implicit mental 
processes, and these processes are used in combination when 
performing many different types of tasks, including foreign-

language learning, driving, sequence learning and sensorimotor 
control1–4. These processes act in parallel and can work together to 
achieve successful performance, as explored in the popular book 
Thinking Fast and Slow5, which summarizes a line of research led 
by Kahneman and Tversky on the contrast between two mental sys-
tems: (1) implicit thinking, which is intuitive and largely automatic 
and is referred to as System 1, and (2) explicit thinking, which is 
effortful and attention-demanding and is referred to as System 2. 
When playing chess, for example, you can make an intuitive move 
that just feels right or a more calculated move after meticulously 
analyzing the consequences of each possible action.

In the motor system, both implicit and explicit adaptations 
can be used to learn from errors in our actions. For example, after 
throwing a dart that misses to the left of the bullseye, one might 
strategically aim farther to the right for the next throw. However, an 
implicit adaptation would also occur such that even if one contin-
ued to aim at the bullseye, the dart would land progressively farther 
to the right.

The study of explicit aiming during reaching and pointing adap-
tation tasks has seen a recent surge in interest. In these tasks, aim-
ing can be effective in compensating for visuomotor perturbations, 
whereby the relationship between hand motion and visual feedback 
of it is systematically altered. For visuomotor rotation learning in 
particular, in which participants receive directionally skewed visual 
feedback during reaching or pointing movements, explicit adjust-
ment of one’s aim point can result in near-complete compensation 
of the imposed rotation in just a few trials4,6. Studies have examined 
the effects of explicit strategies both by prescribing aim points6–8 and 
by having participants compose and report their own strategies4,9.

By contrast, implicit adaptation is a systematic change in motor 
output that occurs without conscious awareness. It has been exten-
sively studied in visuomotor learning6,10–13, prism adaptation14,15 and 
force-field adaptation16–21 paradigms, where it can result in large 
and prolonged aftereffects; that is, systematic changes in motor 

output that persist even after participants are made aware that the 
experimental manipulation has been removed. When perturbations 
are gradually introduced, participants will adapt while unaware of 
the perturbation22–24, which indicates that adaptation can proceed 
entirely implicitly.

The coexistence of explicit and implicit learning raises the ques-
tion of how these processes interact and potentially interfere with 
each other. Explicit strategy, which is thought to be driven by errors 
in performance4,7,25, must depend on the level of implicit learn-
ing, as the amount of implicit learning will affect errors in perfor-
mance. Meanwhile, current studies provide conflicting findings on 
the extent to which implicit learning depends on the use of explicit 
strategies. Some work has claimed that participants provided with 
an explicit strategy exhibit the same amount of implicit adapta-
tion as those who are not6, which suggests that implicit learning 
proceeds independently of strategy11. However, other studies have 
found that participants who are provided with an explicit strategy in 
fact display significantly attenuated implicit learning8,26, which sug-
gests instead that explicit strategies interfere with implicit learning.

When individuals create their own explicit strategies and con-
tinually adjust them, it is clear that strategic and implicit adaptation 
proceed in a highly complementary fashion, with strategy levels 
rapidly increasing at first, but then slowly receding in step with the 
slow increases in implicit adaptation such that the combined adap-
tation is maintained4,9. This complementarity suggests that there are 
antagonistic interactions between implicit and strategic learning, 
such that when one is high, the other becomes low. But it is not 
clear whether this interaction arises because strategy responds to 
changes in implicit learning or because implicit learning responds 
to changes in strategy or a combination of these two effects.

To understand how strategy and implicit learning interact dur-
ing motor adaptation, we created a task in which we could mea-
sure how implicit and strategic learning change from one trial to 
the next while continually driving motor adaptation via visuomotor 
perturbations that constantly evolve throughout training. However, 
while perturbations are crucial for driving motor adaptation, their 
presence makes it difficult to disentangle internal interactions from 
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responses driven by external perturbations because individual 
adaptive processes will respond not only to each other but also to 
the perturbation itself. On the other hand, eliminating perturba-
tions would remove the drive for learning, extinguishing adaptive 
responses and thereby make their interactions difficult to system-
atically investigate. We therefore designed a paradigm that allowed 
us to observe implicit learning and strategy simultaneously in per-
turbation-driven and perturbation-free dimensions. This paradigm 
allowed us to decompose adaptive responses into separate channels 
and to apply perturbations to some channels but not others to drive 
adaptation in the perturbed channels and, simultaneously, isolate 
the interactions between processes in the unperturbed channels.

Using this approach, we discover that implicit learning and strat-
egy interact in a synergistic, positively correlated manner in pertur-
bation-driven channels, but in an antagonistic, negatively correlated 
manner in perturbation-free channels. The antagonistic responses 
in perturbation-free channels suggest that one process can correct 
for the other to reduce the performance errors in the net behavior. 
Through multiple convergent analyses and simulations, we demon-
strate that implicit learning compensates for the performance errors 
induced by strategy rather than the converse.

Results
To understand how implicit and strategic learning interact during 
motor adaptation, we trained participants (n = 41) on a task that 
allowed us to measure how implicit learning and strategy evolve 
throughout the course of training. Like the classical visuomotor 
rotation task6,10,11,13,21, participants were instructed to move a cur-
sor that responded to hand motion toward a target when the cursor 
motion was rotated relative to hand motion (Fig. 1a). This required 
participants to adapt the direction of hand motion to counteract 
the rotation. Critically, participants in our task were free to use 
an explicit aiming strategy to improve performance. Before each 
movement, participants positioned a marker at the aim point that 
they thought would facilitate accurate cursor movement toward the 
target. This aiming marker provided visual guidance for the par-
ticipant and provided us with a measurement of the aiming strategy 
for each trial, which then allowed us to decompose the combined 
adaptation into strategic versus implicit components for each 
movement to monitor how strategy, implicit learning and com-
bined learning evolved from one movement to the next throughout 
training (Fig. 1a). We operationally defined strategic learning as the 
angular displacement between the aiming direction and the target, 
while implicit learning was defined as the displacement between the 
direction of hand motion and the aiming direction.

A key feature of our task was the design of a visuomotor rota-
tion sequence that continually evolved to drive motor adaptation 
and stimulate interactions between learning processes throughout 
the course of training. However, even with the continual stimula-
tion enabled by such a perturbation, understanding the interac-
tions between implicit and strategic learning is challenging. This 
is because individual adaptive processes can respond to both the 
perturbation and to each other, making it difficult to isolate inter-
actions. Removing the perturbation would expose the interactions; 
however, this would also remove the drive for overall adaptation, 
decimating the adaptive responses for both implicit learning and 
strategy and making interactions between them difficult to resolve.

To address these issues, we designed a visuomotor rota-
tion sequence that not only evolved throughout training but also 
allowed us to observe both perturbation-driven and perturbation-
free responses simultaneously. For perturbation-driven responses, 
a perturbation is present to drive strategic learning, implicit learn-
ing and their interactions, whereas for perturbation-free responses, 
no perturbation is present to drive strategic or implicit learning so 
that interactions were more readily isolated. To accomplish this, we 
constructed a perturbation sequence out of sinusoidal components 

at different frequencies, but used only a subset of the available fre-
quencies27,28 (the ‘sum-of-sines’ sequence; Fig. 1b,c). Summing sinu-
soidal perturbation sequences resulted in a composite sequence that 
evolves over time in a smooth but complex manner. We can effi-
ciently represent this perturbation sequence using the amplitudes 
and phases of sinusoids at different frequencies because perturba-
tions appear only at a few select frequencies (Fig. 1d). Notably, this 
frequency-based representation separates out the adaptive responses 
at perturbed frequencies (perturbation-driven responses) from 
those at unperturbed frequencies (perturbation-free responses), 
and each parameter in it was independent of the others because of 
the orthogonality of sine waves at different frequencies.

A sum-of-sines perturbation sequence elicits similar levels of 
implicit and explicit adaptation and enables the dissection of 
adaptive responses into perturbation-driven and perturbation-
free responses. Participants experienced a visuomotor rotation 
sequence composed of 5 sinusoidal components, with periods of 
48, 96, 192, 384 and 768 trials (corresponding to frequencies of 16, 
8, 4 and 2 cycles and 1 cycle, respectively, in the 768-trial training 
period), each with 10° of amplitude (Fig. 2a, black dashed line). The 
sequence continually evolves over the course of training, from rota-
tions as low as −30° to as high as +30° but gradually, with trial-to-
trial changes no larger than 2.53° in magnitude and an average of 
1.07° root mean squared (r.m.s.).

Participants readily adapted to the sum-of-sines visuomotor per-
turbation, with individual performance values that resulted in r.m.s. 
errors of 5.76 ± 0.19° (mean ± s.e.m. across participants) compared 
with the 15.8° r.m.s. error that was expected if no adaptation had 
occurred. The mean combined learning closely followed the shape 
of an ideal learning pattern, with an error of 2.77° r.m.s. (Fig. 2a, 
purple solid line versus black dashed line). Decomposing the com-
bined learning curve into implicit learning and strategy components 
(Fig. 2c) revealed that both of these components closely approxi-
mated the shape of the ideal learning curve (r = 0.94 and r = 0.95 
for participant-averaged implicit learning and strategic learning, 
respectively) and displayed similar r.m.s. amplitudes (11.12 ± 0.32° 
versus 9.05 ± 0.74°, respectively). This indicates that the sum-of-
sines perturbation paradigm strongly stimulated both implicit and 
strategic learning throughout the course of training.

We examined how learning varied across different frequencies to 
separate out adaptive responses into perturbation-driven and per-
turbation-free parts. For combined learning (implicit + strategy), 
perturbation-driven frequencies (Fig. 2b, purple stars) exhibited 
mean response amplitudes more than 20-fold greater than pertur-
bation-free frequencies or, more specifically, perturbation-free fre-
quencies in the same frequency range, 1–16 cycles in the experiment 
(8.99 ± 0.08° versus 0.33 ± 0.02°, t(40) = 100.3, P <1 × 10−48 or versus 
0.37 ± 0.02°, t(40) = 93.4, P <1 × 10−47). Note that these responses are 
similar to those expected from ideal learning: 10° at perturbation-
driven frequencies and 0° at perturbation-free frequencies.

Similarly, we found that individual responses in implicit learn-
ing and explicit strategy both displayed adaptive responses that 
were greater at perturbation-driven frequencies (5.31 ± 0.25° and 
4.47 ± 0.38°, respectively) than at perturbation-free frequencies. We 
found similar results when comparing against perturbation-free 
frequencies in the same frequency range (1.04 ± 0.11°, t(40) = 13.0, 
P <1 × 10−15 and 1.04 ± 0.10°, t(40) = 11.4, P <1 × 10−13, for implicit 
learning and strategy, respectively) and against all perturbation-free 
frequencies (0.33 ± 0.03°, t(40) = 19.2, P <1 × 10−21 and 0.24 ± 0.02°, 
t(40) = 11.6, P <1 × 10−13, respectively).

Implicit learning and strategy are synergistically aligned and 
display complementary amplitudes at perturbation-driven fre-
quencies. We next investigated the interactions between implicit 
learning and strategy for perturbation-driven responses. We found 
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that the combined adaptation was substantially higher than both the 
implicit and strategic adaptation at perturbation-driven frequencies 
(Fig. 3a; t(40) = 14.9, P <1 × 10−17 and t(40) = 11.6, P <1 × 10−13), 
which suggests that the implicit and strategic responses are aligned 
so that they combine synergistically at perturbation-driven frequen-
cies. This alignment, as evidenced by a positive correlation between 
the learning curves for implicit and strategic adaptation, is apparent 
in the example data for a participant shown in Fig. 3c, as these two 
curves largely increase and decrease together (r = +0.66), and in the 
group data (Fig. 3d; r = +0.57 ± 0.07 (mean ± s.e.m.), t(40) = 8.68, 
P <1 × 10−10).

The observed alignment between the implicit and strategic adap-
tive responses at perturbation-driven frequencies is in line with the 
idea that implicit and strategic adaptation cooperate to effectively 
counteract the perturbation. Such cooperation would further pre-
dict that the amount of implicit and strategic adaptation comple-
ment one another to achieve a level of combined adaptation that 
is close to ideal. This can be seen in two different ways in our data. 
First, in the highly complementary relationship between the levels 
of implicit and strategic learning when compared across individ-
ual participants after being combined across perturbation-driven 
frequencies (Fig. 3e; r = −0.88, F(1, 39) = 139.5, P <1 × 10−13). 
Specifically, individuals were highly consistent in the amount of 
combined learning (implicit + strategy) they achieved, which is rep-
resented by the direction orthogonal to the diagonal ideal-learning 
manifold. But they varied widely in how this combined learning is 
achieved along the ideal-learning manifold using implicit versus 

strategic learning. That is, some individuals displayed high implicit 
but low explicit learning while others displayed high explicit but 
low implicit learning. Second, in the complementary relationship 
between the levels of participant-averaged implicit and strategic 
learning across perturbation-driven frequencies (Fig. 3a). Here, the 
combined adaptation remained nearly constant across frequencies, 
despite large changes in the amount of implicit and strategic learn-
ing. In particular, strategic learning dominated at higher frequencies 
that required rapid changes in adaptation, which is in line with high 
learning rates for strategy, whereas implicit learning was systemati-
cally stronger at lower frequencies, perhaps due to higher retention 
for implicit adaptation. This results in the apparent X-shaped pattern 
shown in Fig. 3a, where implicit learning increases with frequency 
(slope = +4.62 ± 0.58, t(40) = 7.94, P <1 × 10−9), strategic learn-
ing decreases with frequency (slope = −3.76 ± 0.63, t(40) = 6.02, 
P <1 × 10−6) and the two are negatively correlated (r = −0.77 ± 0.07). 
Thus, as implicit learning rises, strategic learning falls in a comple-
mentary fashion to achieve nearly constant combined learning.

Implicit learning and strategy are antagonistically aligned and 
closely matched in amplitude to effectively cancel each other 
out at perturbation-free frequencies. The synergistic relationship 
between implicit and strategic learning observed at perturbation-
driven frequencies was in sharp contrast to their relationship at 
perturbation-free frequencies. For the perturbation-free responses 
in the same frequency range as the perturbation-driven responses 
(1–16 cycles in the training period), combined learning was not 
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Fig. 1 | Experimental setup. a, Set up of the aiming-based visuomotor rotation task to measure strategy and implicit learning. Before each reaching 
movement, participants indicated their aiming strategy by positioning an aiming marker (large red ring) to guide the reach. Explicit strategy (red double-
headed arrow) was operationally defined as the difference between the aiming direction (red dashed line) and cursor target direction (black dashed line). 
Implicit learning (blue double-headed arrow) was operationally defined as the difference between the hand direction (purple arrow) and aiming  
direction (red dashed line). Strategy and implicit learning together sum to the combined learning (purple double-headed arrow), which amounts to the 
difference between the hand direction (purple arrow) and the cursor target direction (black dashed line). During the visuomotor rotation task, the  
size of the perturbation determines the amount of rotation between the displayed cursor motion (green arrow) and the hand direction (purple arrow).  
b,c, Sum-of-sines composition of the visuomotor rotation sequence. Participants experienced a visuomotor rotation perturbation sequence composed of 
sine-shaped components at select frequencies (b), resulting in a continually changing perturbation (c). d, Illustration of a frequency space representation 
of perturbation. Here, the visuomotor rotation sequence is represented as rotation amplitude as a function of frequency rather than rotation as a function 
of time. At perturbed frequencies (stars), we observe perturbation-driven responses that reflect not only the interactions between implicit and strategic 
learning but also their responses to the perturbation. At unperturbed frequencies (circles), we observe perturbation-free responses that reflect only 
interactions between processes.
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larger but smaller than either implicit or strategic learning in 
isolation (Fig. 3b; 0.48 ± 0.03° versus 1.32 ± 0.15°, t(40) = 5.49, 
P <1 × 10−5 or 1.27 ± 0.15°, t(40) = 5.10, P <1 × 10−5). This results 
from the fact that implicit and strategic responses are strongly nega-
tively correlated (r = –0.87 ± 0.02, t(40) = 40.7, P <1 × 10−33) so that 
they largely oppose one another and interact antagonistically rather 
than synergistically. This antagonistic interaction is readily appar-
ent in the example learning curves of a participant, in which implicit 
and strategic adaptations effectively canceled one another because 
they displayed negatively correlated time courses, oscillating in 
opposition (Fig. 3f; r = –0.92).

Cancellation between implicit and strategic learning would be 
especially effective if these responses were not only negatively cor-
related and therefore oppositely directed but also closely matched 
in amplitude. We found two pieces of evidence to indicate that this 
is indeed the case at low perturbation-free frequencies (1–16 cycles 
in the training period). First, when the implicit and strategic adap-
tations were combined across these frequencies, they were closely 
matched in amplitude across individuals (Fig. 3h; slope = 1.04 ± 0.09, 
r = +0.99, F(1, 39) = 1431.4, P <1 × 10−31). This was also the case in 
the four-frequency and seven-frequency datasets (r = +0.97, F(1, 
12) = 182.7, P <1 × 10−7 and r = +0.90, F(1, 12) = 52.7, P <1 × 10−4, 
respectively). Conversely, when combined across participants, the 
implicit and strategic adaptations were closely matched in ampli-
tude across frequencies (Fig. 3b; similar values between red and 
blue circles at each perturbation-free frequency: r = 0.68 ± 0.06, 
t(40) = 12.2, P <1 × 10−14 where the correlation across frequencies is 
calculated for each participant).

To test the robustness of the dichotomy between synergistic and 
antagonistic interactions, we ran additional experiments in which 
we trained participants on sum-of-sines perturbations that con-
tained different numbers of frequencies and different frequency 

ranges. In these experiments, we trained 14 participants on a 384-
trial perturbation sequence that was constructed from 4 sinusoidal 
components with 1, 2, 4 and 8 cycles (corresponding to periods of 
384, 192, 96 and 48 trials, respectively) each with 10° of amplitude, 
and another 14 participants on a 768-trial perturbation sequence 
that was constructed from 7 sinusoid components with 2, 4, 8, 16, 
32, 64 and 128 cycles (corresponding to periods of 384, 192, 96, 48, 
24, 12 and 6 trials, respectively) also each with 10° of amplitude. 
Similar to the main five-frequency experiment, we found system-
atically positive correlations between implicit and strategic learning 
curves at the perturbation-driven frequencies (r = +0.72 ± 0.04 and 
r = +0.41 ± 0.15 for the four-frequency and seven-frequency experi-
ments, respectively, with t(13) = 19.1, P <1 × 10−10 and t(13) = 2.80, 
P = 0.015, respectively), which indicates that there is synergistic 
alignment between them. Correspondingly, we found systemati-
cally negative correlations between implicit and strategic learning 
curves at the perturbation-free frequencies in these experiments 
(r = −0.21 ± 0.09, t(13) = 2.43, P = 0.03 for four-frequency and 
r = −0.38 ± 0.10, t(13) = 3.86, P < 0.01 for seven-frequency). These 
results reinforce the findings that implicit and strategic learning act 
synergistically at perturbation-driven frequencies, but antagonisti-
cally at perturbation-free frequencies,

But why would the learning curves for implicit and strategic 
learning be in opposition to one another? Antagonistic interac-
tions, whereby implicit and strategic learning largely cancel out one 
another, improve performance at the perturbation-free frequen-
cies because the ideal adaptation at these frequencies is zero, and 
any net adaptation would increase motor error. This suggests that 
implicit or strategic adaptation may actively compensate for the 
other from one trial to the next as adaptation proceeds. If so, active 
compensation would be most effective at low frequencies (where 
the slow changes in activity would be easy to track), less effective at 
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intermediate frequencies and largely ineffective at higher frequen-
cies (where fast changes in activity would be challenging to track). 
In line with this expectation, the antagonistic alignment between 
implicit and strategic learning was strongest at the lowest frequencies  
(Fig. 3f,g; r = −0.87 ± 0.02), weaker at medium frequencies (Fig. 3i,j;  
r = −0.70 ± 0.04, t(40) = 17.8, P <1 × 10−19 when comparing low to 
medium frequencies) and essentially absent at high frequencies 
(Fig. 3k,l; r = 0.02 ± 0.05, t(40) = 0.32, P = 0.75). Note that the large 
changes in correlation across frequency bands is at odds with the 
possibility that the antagonistic alignment we observed arises from 
measurement noise, which would lead to negative correlations, but 
at low, medium and high frequencies.

If implicit or strategic adaptation actively compensates for the 
other at perturbation-free frequencies, the process that is compen-
sated would display a pattern across trials that was consistent across 
individuals or idiosyncratic. The former would suggest that some-
thing about the task or perturbation sequence is the main driver, 
and the latter would indicate a sporadic source, such as senso-
rimotor noise. We found that at perturbation-free frequencies, the 
amplitudes of the participant-averaged adaptation were far smaller 
than the mean amplitude of the individual participant adaptation 
(small dots versus circles in Fig. 3b; 0.08° versus 0.34°, 0.07° versus 
0.25°, 0.08° versus 0.34° for implicit, strategic and combined learn-
ing, respectively, and with differences of 345%, 242% and 307%, 
respectively). An analysis of this effect indicated that the consistent 
part constituted only 4% of the variance in implicit adaptation for 
individual participants and about 8% for strategic adaptation. This 
was in contrast to data from perturbation-driven frequencies, for 
which participant-averaged responses and the mean amplitude of 
the individual participant responses were similar, thereby indicat-
ing that the vast majority of the responses of the individual par-
ticipants were consistent (dashed line versus stars in Fig. 3a; 4.8° 
versus 5.3°, 4.3° versus 4.5°, 9.0° versus 9.0°, for implicit, strategic 
and combined amplitudes averaged across all perturbation-driven 
frequencies, respectively, and with differences of 11%, 4% and 0.1%, 

respectively). Thus, whereas adaptive responses at perturbation-
driven frequencies are strikingly similar, which is in line with a 
common perturbation sequence eliciting them, adaptive responses 
at perturbation-free frequencies are highly idiosyncratic, which is 
in line with the idea that a common perturbation has little effect 
at perturbation-free frequencies. Consequently, idiosyncratic sen-
sorimotor noise is the main driver of the inappropriate adaptation 
being compensated. But which process is compensating for which? 
Is strategy primarily canceling out inappropriate implicit learning or 
is implicit learning primarily canceling out inappropriate strategy?

Analysis of the amplitudes of implicit and strategic learning 
indicates that implicit learning compensates for strategy. Next, 
we investigated whether the cancellation we observed between 
implicit and strategic learning at the perturbation-free frequencies 
arose from implicit learning responding to strategy, the reverse or 
a combination of the two. To accomplish this, we began with an 
analysis based on structural equation modeling (SEM; also referred 
to as path analysis) on the amplitude data for the perturbation-
driven and perturbation-free implicit and strategic learning across 
individuals. SEM estimates the connection strengths within a net-
work of variables. Applications range from estimating genetic ver-
sus environmental influences on phenotypic traits in genetics29 to 
functional connectivity between brain areas in functional magnetic 
resonance imaging data in neuroscience30. Based on the covariance 
structure of the data, this analysis compares different models of how 
information flows between variables of interest.

Here, we employed SEM to examine the flow of information 
between perturbation-driven and perturbation-free strategic and 
implicit learning. We compared four structural equation models: a 
baseline model without any interaction between implicit and strate-
gic learning, and three models with different types of interactions, as 
illustrated in Fig. 4. We evaluated these models by pooling together 
the data across the five-, four- and seven-frequency perturbation 
experiments and calculating the log-likelihood associated with the 

Fig. 3 | Strategy and implicit learning synergize at perturbation-driven frequencies, but cancel at perturbation-free frequencies. a, Amplitudes 
at perturbation-driven frequencies. The stars, connected by solid lines, indicate the mean individual participant amplitudes at perturbation-driven 
frequencies for strategic, implicit and combined learning. The dotted lines, in contrast, indicate the amplitude of the mean response across individual 
participants. Note that the purple dotted line largely overlaps with the purple solid line. The horizontal black dashed line at 10° indicates the amplitude  
that would be expected from ideal learning. b, Amplitudes at perturbation-free frequencies. The circles indicate the mean of individual participant 
amplitudes at perturbation-free frequencies for strategic, implicit and combined learning. The small dots, in contrast, indicate the amplitude of the mean 
response across individual participants. The gray vertical stripes indicate the perturbation-driven frequencies to depict the range of perturbation-driven 
frequencies. c, Time courses of perturbation-driven responses for an example participant. Learning curves of an example participant for perturbation-
driven frequencies show that strategic and implicit learning curves are strongly aligned and synergistically combine to form the combined learning curve. 
The thick black dashed line indicates the time course for ideal learning. d, Distribution of correlations between perturbation-driven implicit and strategic 
learning curves. The histogram shows each participant’s correlation between perturbation-driven implicit and strategic learning curves. The vertical 
dashed line indicates the mean across participants, which is significantly positive. e, Perturbation (Pert.)-driven implicit and strategic learning amplitudes 
across individual participants exhibit a complementary relationship. Each dot depicts an individual participant’s implicit (y coordinate) and strategic  
(x coordinate) r.m.s. amplitude levels after combining across perturbation-driven frequencies. When perturbation-driven implicit and strategic learning 
are perfectly aligned with the perturbation, ideal learning would be expected to lie anywhere along the purple dashed line. The data show that the amount 
of combined learning is very similar across individuals, but the relative contributions of implicit and strategic learning vary widely. f, Learning curves of an 
example participant for perturbation-free frequencies that lie in the range of the perturbation-driven frequencies (1–16 cycles in the training period) for 
implicit strategic and combined learning. i,k, Corresponding learning curves for the example participant shown in f at medium (17–50 cycles; i) and high 
(51–384 cycles; k) frequency ranges in the training period. The data reveal an antagonistic alignment between implicit and strategic components that is 
strongest at the low frequencies, weaker at medium frequencies and absent at high frequencies. g,j,l, Distribution of correlations between perturbation-
free implicit and strategic learning curves. g, Histogram of individual participants’ correlations between perturbation-free implicit and strategic learning 
curves, for perturbation-free frequencies that lie in the range of the perturbation-driven frequencies (1–16 cycles in the training period). j,l, Corresponding 
histograms for medium (17–50 cycles; j) and high (51–384 cycles; l) frequency ranges. The thick gray vertical dashed lines indicate the means across 
participants. Correlations are strongly negative at low frequencies, more weakly negative at medium frequencies and not systematically different from zero 
at high frequencies. h, Perturbation-free implicit and strategic learning amplitudes across individual participants exhibit a closely matched relationship. 
Each dot depicts an individual participant’s implicit (y coordinate) and strategic (x coordinate) r.m.s. amplitude levels after combining across perturbation-
free frequencies that lie in the range of the perturbation-driven frequencies (1–16 cycles in the training period). When perturbation-free implicit and 
strategic learning are perfectly antagonistically aligned, full cancellation, leading to ideal combined learning, would occur for points that lie along the 
purple dashed line. This is because oppositely aligned signals can fully cancel one another only when their amplitudes match.
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ability of each model to explain the covariance across participants 
for the r.m.s. perturbation-driven and perturbation-free strategic 
and implicit learning in our data (Fig. 4).

Noise in motor output is often signal-dependent31,32, mean-
ing that larger actions lead to larger noise. Since random noise is 
spread across all frequencies and the number of perturbation-free 
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frequencies is much larger than the number of perturbation-driven 
frequencies (379 versus 5), this random noise would largely reside at 
perturbation-free frequencies. Thus, the existence of signal-depen-
dent noise would lead to larger perturbation-free responses in par-
ticipants with larger perturbation-driven adaptive responses, and 
it is reasonable to think that any nonlinear effects in the adaptive 
response leading to non-idiosyncratic perturbation-free adaptation 
would also be larger in individuals with larger perturbation-driven 
responses. In line with this idea, we constructed a baseline model 
in which information flow was restricted to be from (1) perturba-
tion-driven to perturbation-free implicit learning and (2) perturba-
tion-driven to perturbation-free strategic learning (Fig. 4, far left). 
The path strengths in the model shown in Fig. 4 correspond to the 
amount of information flow inferred by SEM. This baseline model 
resulted in a path strength of +0.58 from perturbation-driven to 
perturbation-free strategy and −0.72 from perturbation-driven 
to perturbation-free implicit learning. The positive path strength 
between perturbation-driven and perturbation-free strategy indi-
cates that higher levels of perturbation-driven strategy are associ-
ated with higher levels of perturbation-free strategy, as expected 
from signal-dependent noise. However, the negative path strength 
between perturbation-driven and perturbation-free implicit learn-
ing indicates that higher levels of perturbation-driven implicit 
learning are associated with lower levels of perturbation-free 
implicit learning. This is opposite to what would be expected from 
signal-dependent noise, and raises the question of whether pertur-
bation-free implicit adaptation might arise from a mechanism other 
than the signal-dependent noise captured by this baseline model.

In line with this possibility, we examined three models that build 
on the baseline model by hypothesizing additional interactions, as 
illustrated in Fig. 4. In the first of these, perturbation-free strategy 
responds to perturbation-free implicit learning but not vice versa. 
This model resulted in a moderate, 9-point log-likelihood ratio 
compared with the baseline. However, the converse of this model, in 
which perturbation-free implicit learning responds to perturbation-
free strategy but not vice-versa, resulted in a 27-point log-likelihood 
ratio compared with the baseline. Moreover, it installed a positive 
path strength for the effect of perturbation-driven on perturbation-

free implicit learning, which is in line with the existence of signal-
dependent noise. Critically, a mutual-response model, whereby 
perturbation-free implicit learning responds to perturbation-free 
strategy and vice versa, also responded to implicit learning and sig-
nificantly improved on the strategy-response model (log-likelihood 
ratio = 18.2, P <1 × 10−8). However, it failed to significantly improve 
on the implicit-response model (log-likelihood ratio = 0.6, P = 0.27), 
which indicates that while the data provide clear evidence that 
implicit learning responds to strategy, they fail to provide evidence 
for an additional effect of strategy responding to implicit learning.

Given that adaptation at perturbation-free frequencies is largely 
idiosyncratic across individuals, which is in line with it being pri-
marily driven by random sensorimotor noise, the finding that 
implicit learning actively responds to strategy at these frequencies 
indicates that it acts to compensate for noise originating from strat-
egy adaptation. If noisy strategy adaptation was the primary driver 
of perturbation-free adaptive responses, one would expect individ-
uals with higher strategy levels (who should display greater levels 
of strategy noise) to exhibit systematically worse task performance 
than low-strategy individuals. This is because effectively com-
pensating for strategy noise would be more challenging in higher 
strategy individuals. An analysis of the individual differences in 
task performance revealed that this is indeed the case. We found a 
positive relationship between overall strategy and task error across 
all participants across the three experiments (n = 69, t(67) = 6.32, 
P <1 × 10−5), which indicates that participants with larger levels of 
overall strategy also exhibit larger overall errors. To account for 
nonspecific effects that might arise from performance differences 
between experiments, we performed two additional analyses to 
assess this relationship within just the main experiment (n = 41) 
and with a regression analysis of the full dataset that included 
experiment as a covariate. In both cases, we again found a signifi-
cantly positive relationship between strategy use and performance 
error (t(39) = 2.38, P = 0.01 for the main experiment data only, and 
t(65) = 2.45, P < 0.01 for the combined data). Together, these results 
indicate that high-strategy participants exhibit systematically larger 
errors, which is in line with the idea that implicit learning acts to 
compensate noisy low-fidelity strategy adaptation.
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Analysis of the temporal lags between implicit and strategic 
learning indicates that implicit learning compensates for strat-
egy. The SEM analysis was based entirely on data about adaptation 
amplitudes. To check its robustness, we conducted an independent 
analysis that was based instead on the temporal lags between per-
turbation-free implicit and strategic adaptation curves. Because a 
response must necessarily lag its stimulus, the SEM findings would 
predict that implicit responses should lag behind strategy at pertur-
bation-free frequencies. If instead, strategy was primarily respond-
ing to implicit learning, we would expect strategy to lag behind 
implicit responses.

We therefore determined the time shift between perturbation-
free implicit and strategic learning curves that would maximize 
antagonistic alignment by finding the shift at which the cross-cor-
relation between these curves was most negative. The data for an 
example participant shown in Fig. 5a,b displays a maximally antago-
nistic alignment (that is, maximally negative cross-correlation value) 
when the implicit learning curve lags behind the strategy learning 
by three trials (green dot in Fig. 5b), which is in line with implicit 
learning responding to strategy. Note that the most extreme lags 
we measured, both positive and negative, correspond to individu-
als who displayed lower amplitude peak cross-correlations, where it 
would inherently be more difficult to accurately determine the best 
alignment. Across all participants, we found maximally antagonistic 
alignment occurred at +0.91 ± 0.34 trials (Fig. 5c, P = 0.01), which 
suggests that implicit learning systematically lags strategy at the low 
perturbation-free frequencies where cancellation occurs. The con-
vergent findings of the SEM and time lag analyses, based on the 
amplitudes and temporal structure of implicit and strategic adap-
tive responses, point to an implicit learning process that actively 
responds to compensate low-fidelity explicit strategy.

Simulating interactions between low-fidelity and high-fidelity 
learning processes reproduces key experimental findings. To 
ensure that implicit learning effectively responds to noisy strategy 
learning, it would have to display substantially higher fidelity (that 
is, lower noise) than strategy learning. Otherwise, the response 
could do more harm than good. This is the case because the addi-
tion of a second adaptive process brings with it not only the adaptive 
potential to create anticorrelated output capable of canceling the 
effects of noise from the first process and thus reducing motor error 
but also its own intrinsic noise that will act to increase error. Thus, 
effective suppression of error will only occur when the addition of 
the second process brings with it a noise level that is small enough 
that the compensation it provides outweighs the noise it adds. A 
supplementary analysis revealed that at perturbation-free frequen-
cies, net suppression does not occur if the noise level of the sec-
ond process is higher than that of the first (Extended Data Fig. 1).  
We therefore wondered whether a difference in fidelity between 
these learning processes could by itself explain the key interactions 
between implicit and strategic learning that we described above.

To test this idea, we simulated the interactions between two 
parallel error-correcting adaptive processes with identical proper-
ties except for their fidelity (Fig. 6a; see Methods for equations). 
In particular, adaptive corrections were corrupted by noise that 
scaled with the size of the correction, but the scale factor was one-
third higher for the high-noise learning process than the low-noise 
learning process. The high-noise and low-noise processes served as 
models for strategy and implicit learning, respectively. The sum of 
these two processes models the combined learning, and the differ-
ence between the combined learning and the imposed perturbation 
is the error signal that drives both adaptive processes. To match 
the considerable individual differences we observed between the  
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relative amounts of implicit and strategic learning, we varied the 
ratio between learning rates for strategy and implicit learning for 
individual participants (n = 69, based on the total size of our data-
set) while keeping the mean learning rate across individuals the 
same for the low-fidelity and high-fidelity processes (Methods). 
This resulted in a negative correlation between the learning rates 
for implicit and strategic learning, and while we do not know the 
mechanism for why this might occur, it appears to be consistent 
with the data.

Remarkably, this simulation reproduced a number of key fea-
tures from our experimental data. At perturbation-driven fre-
quencies, the simulated learning displayed synergistic alignment 
between low-noise and high-noise learning and a complemen-
tary relationship between their amplitudes across individuals that 
echoed experimental observations for implicit and strategic learn-
ing (Fig. 6b versus Fig. 3c,d and Fig. 6d upper-left versus Fig. 3e). 
At perturbation-free frequencies, the simulated processes, similar to 
the experimental data, exhibited an antagonistic alignment between 
the learning curves for implicit and strategic learning and closely 
matched amplitudes of implicit and strategic learning across indi-
viduals. This indicates that, as for the experimental data, one adap-
tive process acts to cancel the inappropriate behavior of the other 
(Fig. 6c versus Fig. 3f,g and Fig. 6d upper-right versus Fig. 3h). Our 
simulation also reproduced the results of the SEM analysis (Fig. 6e, 
and compare with Fig. 4) and the temporal lag analysis (Fig. 6f, and 
compare with Fig. 5c), which demonstrates that the low-noise pro-
cess (which models implicit learning) lags behind and effectively 
compensates for the inappropriate behavior of the high-noise pro-
cess (which models strategy), a result that can be predicted by math-
ematical derivation (Supplementary Math Note).

Note that a supplementary analysis (Extended Data Figs. 2–4) 
revealed that the negative correlation between the learning rates for 
the implicit and explicit adaptation in the model contributes to the 
strong correlation between perturbation-driven implicit and stra-
tegic learning shown in the upper-left panel of Fig. 6d. However, it 
does not contribute to the asymmetry in the functional compensa-

tion between adaptive processes found in the SEM analysis and lag 
analysis shown in Fig. 6e,f.

Furthermore, the simulation results, as for the experimental data, 
displayed a positive relationship between perturbation-free and 
perturbation-driven amplitude levels for strategic learning, but not 
for implicit learning (Fig. 6d, lower panels). The positive relation-
ship for strategic learning is expected from signal-dependent noise 
because inappropriate perturbation-free strategy learning is effec-
tively noise that results from appropriate but imperfect perturba-
tion-driven strategy learning. However, it might be surprising that 
we did not observe an analogously positive relationship between 
perturbation-free and perturbation-driven response amplitudes 
for implicit learning, as signal-dependent noise on implicit learn-
ing would, by itself, predict a positive relationship. However, since 
implicit learning displays low noise and acts to cancel inappropriate 
strategy at perturbation-free frequencies, most perturbation-free 
implicit learning comes from compensation for perturbation-free 
strategy. The compensatory portion of implicit learning at pertur-
bation-free frequencies is inversely correlated with the amplitude of 
the perturbation-driven implicit learning because low levels of per-
turbation-driven implicit learning correspond to high levels of per-
turbation-driven strategy (Fig. 6d, upper left), which results in high 
levels of perturbation-free strategy (Fig. 6d, lower left) and in turn 
leading to high levels of compensatory perturbation-free implicit 
learning (Fig. 6d, upper right). Thus, the difference between the 
relationships between perturbation-free and perturbation-driven 
learning for strategy versus implicit adaptation is in line with the 
idea that perturbation-free strategy is primarily driven by signal-
dependent noise for perturbation-driven strategy, whereas pertur-
bation-free implicit learning is largely driven by compensations for 
perturbation-free strategy.

Overall, the results of this simulation indicate that the key exper-
imental findings illustrated in Figs. 3, 4 and 5 can all be captured by 
a simple model of two interacting error-correcting processes that 
differ only in the degree of fidelity, with lower noise characterizing 
implicit learning and higher noise characterizing strategic learning  

Fig. 6 | Model of interactions between low-fidelity and high-fidelity learning processes reproduces key experimental results. a, Illustration of the  
model. We simulated two error-correcting processes, one with high noise (low-fidelity) and the other with low noise (high-fidelity). The two processes 
sum to the net motor output and to the error between the net motor output and the perturbation drives each process (see Methods for equations).  
b, The model reproduces synergistic alignment between implicit and strategic learning curves at perturbation-driven frequencies. Left: analogous to 
Fig. 3c, the data from an example simulated participant show that strategic and implicit learning curves are strongly aligned for perturbation-driven 
frequencies and synergistically combine to form the combined learning curve. The black dashed line indicates the time course of the ideal learning. Right: 
analogous to Fig. 3d, the histogram shows each simulated participant’s correlation between perturbation-driven implicit and strategic learning curves. 
The thick vertical dashed line indicates the mean correlation across simulated participants (r = +0.50). c, The model reproduces antagonistic alignment 
between implicit and strategic learning curves at perturbation-free frequencies. Left: analogous to Fig. 3f, the data from the same simulated participant 
as in b show that strategic and implicit learning curves are antagonistically aligned for perturbation-free frequencies (in the range of the perturbation-
driven frequencies) and largely cancel each other out to form the combined learning curve (purple). Right: analogous to Fig. 3g, the histogram shows 
each simulated participant’s correlation between implicit and strategic learning curves for perturbation-free frequencies (in the range of the perturbation-
driven frequencies). The thick vertical dashed line indicates the mean across simulated participants (r = −0.97). d, The model reproduces inter-individual 
relationships between perturbation-driven and perturbation-free implicit and strategic learning amplitudes. The upper left and upper right panels are 
analogous to Fig. 3e,h. Green dots indicate simulated participants, while the black dots indicate participants from the experimental data, showing the 
participants’ r.m.s. amplitude levels after combining across frequencies. The solid lines indicate best fit lines through the correspondingly colored datasets. 
The dashed purple line indicates the amplitudes that would be expected from ideal combined learning. The model reproduces the complementary 
relationship between implicit and strategic learning at perturbation-driven frequencies (upper left), the closely matched relationship between implicit 
and strategic learning at perturbation-free frequencies (upper right), the positive signal-dependent noise relationship between perturbation-free and 
perturbation-driven strategic learning (lower left) and the negative relationship between perturbation-free and perturbation-driven implicit learning, 
which suggests that perturbation-free implicit learning is not primarily driven by signal-dependent noise but instead by perturbation-free strategy (lower 
right). e, The model reproduces results of SEM analysis. Analogous to Fig. 4, this panel shows the log-likelihoods for models that hypothesize different 
interactions between simulated implicit and strategic learning as a function of the number of parameters in the model. The green curves depict nested 
model comparisons, and the corresponding P values reflect the significance of the difference assessed by a likelihood ratio test. f, The model reproduces 
results of the temporal lag analysis. Analogous to Fig. 5c, the histogram shows the distribution of simulated participants’ lags between perturbation-free 
implicit and strategic learning curves, estimated from the cross-correlation function between them. These lags are predominantly positive (blue shaded 
area), which indicates that the high-fidelity process (model for implicit learning) lags behind the low-fidelity process (model for strategic learning) in the 
simulation. The vertical dashed line indicates the mean lag between processes.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NaTurE NEuroScIEncE

(Fig. 6). These results are in line with a high-fidelity implicit learn-
ing process that compensates for a low-fidelity strategy process 
during sensorimotor adaptation from one movement to the next. 
A key general lesson from these modeling results is that a stochas-
tic co-adaptive system with multiple adaptive processes can display 
emergent dynamics, in which parallel mechanistic responses lead to 
markedly different functional responses. In particular, we observed 
that the higher fidelity adaptive component displays robust func-
tional responses to the lower fidelity adaptive component, which 
arises from mechanistic responses based solely on the overall error. 
In contrast, the lower-fidelity adaptive component does not display 
substantial functional responses to the higher-fidelity adaptive com-
ponent, despite a parallel mechanistic response to the same overall 
error. This occurs despite the fact that noise output from both adap-
tive processes directly affects the overall error. The asymmetry of 
the emergent functional interaction between implicit learning and 
strategy underscores the dichotomy between functional and mecha-
nistic interactions that can occur in co-adaptive systems, and makes 

it clear that a computational understanding of adaptive dynamics 
can add key information to a purely mechanistic description.

Discussion
Here, we uncovered both cooperative and antagonistic interactions 
between implicit and strategic learning during sensorimotor adapta-
tion using a visuomotor rotation task with a perturbation sequence 
we designed to separate out adaptive responses into perturbation-
driven and perturbation-free dimensions (frequencies). While 
implicit, strategic and combined learning of the participants readily 
adapted to perturbations throughout training, these responses were 
largely concentrated at perturbation-driven frequencies, where we 
discovered both a cooperative, synergistic alignment between the 
time courses (Fig. 3c,d) of implicit and strategic learning, and a com-
plementary relationship between their amplitudes (both across fre-
quencies and across individuals; Fig. 3a,e). However, in contrast to 
the perturbation-driven responses, the perturbation-free responses 
in the same frequency range displayed an antagonistic relationship 
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between implicit and strategic learning. Negatively aligned time 
courses (Fig. 3f,g) and closely matching amplitudes (both across 
frequencies and across individuals; Fig. 3b,h) together produced 
highly effective cancellations at these perturbation-free frequencies. 
These cancellations were particularly effective at lower frequencies 
(Fig. 3i–l), and resulted from idiosyncratic responses across individ-
uals (Fig. 3b), which suggests that one process actively compensates 
for noisy inappropriate behavior in the other from trial-to-trial to 
improve the fidelity of the overall adaptive responses.

To understand whether this trial-to-trial compensation arises 
from implicit learning compensating for strategic learning or vice 
versa, we performed two analyses on independent aspects of the 
data. One investigated the correlation structure in the amplitudes 
across the adaptive processes in a SEM analysis, independent of 
temporal information (Fig. 4), and another examined the temporal 
features of the adaptive processes to determine the time lag of the 
compensatory behavior, independent of amplitude (Fig. 5). Both 
found that implicit adaptation responded to explicit strategy rather 
than the converse, which indicates that implicit learning acts to 
effectively compensate for inappropriate responses resulting from 
low-fidelity explicit strategy. Moreover, we demonstrated that a 
simulation, with two error-correcting processes that differ only in 
the degree of fidelity, was able to reproduce all key experimental 
findings (Fig. 6). That is, synergistic interactions at perturbation-
driven frequencies, antagonistic interactions at perturbation-free 
frequencies and effective compensation by the higher fidelity pro-
cess of inappropriate responses resulting from the lower fidelity 
process at perturbation-free frequencies. These results indicate that 
implicit learning takes on a compensatory role in which it effec-
tively cleans up inappropriate responses that can arise from a low-
fidelity explicit strategy, providing new insight into the interactions 
between implicit and explicit processes that occur during learning.

Is implicit learning driven by performance errors or sensory-
prediction errors?. Our finding that implicit learning responds to 
strategy conflicts with the popular theory that implicit learning is 
driven by sensory-prediction errors and not by performance err
ors4,11,33,34. The performance error associated with an action is the 
difference between its outcome and the task goal, while the sensory-
prediction error is the difference between its outcome and an inter-
nal prediction of the outcome. A change in strategy will of course 
affect the outcome but not the task goal, and thus affect the perfor-
mance error; however, this change in strategy should affect both the 
outcome and the internal prediction of the outcome similarly and 
will therefore have little effect on sensory-prediction error. The fact 
that we saw implicit learning respond to strategy therefore indicates 
that implicit learning must respond to performance error, which is 
at odds with the claim that implicit learning is driven by sensory-
prediction errors but not by performance errors.

Meanwhile, the claim that implicit learning is driven by sensory-
prediction errors and not by performance errors is based on the 
conclusion by Mazzoni and Krakauer in 2006 (ref. 6) that implicit 
adaptation proceeds independently of strategy, and by Krakauer in 
2009 (ref. 11), which later interpreted this independence to mean 
that implicit adaptation is purely driven by sensory prediction errors 
rather than performance errors. Specifically, the idea that implicit 
learning is driven by sensory-prediction error is based on the find-
ing that it can proceed even when performance error is eliminated 
by the use of experimentally prescribed strategies6. This finding 
indicates that sensory-prediction error contributes to implicit adap-
tation; however, it does not indicate that sensory-prediction error is 
the sole driver of implicit adaptation.

To show that sensory-prediction error is the sole driver of 
implicit adaptation (that is, that implicit learning proceeds inde-
pendently of performance error and strategy), one must show that 
implicit adaptation identically proceeds when performance error is 

present or absent. Indeed, Mazzoni and Krakauer6 argued for iden-
tical adaptation; however, this claim relied on a negative result for 
which the evidence was weak. They found that a non-strategy con-
dition, which allowed performance errors, displayed initial learning 
that was nominally faster than that of the strategy condition, which 
eliminated them (34.9% versus 30.4%), which is actually in line with 
performance-error-driven learning. The difference was not signifi-
cant (P = 0.223) and was consistent with identical adaptation, but 
the data were also consistent with a 95% confidence interval that 
included a 25% higher initial learning rate for the non-strategy group, 
thereby indicating poor statistical power. Moreover, late learning 
was substantially and significantly larger for the non-strategy group 
than the strategy group (65% difference with P < 0.005), with a 95% 
confidence interval that included a 100% higher initial learning rate 
for the non-strategy group. The authors suggested that the large dif-
ference they observed in late learning might be due to participants 
altering their strategies late in training; however, strategy levels were 
not measured in these participants. Thus, the initial learning rate 
results are consistent with the absence of performance-error-driven 
implicit learning and are consistent with performance-error-driven 
implicit learning that is 25% as high as sensory-prediction error-
driven implicit learning, and the final adaptation results are con-
sistent with performance-error-driven implicit learning that could, 
in fact, be as large or larger than sensory-prediction error-driven 
implicit learning. This suggests that implicit learning may be driven, 
at least in part, by performance errors, which is consistent with our 
findings that implicit learning can respond to strategy and in line 
with previous studies that showed that strategy use interferes with 
the build-up of implicit adaptation8,26, as strategy use would decrease 
the performance errors that could drive implicit adaptation.

A number of recent studies have presented converging evidence 
that points to multiple adaptive processes that contribute to motor 
adaptation18,35,36. Although little is known about the specific error 
signals that drive these different processes, an intriguing possibility 
is that distinct components of implicit learning are driven by perfor-
mance errors and sensory-prediction errors.

Interference between explicit and implicit processes in motor skill 
learning. An important idea in motor skill learning research is that 
motor learning proceeds from predominantly explicit to implicit 
states as a learner develops from novice to expert37,38. Interestingly, 
instructing subjects to verbalize or monitor their actions to promote 
the use of explicit strategies improves performance at novice stages, 
at which learning is largely explicit, but impairs performance at 
expert stages, at which learning is primarily implicit39–42. That nov-
ice performance is improved is in line with our results and other 
work showing that strategy is capable of rapid learning4,9 and able to 
adapt to rapidly changing, high-frequency perturbations (Fig. 3a),  
which are helpful during initial stages of learning where overall 
performance is far from the ideal level. Strategy may also be use-
ful in adapting to complex, but cognitively predictable perturbation 
patterns. However, that expert performance is impaired is in line 
with our current results showing that strategy, with its low fidelity, 
is more susceptible to noise. This can make the overuse of strat-
egy detrimental during late stages of learning, where overall per-
formance is appropriately centered and achieving precision is the 
dominant factor, because the use of a low-fidelity strategy reduces 
precision.

Interestingly, the impairment observed at expert stages occurs 
not only when performance is tested concurrently during the ver-
balization39–41 but also when tested subsequently without verbal-
ization42. This persistent effect suggests that promoting explicit 
strategies may interfere with the development of implicit motor 
learning. In line with this idea, some motor adaptation studies 
have found that implicit learning is attenuated by the use of explicit 
strategies8,26. In the current study, we found that implicit learning  
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is attenuated by explicit strategy on an individual participant level, 
with a strong negative inter-individual correlation between the 
amounts of implicit learning and strategic learning at perturbation-
driven frequencies (Fig. 3e, r = −0.88), which means that indi-
viduals with higher perturbation-driven implicit learning display 
systematically lower levels of strategic learning and vice versa. These 
behavioral findings are consistent with other work showing that the 
neural systems underlying explicit and implicit processes may com-
petitively interact43,44; for example, lesions to medial temporal lobe 
structures, which support explicit declarative memory, can in fact 
improve implicit procedural learning43–45, which largely depends 
on other brain regions, including the basal ganglia, motor cortical 
areas and the cerebellum17,35,43,44,46–50. The current study extends the  
current understanding of the interference between explicit and 
implicit processes in motor learning by showing that high noise 
in explicit strategy is systematically compensated for by adaptive 
changes in implicit learning to improve the reliability of the overall 
motor output.
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Methods
Participants. A total of 41 participants (30 female, 35 right-handed, mean age 
21.7 years) took part in the main sum-of-sines visuomotor rotation experiment, in 
which the visuomotor rotation sequence was composed of sinusoids at 5 different 
frequencies (Fig. 2). A total of 14 participants (11 female, 10 right-handed, mean 
age 22 years) took part in the additional seven-frequency sum-of-sines visuomotor 
rotation experiment, and another 14 participants (8 female, 12 right-handed, 
mean age 23.9 years) took part in the additional four-frequency sum-of-sines 
visuomotor rotation experiment. Participants were naive to the purpose of the 
experiments, had no known neurological conditions and gave written informed 
consent, consistent with the policies of the Institutional Review Board for Harvard 
University. No statistical methods were used to predetermine sample sizes, but the 
sample sizes we used were similar to or greater than those reported in previous 
publications4,6–27.

Apparatus. Participants sat facing a 120-Hz, 23-inch LCD monitor, mounted 
horizontally at shoulder level, that displayed visual cues during the experiment. 
The latency of real-time visual feedback was 23–25 ms based on an analysis of 
240 fps external video recordings that simultaneously captured hand motion and 
visual feedback on the screen. Underneath this monitor and hidden from their 
view, participants grasped a foam handle (cylindrical, 25 mm in diameter) that 
encased a digital stylus, and performed movements by sliding it atop a digitizing 
tablet (Wacom Intuos 3) that recorded hand position at 200 Hz with 0.005-mm 
resolution. The bottom of the foam handle was lined with Teflon tape to allow it to 
slide smoothly over the tablet surface. Participants were positioned such that their 
midlines were aligned with the middle of the monitor and tablet surface. Software 
for running the experiment was designed using Psychophysics Toolbox 3.0 in 
Matlab R2010a.

Experimental protocol. Targets and cursor feedback. Participants performed rapid 
9-cm point-to-point reaching arm movements with their dominant hands toward 
different targets, executed at peak speeds of 37.2 ± 10.1 cm s–1 (mean ± s.d. across 
participants). The starting location for each reaching movement was shown as 
a circle with a diameter of 5 mm labeled with a ‘S’ (which stood for Start), and 
each target was a circle 10 mm in diameter. In addition, cursor feedback of hand 
location, when provided, was displayed as a circle 2.5 mm in diameter.

Aiming marker. During the training period and later parts of the baseline period, 
participants were told that the cursor they were attempting to move to the target 
might be skewed from their hand direction and that aiming at a position distinct 
from the target might sometimes improve performance. Moreover, they were 
told that the amount of skew might change from one trial to the next so that the 
aiming point that would be most beneficial might also change from one trial to 
the next. To help visualize an aim point for the reaching movement, participants 
were provided with a marker, displayed as a 10-mm diameter red ring. This aiming 
marker was positioned by the experimenter during earlier parts of the baseline 
period, but was positioned by the participant during the training period and the 
last block of the baseline period. The aiming marker could be positioned in any 
direction but was constrained to be the same distance away from the starting 
location as the target. Participants positioned the aiming marker by pressing the 
left and right arrow keys multiple times on a keypad using the non-reaching hand, 
and then registered the chosen aim point by pressing the up arrow key. This aiming 
procedure occurred before the required reaching movement.

Baseline period. The experiment started with the baseline period, which consisted 
of three types of baseline blocks. The first was a familiarization baseline block, 
which familiarized participants with the basic experimental setup and target-
reaching task. This block consisted of 50 trials and presented participants with no 
aiming marker and only the starting location, target and cursor, which presented 
veridical feedback of hand position. In this block, the target was always presented 
at the 0° direction (upward).

The familiarization baseline block was followed by two fixed-aiming 
baseline blocks, each comprising 50 trials. In these fixed-aiming baseline blocks, 
participants were presented not only with the starting location, target and cursor 
but also with an aiming marker. The position of this aiming marker was fixed and 
predetermined by the experimenters. These blocks familiarized participants with 
the presence of an aiming marker and the procedure of aiming for it. Here, targets 
appeared at different directions for each trial, from −90° and 90°, every 30°. For the 
majority of trials in these blocks, participants were presented with cursor feedback 
that veridically displayed hand position, and the aiming marker was placed directly 
on top of the target during these trials to facilitate accurate cursor motion toward 
the target. However, on occasional trials (1 every 5), cursor feedback of the hand 
direction was rotated by 30° (50% of these trials in the clockwise direction and 
50% in the counter-clockwise direction for each participant, presented in random 
order). For these trials, the aiming marker was correspondingly displaced from 
the target location by 30°, such that aiming for the aiming marker would facilitate 
accurate cursor movement toward the target on these trials as well. Thus, these 
rotation trials familiarized participants with the procedure of aiming for an aiming 
marker even when it does not overlap with the target. Note that any learning 

resulting from these isolated rotation trials were immediately washed away by 
many non-rotation trials following it.

The baseline period concluded with a variable-aiming baseline block of 50 
trials that familiarized participants with the procedure of aiming for an aiming 
marker that they positioned themselves. The cursor veridically displayed hand 
position on these trials. As for the previous block, targets appeared at different 
directions for each trial, from −90° and 90° every 30°; however, the position of the 
aiming marker was not fixed and could be adjusted by the participant using arrow 
keys that the participants manipulated with the non-reaching hand.

Training periods. In the training period, participants were presented with a single 
target direction at 0° (upward). This period started with 50 trials for which the 
visuomotor rotation was 0° (displaying veridical hand position), followed by trials 
for which the visuomotor rotation changed according to a sequence that was 
constructed using sinusoid components (Fig. 1b). In the main experiment, we 
constructed this rotation sequence using 5 pure sine wave components with 10° 
amplitudes and periods of 48, 96, 192, 384 and 768 trials, as shown by the black 
dashed line in Fig. 2a. These periods correspond to frequencies of 16, 8, 4 and 2 
cycles and 1 cycle, respectively, in the training period (black dashed line in Fig. 
2b), where the training period was 768-trials long. Using pure sine waves avoids 
a discontinuity at perturbation sequence onset. The two additional experiments 
used rotation sequences composed of 7 sine components with 10° amplitudes and 
periods of 6, 12, 24, 48, 96, 192, 384 trials (which correspond to 128, 64, 32, 16, 8, 
4 and 2 cycles, respectively, in 768 trials of training) and 4 sine components with 
10° amplitudes and periods of 48, 96, 192 and 384 trials (which correspond to 
8, 4 and 2 cycles and 1 cycle, respectively, in 384 trials of training). To eliminate 
the possible effects of being trained on a positive versus negative version of the 
visuomotor rotation sequence, these conditions were balanced across participants. 
A total of 20 versus 21 participants were trained on the positive versus negative 
version of the sequence, respectively, for the five-frequency experiment, 7 versus 7 
participants for the seven-frequency experiment, and 7 versus 7 participants for the 
four-frequency experiment.

Analysis. Calculating hand direction. The data presented were taken from outward 
movements initiated from the center starting location; return movements back to 
the center were not analyzed. For each movement, we calculated the hand direction 
as the direction of the hand when it was 6 cm away from the starting location 
compared with its position when 2 cm away. The 2 cm and 6 cm points occurred at 
85.5 ± 22.9 ms and 166.6 ± 59.5 ms, respectively, (mean ± s.d. across participants) 
after movement onset, defined as the time at which hand speed first exceeded 
6.35 cm s–1. The hand speeds at the 2 cm and 6 cm locations were 47.4 ± 16.3 cm s–1 
and 55.8 ± 21.4 cm s–1, respectively.

Calculating strategy, implicit learning and combined learning. For each trial, strategy 
was calculated as the difference between the aiming direction, as indicated by 
the angle of the aiming marker (red dashed line in Fig. 1a) and the cursor target 
direction (black dashed line in Fig. 1a). Implicit learning was calculated as the 
difference between the hand motion direction (purple arrow in Fig. 1a) and the 
aiming direction. Combined learning was the sum of strategy and implicit learning 
and amounted to the difference between the hand motion direction and cursor 
target direction.

Outlier analysis. No participants were excluded from the dataset. Individual trials 
were excluded as outliers if the product of consecutive differences in strategy were 
greater than 4,000 degrees2 in magnitude. This resulted in the omission of <0.1% of 
trials (19 out of 47,616).

Frequency-based analysis of adaptation. To represent the perturbation sequence and 
the learning curves for implicit, strategic and combined adaptation as a function of 
amplitude at different frequencies, we regressed these data onto sinusoids at each 
frequency up to the Nyquist limit (half the total number of trials). This allowed us 
to represent the perturbation sequence, implicit, strategic and combined learning 
curves as a function of amplitude and phase at different frequencies, as shown in 
Figs. 2b,d and 3a,b.

Note that the DC offset (frequency = 0) components of adaptation are not 
shown in Figs. 2 and 3; however, like the other perturbation-free frequencies, 
the DC offset also showed an antagonistic interaction and closely matched 
amplitudes between implicit and strategic learning. Because a DC offset does 
not change around its mean, the correlation coefficient between implicit and 
strategic learning time courses for the DC offset is undefined and thus cannot 
characterize their relationship. However, we can compute the correlation between 
the sign of the implicit DC offset and the sign of the strategic DC offset across 
individual participants as an analogous measure. In doing so, we found that 
the signs of the DC offset were strongly negatively correlated (r = −0.67, F(1, 
41) = 30.9, P <1 × 10−5 for the main five-frequency experiment), which indicates 
an antagonistic relationship. Furthermore, the amplitudes of the DC offset were 
strongly positively correlated across individual participants (r = 0.93, F(1, 41) = 266, 
P <1 × 10−18 for the main five-frequency experiment), which indicates a close 
match in the amplitudes of the implicit and strategic DC offsets, analogous to 
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the results shown in Fig. 3h. The additional seven-frequency and four-frequency 
experiments showed consistent trends, but with weaker statistical power (r = −0.29, 
F(1, 14) = 1.09, P = 0.32 for the seven-frequency experiment signs, and r = −0.34, 
F(1, 14) = 1.54, P = 0.24 for the four-frequency experiment signs; r = 0.98, F(1, 
14) = 227, P <1 × 10−8 for the seven-frequency experiment amplitudes, and r = 0.89, 
F(1, 14) = 43.9, P <1 × 10−4 for the four-frequency experiment amplitudes), and this 
is consistent with the smaller size of their datasets.

SEM analysis on implicit and strategic learning amplitudes. To analyze whether 
information flows from implicit learning to strategic learning versus from strategic 
learning to implicit learning, we conducted a SEM analysis on the amplitudes of 
perturbation-driven and perturbation-free implicit and strategic learning. This 
analysis compared different models of how information flows between multiple 
key variables of interest, where the parameters of the model corresponded to the 
strengths of the directional flows between variables, and the model was fit by 
minimizing the difference between observed and model-predicted covariance 
structures via maximum likelihood51,52. These models were fit using the sem 
function in the Lavaan package for R53. The strengths of the directional flows 
between variables (path coefficients) represent the response of the dependent 
variable to a unit change in an explanatory variable, while accounting for the 
other variables. We used a likelihood ratio test to test for a significant difference in 
likelihood between nested models; details are noted in the “Statistical tests“  
section below.

Analyzing the relationship between error and strategy levels. To increase the 
statistical power in our ability to analyze the relationship between error and 
strategy levels, we combined data from participants across three experiments 
(the main five-frequency experiment, along with an additional four-frequency 
experiment and seven-frequency experiment). In this analysis, we computed the 
r.m.s. levels of error and strategy for each participant and determined whether 
the effect of strategy was significantly positive when regressing error level onto 
strategy level. Since the four-frequency experiment was run only for 384 trials, 
we used the first 384 out of the 768 trials for the five-frequency and seven-
frequency experiments to match the trial numbers across the different experiments 
calculated. To assess this relationship between error and strategy while accounting 
for systematic mean differences across the three experiments, we performed two 
additional regression analyses: one in which we examined only the data from 
the main experiment (n = 41) and one in which we combined the data across 
experiments (n = 69), but included experiment as a covariate while assessing the 
significance of strategy level.

Temporal lag analysis of implicit and strategic learning time courses. To understand 
whether implicit learning corrections lag behind strategic learning or strategic 
learning corrections lag behind implicit learning at the low perturbation-free 
frequencies, we performed an analysis of their temporal lags. For each participant, 
we computed the cross-correlation function between implicit and strategy learning 
curves at the low-frequency perturbation-free frequencies by shifting the curves 
relative to each other at different lags (Fig. 5a) and calculating the correlation 
between the overlapping segments. We then examined each participant’s cross-
correlation function to find the lag at which the correlation was most negative (Fig. 
5b); that is, where the cancellation due to the antagonistic correction would be 
most effective. These optimal lags are shown in the histogram in Fig. 5c.

Simulation of interactions between low-noise and high-noise learning processes. To 
understand whether a difference in noise-levels (fidelity) between implicit (I) and 
strategic (S) learning could explain the interactions between implicit and strategic 
learning (as shown in Figs. 3, 4 and 5), we simulated two parallel error-correcting 
adaptive processes (Fig. 6a) with identical properties except for their noise levels.

This simulation is described by the equations below:

xS nþ 1ð Þ ¼ ASxS nð Þ þ BSe nð Þ þ ϵSðnþ 1Þ

xI nþ 1ð Þ ¼ AIxI nð Þ þ BIe nð Þ þ ϵIðnþ 1Þ

xcomb nþ 1ð Þ ¼ xS nþ 1ð Þ þ xI nþ 1ð Þ þ ϵoutðnþ 1Þ

e nþ 1ð Þ ¼ P nþ 1ð Þ � xcomb nþ 1ð Þ

where xS(n) and xI(n) represent the states of the processes at trial n, AS and AI 
represent their retention factors, BS and BI represent their learning rates, and εS(n) 
and εI(n) represent Gaussian noise that corrupts their states. xcomb(n) represents the 
combined output, which is corrupted by Gaussian noise, εout(n), P(n) represents 
the perturbation, and e(n) represents the error between them, which drives the 
individual processes.

The noise components εS(n), εI(n) and εout(n) are defined as follows:

ϵS nð Þ  N 0; kSBSe nð Þð Þ

ϵI nð Þ  N 0; kIBIe nð Þð Þ

ϵout nð Þ  Nð0; σÞ

The sizes of εS and εI scale with the sizes of the corrections made by the  
processes (kSBSe(n), kIBIe(n)). The scaling factor for each adaptive process  
(kS, kI) distinguishes the noise levels (fidelity) between the processes, and is  
the only feature that is asymmetric between these processes: 33% higher  
for one than the other (kS = 2.0, kI = 1.5). The size of the output noise (σ) was  
set to be 2.

To simulate individual differences in strategic and implicit learning amplitudes 
(we simulated n = 69, based on the total size of our dataset), we uniformly varied 
the learning rates of the two processes around a mean learning rate (B = 0.34) 
according to the following equations:

θi  Unifð�c; cÞ

BSi ¼ Bþ θi

BIi ¼ B� θi

Thus, the learning rate for one process was varied according to a uniform 
distribution (c = 0.16) centered around a mean learning rate (B = 0.34), and the 
corresponding learning rate for the other process was varied in a complementary 
fashion. Note that varying the learning rates in this way does not introduce any 
systematic differences in learning rate between the two simulated processes. The 
retention factor was kept the same between both processes and across individuals 
(AS = AI = 0.9).

Statistical tests. The data distribution was assumed to be normal unless otherwise 
indicated below, but this was not formally tested. Paired t-tests were used for the 
following comparisons: (1) perturbation-driven amplitudes versus perturbation-
free amplitudes (two-sided) for implicit, strategic and combined learning, 
where amplitudes were averaged across perturbation-driven frequencies for 
each participant and across perturbation-free frequencies for each participant 
(Fig. 2b,d); (2) combined versus implicit and strategy perturbation-driven 
amplitudes (two-sided), where amplitudes were averaged across perturbation-
driven frequencies for each participant (Fig. 3a); and (3) combined versus 
implicit and strategy perturbation-free amplitudes (two-sided), where amplitudes 
were averaged across perturbation-driven frequencies for each participant 
(Fig. 3b). One-sample t-tests were used to test the following comparisons: (1) 
whether the correlation between implicit and strategic learning across their time 
courses, calculated for each participant, is different from zero (two-sided) across 
participants for perturbation-driven frequencies (Fig. 3d) and for perturbation-
free frequencies (Fig. 3g,j,l); (2) whether the slope of amplitude versus frequency 
across perturbation-driven frequencies, calculated for each participant, is different 
from zero (two-sided) across participants for implicit and strategic learning 
(Fig. 3a); (3) whether the correlation between implicit and strategic learning 
amplitudes across low perturbation-free frequencies (1–16 cycles), calculated for 
each participant, is different from zero (two-sided) across participants (Fig. 3b); 
and (4) whether the relationship between error and strategy levels is significantly 
positive (one-sided). F-tests were used for the following comparisons: (1) whether 
the correlation between implicit and strategic r.m.s. amplitudes across individual 
participants is different from zero for perturbation-driven frequencies (Fig. 3e) 
and for low perturbation-free frequencies (1–16 cycles, Fig. 3h); and (2) whether 
the correlation between signs of implicit and strategic DC offsets across individual 
participants and between amplitudes of implicit and strategic DC offsets across 
individual participants is different from zero. A likelihood ratio test was used to 
compare the likelihoods across nested models in the SEM analysis (Fig. 4). In 
particular, we computed the likelihood ratio test statistic (Λ), that is, the ratio 
of likelihoods between two nested models, where the numerator represents the 
simpler of the two models. Under the null hypothesis (that the parameters are 
constrained, as represented by the simpler model), −2log(Λ) is asymptotically Chi-
squared distributed with degrees of freedom equal to the difference in degrees of 
freedom between the models (Wilk’s theorem). We can then compare the observed 
value of the statistic against what would be expected from this null distribution to 
compute a P value that represents how likely it would be to observe a result more 
extreme than the observed statistic under the null hypothesis. A permutation test 
was used to assess whether the maximally antagonistic alignment occurs at a lag 
that is different from zero for the temporal lag analysis (Fig. 5). This test computes 
the probability of the observed mean lag under the null distribution of mean lags 
that would be expected from a null hypothesis in which individual participant lags 
are randomly flipped in sign.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data generated and analyzed in the current study are available from the 
corresponding author upon reasonable request.
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Code availability
All analysis code is available from the corresponding author upon reasonable 
request.

References
	51.	Bollen, K. Structural Equations with Latent Variables  

(John Wiley, 1989).
	52.	Kline, R. B. Principles and Practice of Structural Equation Modeling  

(Guilford Publications, 2015).
	53.	Rosseel, Y. lavaan: an R package for structural equation modeling.  

J. Stat. Softw. 48, 1–36 (2012).

Acknowledgements
The authors thanks A. Brennan and L. Alhussein for helpful discussions. This work was 
supported by the National Institutes of Health (NIH) grants R01 AG041878 and R01 
NS105839 to M.A.S.

Author contributions
Y.R.M., S.W. and M.A.S. designed the experiments. Y.R.M. and M.A.S. analyzed the data 
and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-020-0600-3.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-020-0600-3.

Correspondence and requests for materials should be addressed to M.A.S.

Peer review information Nature Neuroscience thanks Joern Diedrichsen, Ned Jenkinson, 
and the other, anonymous, reviewer(s) for their contribution to the peer review of this 
work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Neuroscience | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-020-0600-3
https://doi.org/10.1038/s41593-020-0600-3
https://doi.org/10.1038/s41593-020-0600-3
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience


ArticlesNaTurE NEuroScIEncE

Extended Data Fig. 1 | The presence of time lag between adaptive responses is necessary to suppress the combined learning response at the 
perturbation-free frequencies in a two-process linear system. Left panel: Error amplitude resulting from the combination of both processes as a function 
of the relative noise level between processes. Right panel: Correlation between time series of processes when the processes are shifted from each other by 
−1, 0, or 1 trial. Black line indicates Lag-0 correlation. Blue line indicates Lag-1 correlation, that is corr(x2(n-1), x1(n)). Red line indicates Lead-1 correlation, 
that is corr(x2(n + 1), vs x1(n)). Thus the blue line being below the black & red indicates that x2 lags x1.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Simulation of two processes using same noise levels between processes and independently distributed learning rate parameters 
across participants. This simulation removes both the difference in noise levels and the across-participant learning rate anti-correlation from the 
simulation shown in Fig. 6 in the main paper. A_1=0.9, B_1=0.34+x_i, eps_1=1.75, A_2=0.9, B_2=0.34+y_i, eps_2=1.75, where x_i, y_i ~ Unif(−0.16, 0.16). 
Panels analogous to those in Fig. 6b, c in the manuscript. Upper left: simulated perturbation-driven learning curves for one example, simulated individual. 
Upper right: Histogram of simulated (n=69) within-participant correlations between perturbation-driven strategic and implicit learning curves. Lower 
left: analogous to upper left, but for perturbation-free learning curves. Lower right: analogous to upper right, but for perturbation-free learning curves. 
Please note that Supplementary Fig 1b on the following page presents panels analogous to those in Fig. 6d-f in the manuscript. Fig E1b. Simulation of two 
processes using same noise levels between processes and independently distributed learning rate parameters across participants (Like Supplementary 
Fig. 1a). This removes both the difference in noise levels and the across-participant learning rate anti-correlation from the simulation shown in Fig. 6 in the 
main paper. A_1=0.9, B_1=0.34+x_i, eps_1=1.75, A_2=0.9, B_2=0.34+y_i, eps_2=1.75, where x_i, y_i ~ Unif(−0.16, 0.16). Panels analogous to those in  
Fig. 6d–f in the manuscript. We performed 100 runs of the simulation, each with n=69. Top 2-by-2 panels: inter-individual relationships among 
perturbation-driven & perturbation-free strategic and implicit learning from one run of the simulation. Bottom left: log-likelihoods from the SEM analysis 
across 100 simulations (error bars indicate 95% CI, calculated across 100 simulations). Bottom right: histogram of lags from one run of the simulation. 
Text on histogram indicates the fraction of the 100 simulation runs for which the mean lag was greater than 0.
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Extended Data Fig. 3 | Simulation of two processes using same noise levels between processes and anti-correlated learning rate parameters across 
participants. This simulation removes the difference in noise levels from the simulation shown in the main paper. A_1 = 0.9, B_1 = 0.34 + x_i, eps_1 = 1.75, 
A_2 = 0.9, B_2 = 0.34-x_i, eps_2 = 1.75, where x_i ~ Unif(−0.16, 0.16). Panels analogous to those of Supplementary Fig. 1b and Fig. 6d–f in the main paper.
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Extended Data Fig. 4 | Simulation of two processes using different noise levels between processes and independently distributed learning rate 
parameters across participants. This simulation removes the across-participant learning rate anti-correlation from the simulation shown in the main 
paper. A_1 = 0.9, B_1 = 0.34 + x_i, eps_1 = 1.5, A_2 = 0.9, B_2 = 0.34 + y_i, eps_2 = 2, where x_i, y_i ~ Unif(−0.16, 0.16). Panels analogous to those of 
Supplementary Fig. 2, 1b, and Fig. 6d–f in the main paper.
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