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SUMMARY

The motor commands required to control voluntary
movements under various environmental conditions
may be formed by adaptively combining a fixed set
of motor primitives. Since this motor output must
contend with state-dependent physical dynamics
during movement, these primitives are thought to
depend on the position and velocity of motion. Using
a recently developed ‘‘error-clamp’’ technique, we
measured the fine temporal structure of changes in
motor output during adaptation. Interestingly, these
measurements reveal that motor primitives echo a
key feature of the neural coding of limb motion—
correlated tuning to position and velocity. We show
that this correlated tuning explains why initial stages
of motor learning are often rapid and stereotyped,
whereas later stages are slower and stimulus
specific. With our new understanding of these primi-
tives, we design dynamic environments that are
intrinsically the easiest or most difficult to learn, sug-
gesting a theoretical basis for the rational design of
improved procedures for motor training and rehabil-
itation.

INTRODUCTION

Given the high dimensionality of sensory input to the nervous

system, tractable interaction with our environment requires

efficient representation of sensory information and response

planning (Atick, 1992; Barlow, 2001; Smith and Lewicki, 2006).

One mechanism for obtaining this efficiency is the simultaneous

encoding of multiple features of the environment in neuronal

firing patterns (Barlow and Foldiak, 1989). The encoding of infor-

mation about limb motion in the nervous system is one such

example of multifeatured coding. For example, most neurons

in primary motor cortex respond to both the position and velocity

of voluntary limb movements (Ashe and Georgopoulos, 1994;

Paninski et al., 2004; Wang et al., 2007), and their preferred

directions for tuning to position and velocity are positively corre-

lated with one another (Paninski et al., 2004; Wang et al., 2007).

Likewise, muscle spindle afferents display positively correlated

responses to position and velocity of muscle stretch by tran-
siently increasing their firing rates while being stretched, and

sustaining a partially elevated static firing rate when that stretch

is subsequently maintained (Edin and Vallbo, 1990; Matthews,

1933; Prochazka, 1999). The representation of position and

velocity state variables throughout the nervous system in

sensory receptors (Edin and Vallbo, 1990; Matthews, 1933;

Prochazka, 1999), sensorimotor association areas (Ashe and

Georgopoulos, 1994), the cerebellum (Shidara et al., 1993),

and the motor cortex (Ashe and Georgopoulos, 1994; Paninski

et al., 2004; Wang et al., 2007) (whether they be in muscle, joint,

or extrinsic coordinates) may result from the fact that position

and velocity are the state variables for the physics of both

intrinsic limb motion and environmental interactions (Hollerbach

and Flash, 1982; Hwang et al., 2006; Mussa-Ivaldi and Bizzi,

2000; Shadmehr and Mussa-Ivaldi, 1994), which provide a

complete characterization of the motion state of the body.

These dynamics of body/environment interactions are thought

to be stored in internal models (Bhushan and Shadmehr, 1999;

Diedrichsen et al., 2007; Kawato, 1999; Lackner and Dizio,

1994; Shadmehr and Mussa-Ivaldi, 1994; Shidara et al., 1993;

Wagner and Smith, 2008; Wolpert et al., 1998) that provide

neural representations of these dynamics. Two types of internal

models are believed to coexist in the motor system. An inverse-

dynamics model directly maps desired motion to the motor

command required to achieve it (Shadmehr and Mussa-Ivaldi,

1994; Shidara et al., 1993), while a forward model predicts the

sensory consequences of a motor command (Diedrichsen

et al., 2007; Kawato, 1999; Miall et al., 1993; Wolpert and Miall,

1996). Internal models with accurate characterizations of these

dynamics allow us to make accurate movements in our environ-

ment. In order to maintain accuracy, both types of these internal

models (inverse-dynamics and forward) must be able to adapt

when fatigue, injury, or novel loads change the dynamics of the

motor system (Wolpert and Ghahramani, 2000). It has been

hypothesized that such adaptation might be facilitated by an

internal model representation consisting of a linear combination

of state-dependent motor primitives (Donchin et al., 2003;

Mussa-Ivaldi and Bizzi, 2000; Poggio and Bizzi, 2004; Thorough-

man and Shadmehr, 2000), and that the properties of these prim-

itives can be identified by studying how motor learning in one

context is generalized to another (Conditt et al., 1997; Conditt

and Mussa-Ivaldi, 1999; Donchin et al., 2003; Gandolfo et al.,

1996; Goodbody and Wolpert, 1998; Krakauer et al., 1999,

2000; Poggio and Bizzi, 2004; Shadmehr and Mussa-Ivaldi,

1994; Thoroughman and Shadmehr, 2000). Since both types of
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(A) Task diagram. Subjects were instructed to

grasp the handle of a robotic arm and make

arm-reaching movements in the 90� and 270�

directions. The position of the subject’s hand

was displayed by a cursor on the screen. Subjects

were asked to move the cursor into targets that

appeared within 450–550 ms.

(B) Illustration of an FF trial, where lateral force

applied by the robot is proportional to the move-

ment speed. Note that this is the viscous curl-field

represented by Equation 1 (and K = 0N/m,

B = ±15Ns/m). Movements in the negative y direc-

tion will generate perturbative forces in the positive

x direction.

(C) Illustration of an error-clamp probe trial. As

subjects make a movement toward the target

(green circle), the robotic arm applies a damped

spring force (blue arrows) to the subject’s hand

when any lateral deviation from the midline (solid

black line) occurs. This effectively restricts the

subjects’ movements to the confines of a virtual

‘‘channel’’ (bounded by black dotted lines; 99%

of lateral displacements are 1.2 mm or less).
internal models may approximate physical dynamics by

mapping between motor commands and the resulting limb

motion, these models can be characterized by dependence on

motion state, i.e., the effect of a particular motor activation is

largely determined by the current position and velocity of motion,

as dictated by the physical mechanics of the limb. It is therefore

not surprising that the motor system learns to associate external

force perturbations with the underlying state of the limb rather

than with the times at which they occur (Conditt et al., 1997;

Conditt and Mussa-Ivaldi, 1999). Even when discrete actions

like button presses are learned during limb movements, they

are consistently associated with motion state rather than time

(Diedrichsen et al., 2007).

Given (1) the pervasive coupling between the encoding of

position and velocity in neural representations of motion, and

(2) that adaptive internal models critically depend on these state

variables, surprisingly little attention has been given to how inter-

actions between state variables might influence motor learning

(Bays et al., 2005; Hwang et al., 2003). Here we studied how

the temporal patterns of motor output evolve during motor adap-

tation, and in particular, how these temporal patterns depend on

motion state. We hypothesized that the neural processing of

position and velocity signals might lead to specific patterns of

state-dependent crosstalk in motor adaptation, determine which

types of dynamics are easy and difficult to learn, and dictate the

patterns of interference expressed between adaptations to

different types of dynamics.

RESULTS

Progression of Motor Adaptation
in a Velocity-Dependent Force-Field
We hypothesized that the evolution of motor output during adap-

tation might provide insight into the nature of the computational

basis elements underlying this type of learning. In Experiment 1,
576 Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc.
we examined this evolution when novel environmental dynamics

were imposed on voluntary reaching arm movements. Subjects

were trained to make straight, 100 mm, 500 ms point-to-point

movements in the horizontal plane while grasping a manipula-

ndum (Figure 1A). As subjects made reaching movements, we

introduced two novel velocity-dependent force-field (FF) envi-

ronments in which the manipulandum produced perturbing

forces perpendicular to the subjects’ reach motion that were

proportional in magnitude to the reach velocity (Figure 1B).

These clockwise (CW) and counterclockwise (CCW) FFs initially

perturb movements off-course, but with practice, subjects grad-

ually learn to make straighter movements by producing forces to

counteract the FF environment (Shadmehr and Mussa-Ivaldi,

1994). Although it is well known that this adaptation proceeds

over the course of 100–400 trials (Shadmehr and Mussa-Ivaldi,

1994; Smith et al., 2006; Smith and Shadmehr, 2005) and is

dependent on the cerebellum (Smith and Shadmehr, 2005), it

has been a challenge to measure how the motor output evolves

over the course of adaptation. The main difficulty here is that

these 500 ms reaching movements are not entirely ballistic—

after 150–250 ms, subjects produce substantial corrective

feedback responses to compensate for perturbation-induced

deviations in their movements (Cordo, 1987, 1990; Shadmehr

and Brashers-Krug, 1997; Tseng et al., 2007; Wagner and Smith,

2008). These responses mask the learning-related feedforward

changes in motor output because the net motor output, which

can be directly measured, reflects both feedforward changes

and feedback responses. Here we employed error-clamp probe

trials (Bays and Wolpert, 2006; Joiner and Smith, 2008; Scheidt

et al., 2000; Smith et al., 2006; Wagner and Smith, 2008) to

unmask these learning-related changes in motor output. During

these 100 mm long probe trials, 99% of lateral kinematic errors

are clamped to 1.2 mm or less so that the feedback responses

to these errors can be effectively eliminated and adaptive

changes in motor output can be directly measured (Figure 1C).
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We pseudorandomly interspersed these probe trials among FF

training trials to obtain estimates of how subjects’ motor outputs

progressed.

Interestingly, over the course of training, we observed a stereo-

typed evolution in not only the magnitude but also the shape of

the force patterns that subjects learned to produce in order to

counteract the effects of the FFs they experienced (Figure 2A).

Early in training (i.e., within the first 20 trials), the force pattern

contains a transient peak in the middle of the movement, appro-

priate for the transient nature of a velocity-dependent FF.

However, seemingly inappropriate for this perturbation, the force

pattern also contains a static ‘‘tail’’ at movement termination

(Figure 2B). As the training progresses, the perturbation-appro-

priate transient response gradually increases, while the inappro-

priate static response diminishes. After 220–240 trials, the force

pattern becomes almost entirely transient (Figure 2C). Closer

observation reveals that the shape of the early-learning force

output strongly resembles a muscle spindle firing pattern that

is responding positively to both the velocity of stretch (resulting

in the transient peak) and amount of stretch (leading to the static

tail) (Edin and Vallbo, 1990; Matthews, 1933; Prochazka, 1999).

With this joint dependence in mind, we find that linear regression
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Figure 2. Motor Adaptation to a Velocity-

Dependent FF Exhibits Position and Velocity

Dependence

(A) Progression of lateral force output during the

learning of a velocity-dependent FF. Subjects

needed to produce the green, desired force pattern

to move in a straight line. Each force pattern shown

is the average of the learned force patterns

measured for each subject in a 20-trial bin.

(B and C) The average force patterns (gray)

measured during the first (B) or last (C) bin of

learning can be well-approximated with a curve

(black) that contains significant contributions

from position (cyan) and velocity (magenta). The

lateral displacements of the FF trials within each

bin showed reversal of error just 700 ms after

movement onset (highlighted regions in bottom

graphs), but the end-movement force persisted.

(D) The gains associated with linear regressions of

the force patterns shown in (A) onto the corre-

sponding position and velocity traces are plotted

in a position/velocity gain-space (black dots).

Note the deviation of this gain-space trajectory

into the 1st quadrant. The red square on the y axis

at (0,1) represents the velocity-dependent FF goal.

of the average early and late force

patterns shown in Figures 2B and 2C

onto the shapes of the corresponding

average position and velocity traces

produces surprisingly good fits (early:

R2 = 0.93; late: R2 = 0.98).

These results suggest that the learned

force pattern at any point during training

can be efficiently represented using a

simple linear combination of position

and velocity signals, multiplied by stiff-

ness (K) and viscosity (B) gains, respectively. The progression

of force patterns can then be represented as a progression of

points in the 2D space of stiffness and viscosity gains (Figure 2D).

In this gain-space, the ‘‘learning trajectory’’ evolves toward a

goal of [0,1], corresponding to complete learning of a velocity-

dependent (viscous) FF. However, instead of progressing

directly toward this goal via specific increases in the viscosity

gain, i.e., climbing the y axis in Figure 2D, the learning trajectory

deviates toward the center of the 1st quadrant (representing

positive contributions from both position and velocity). The

trajectory then gradually reduces its inappropriate position

dependence as the velocity dependence continues to grow.

Why do the force patterns produced early in training for

a velocity-dependent perturbation exhibit substantial, inappro-

priate position dependence while force patterns produced late

in training do not? In other words, why does end-movement

force persist early in training? One possibility is that this end-

movement ‘‘force-tail’’ reflects adaptation to end-movement

kinematic errors experienced on FF trials. If such errors persisted

at movement termination, they might explain the persistent

force-tail. However, as shown in the bottom graph of Figure 2B,

these errors do not persist (see Figure S3 available online for
Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc. 577
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Figure 3. Viscoelastic Primitive Model

(A) Schematic of the viscoelastic primitive model. Subjects make an arm-reaching movement in a perturbative FF environment (red arrows) toward a green target.

The motor learning primitives (Si, gray dots) process the position and velocity of that movement with different gains, as indicated by their locations in position/

velocity gain-space. Each primitive’s contribution is weighted by some value wi, and is then summed with the contributions of the other primitives to find the

overall motor output (force patterns from Figure 2A). Each primitive’s weight is modified by a simple learning rule proportional to the cosine of the angle between

the error and primitive vectors. Early in learning, the majority of the primitives make substantial positive contributions to the motor output (red- or blue-colored

dots, ‘‘Early’’ bottom panel). As a result, the learning step (green arrow) is biased more toward the direction of maximal variance for the primitive distribution than

the motor error (black arrow). However, later in learning, the number of primitives that can help to reduce the error is much smaller (many more grayish primitives,

‘‘Late’’ bottom panel), leading to a learning that is slower but more strongly aligned with the motor error.

(B) Effect of distribution anisotropy on learning behavior. Faded trajectories are for learning of opposite FFs.

(C) Simulated learning trajectories for different FFs in position/velocity gain-space, mediated by the motor primitives (gray dots).
analysis of persistent end-movement kinematic error on the very

first FF trial). Instead, lateral errors induced by the FF perturba-

tion go away just 700 ms after movement onset, whereas the

force-tail persists well beyond 1200 ms.

Viscoelastic Primitive Model
An alternative explanation for the inappropriate position depen-

dence is that this behavior could emerge if the motor primitives

responsible for motor adaptation exhibited a joint dependence

on position and velocity, which is characteristic of neural repre-

sentations of limb motion (Ashe and Georgopoulos, 1994; Edin

and Vallbo, 1990; Matthews, 1933; Paninski et al., 2004; Pro-

chazka, 1999; Shidara et al., 1993; Wang et al., 2007). Such a

dependence on both position and velocity might generate cross-

talk between position-dependent and velocity-dependent adap-

tation, providing an explanation for the inappropriate position

dependence observed.
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To explore this hypothesis, we constructed a simple model

simulating trial-to-trial adaptation (i.e., the viscoelastic primitive

model) where n motor primitives in a population S˛Rn32 receive

as inputs the time-varying position and velocity traces of the

previous movement. The weighted outputs of these primitives

(i.e., time-varying force patterns) are combined to obtain net

motor output for the next movement. More specifically, each

primitive element simultaneously responds to the position and

velocity of a movement with a specific gain for each component,

denoted by ki and bi for the ith primitive, and can thus be repre-

sented as a point in position/velocity gain-space (Si = ½ki;bi�, Fig-

ure 3A). Note that the distribution of these points reflects the

biased joint dependence of the motor primitives on position

and velocity in our model; i.e., if the ith primitive responds posi-

tively or negatively to position, it will also very likely respond to

velocity in the same manner. The population of these primitives

is modified by a weighting vector w˛Rn31, leading to a net motor

output of:
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y =
Xn

i = 1

ST
i wi = STw:

Thus, if the desired motor output goal is y
�˛R231, motor (or

force) error can be expressed as y
� � y, the difference between

the goal and net motor output (or the difference between the

desired and actual force outputs). A standard gradient descent

learning rule updates the weights associated with each learning

element to minimize the motor output error. This update rule can

be expressed as Dwi = hSiðy
� � yÞ= hjSij,jy

� � yj,cosðqy��y�
qSi
Þ, where h is a learning constant much smaller than 1. This

learning rule represents the projection of the error vector onto

each primitive (see Supplemental Data for derivation). The

maximal weight change for a given primitive will occur when

the error vector and that primitive are aligned with each other

(i.e., the angle of difference [AOD] between the two vectors is

0�), while no weight update will occur when the two vectors are

orthogonal (i.e., AOD = 90�). This is schematically illustrated in

the bottom right panels of Figure 3A. The motor primitives are de-

picted as having a zero-mean distribution, with a positive corre-

lation between position and velocity gains. The location of each

dot in these panels signifies the gain-space representation of

a primitive, and the color signifies the cosine of the AOD for

that primitive, which is proportional to its weight change. Early

in learning, most of the primitive elements display large nonzero

cosines of the AOD, shown as colored dots. Because the

majority of these cosines are large, most primitives contribute

substantially to initial learning. As a result, the initial learning

step is composed of contributions from nearly the entire popula-

tion and reflects the distribution of primitives more strongly than

motor error (i.e., the learning step is taken largely in the direction

where the distribution variance is maximal). In contrast, later in

learning, a much smaller and more specific fraction of primitive

elements makes substantial contributions to the learning

process because there are now far fewer primitives aligned

with the motor error (i.e., the learning step is now in the direction

where distribution variance is minimal). This development leads

to slower learning that more specifically addresses motor errors.

Overall, this model predicts that early adaptation should largely

reflect the properties of the motor primitives, whereas late adap-

tation should reflect task-specific goals.

In our model, the statistical distribution of these primitives

plays a crucial role in determining the dynamics of learning. If

this distribution is arbitrarily narrow, i.e., a line distribution, then

every primitive element is just a scaled version of every other

primitive, meaning that the only difference in their responses to

the position and velocity of an arm movement will be the magni-

tudes—the ratios remain the same. Therefore, during learning,

primitives will display weight changes such that the resultant

learning is confined to the direction of maximal variance. As

training progresses, the rate of learning decreases as the

AODs approach 90�, as shown in Figure 3B. For a wider distribu-

tion, a large fraction of the primitives will initially maintain large

nonzero weight changes, resulting in a bias of the initial learning

direction toward the direction of maximal variance. However, as

learning continues, the weight changes will become more

specific, such that primitives more closely aligned with the goal

will undergo weight increases, while primitives farther away will
experience weight reductions, leading to a rotation of the

learning direction toward the learning goal in line with the error

vector. As the width of the distribution increases even more,

this redirection occurs earlier and more gradually (Figure 3B).

In the extreme case of an unbiased distribution, the learning

trajectory will follow the error vector directly to the goal. Note

that the learning trajectories produced by distributions of inter-

mediate width capture the essential features of the learning

behavior observed in Experiment 1. In particular, initial learning

of a velocity-dependent perturbation manifests a position-

dependent component, whereas late learning veers back toward

the goal, reducing this position-dependent component.

Model Predictions Based on a Correlated Motor
Primitive Distribution
Several key predictions arise from considering how learning

might depend on the distribution of motor primitives. First, if

subjects are exposed to a position-dependent perturbation,

this model predicts that while initial learning will exhibit an inap-

propriate velocity-dependent cross-adaptation, late learning will

substantially reflect purely position-dependent learning (Fig-

ure 3C, blue lines). Second, the model predicts that the initial

learning of position-dependent and velocity-dependent force

perturbations will be quite similar to one another, despite the

fact that these two perturbations are essentially orthogonal (the

correlation coefficient between average position and velocity

traces—and thus the correlation between the force patterns

associated with the position-dependent and velocity-dependent

perturbations—over a 2.25 s window, centered around the peak

speed point, is r = 0.01, indicating near-orthogonality). We test

these first two predictions in Experiment 2.

The viscoelastic primitive model also predicts that exposure to

an FF for which the position and velocity dependencies are posi-

tively correlated (i.e., represented as goals in the first and third

quadrants in position/velocity gain-space; Figure 3C, green

lines) would result in an especially close correspondence

between the error vector and the direction of maximal variance

for the primitive distribution. This would yield small AODs that

would maximize the updates of the weights associated with

each primitive and produce fast adaptation. This adaptation

would be rapid and closely directed toward the FF learning

goal, leading to learned force patterns that are both large in

magnitude and very similar in shape to the perturbing FF. In

contrast, learning an FF for which the position and velocity

dependence are negatively correlated would result in a substan-

tially orthogonal relationship between the motor primitive distri-

bution and error, resulting in slow adaptation (Figure 3C, purple

lines). Nonetheless, the learning here would also be very closely

directed toward the FF goal, again leading to learned force

patterns very similar in shape to the perturbing FF (see Supple-

mental Data for the derivation of these FFs). We test these

predictions in Experiments 3 and 4.

Since this viscoelastic primitive model is linear with respect to

motion state, the positive-combination (PC) and negative-

combination (NC) directions can be thought of as the eigendirec-

tions of the learning space. As such, any viscoelastic dynamics

can be broken down into constituent PC and NC components,

and the resulting adaptation can be predicted by summing these
Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc. 579
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Figure 4. Alternative Learning Algorithms

Gray dots represent sample primitives, each row utilizes the same learning

rule, each column assumes the same general primitive distribution (i.e., posi-

tively correlated or unbiased), and squares are FF goals. A first-order gradient

descent learning rule (A), a cocontraction learning rule where weight changes

can only be positive (B), and a Bayesian learning framework (C) all yield

comparable behavioral predictions. A ‘‘pure’’ second-order learning rule

does not yield comparable predictions (D), whereas a hybrid rule that deter-

mines learning steps based on both first-order and second-order derivatives
580 Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc.
component-specific adaptations. Note that adaptation to the PC

component is predicted to be much faster than adaptation to the

NC component. Therefore, adaptation to any FF with a compo-

nent in the PC direction would include a rapid component, and

would be biased toward this PC direction. Thus, initial adaptation

to purely position-dependent and purely velocity-dependent FFs

(which include components in the PC direction) are predicted to

be rapid and stereotyped, as indicated by the similarity between

initial learning directions for these FFs (Figure 3C). In contrast,

initial adaptation to a NC FF (which lacks a PC component) will

be slower and in an orthogonal direction in position/velocity

gain-space when compared to the other three types of FFs, as

shown in Figure 3C.

The viscoelastic primitive model also predicts that interference

from adaptation to position-dependent FFs onto adaptation to

velocity-dependent FFs (and vice versa) will not be monolithic,

but instead will depend on the transition required between the

previously learned and current dynamics, as illustrated in Figures

7A and 7B. For example, adaptation to a CW velocity-dependent

FF (+V) following exposure to a CCW position-dependent FF

(�P) requires both unlearning the�P FF and learning the +V, cor-

responding to a change in dynamics of D = [+P, +V]. On the other

hand, adaptation to a �V FF after exposure to a �P FF requires

a learning change of D = [+P,�V]. Since the D = [+P, +V] learning

changes for the �P/+V transition are positively correlated and

aligned with the direction of maximal variance for the primitive

distribution, while the D = [+P,�V] changes are negatively corre-

lated, the �P/+V learning should occur at a much more rapid

rate than the �P/�V learning, according to the viscoelastic

primitive model (Figures 7A and 7B). These predictions are

tested in Experiment 5.

The Effects of Different Learning Rules
A key feature of this model is that a variety of learning rules yield

very similar results. In Figure 3, we used a simple gradient

descent learning rule in which the weights associated with motor

primitives opposing the error grow, while weights associated

with motor primitives aggravating the error are decreased.

However, recent work suggests that motor activation can

increase, albeit asymmetrically, in both agonist and antagonist

directions in response to errors as a mechanism for regulating

cocontraction (Franklin et al., 2008; Milner and Franklin, 2005).

We find that incorporating this learning rule into the viscoelastic

primitive model gives essentially identical results to the gradient

descent learning rule for the patterns of net motor output

(compare Figure 4B with Figure 4A). A Bayesian approach

also produces very similar behavior (Figure 4C). In a Bayesian

framework, the net motor output at trial n+1 (i.e., the posterior

distribution) is a combination of the net motor output at trial n

(prior distribution) with the learning goal (state measurement).

The probability distributions that characterize the certainty of

the prior distribution and state measurement determine how

(e.g., second-order gradient descent) produces predictions that are partially

comparable (E). When an unbiased distribution is assumed, every learning

rule will yield behavioral predictions not seen in the experimental evidence.

The ellipses in the Bayesian learner framework (B) indicate the prior distribution

at each time step.
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Figure 5. Single-Trial Learning for Different

FFs

(A) Average learned force pattern (blue) after a

single trial of exposure to a position-dependent

FF. The force pattern cannot be fully explained

by a fit to just position (gray curve); instead, fitting

to both the position (cyan) and velocity (magenta)

traces of the arm movements independently leads

to a significantly closer fit (black curve).

(B) Learned force pattern after a single trial of

learning a velocity-dependent FF. Again, the force

pattern cannot be fully explained by a fit to just

velocity (gray curve); instead, fitting to both the

velocity (magenta) and position (cyan) traces of the

arm movements independently leads to a closer

fit (black curve).

(C) Learned force patterns after a single trial of ex-

posure to either a PC (green) or an NC FF (purple).

For these combination FFs, the FF-specific fit

regresses the force patterns onto the shape of

the respective perturbing FF (gray).

(D) Position/velocity dependence of single-trial

learning. The curved arrows represent the amount

of misalignment between the learned force

patterns (black dots, solid lines) and the FF direc-

tions (dotted lines). The inset displays the amount

of learning after a single trial of exposure to the

various FF environments. Error ellipses represent

SEM. Colors correspond to different FFs.
these two ‘‘inputs’’ are combined to give the posterior estimate.

In our model, if the positively correlated population of primitives

serves as the prior distribution, as depicted by the distribution

ellipses in Figure 4C, then we achieve essentially the same

adaptive behavior as modeled by the gradient descent and

cocontraction-based learning rules (see Supplemental Data for

specifics of these learning rule implementations).

It is important to note, however, that higher-order learning

rules that depend on higher-order derivatives of the weights

with respect to motor errors could in theory generate patterns

of motor output that effectively compensate for the learning

element distribution. Since such higher-order learning schemes

(Battiti, 1992) can produce output that is independent of this

distribution, they would not reproduce the predictions shown

in Figure 3, as seen in Figure 4D. Hybrid learning rules that com-

bine first-order and higher-order learning rules (Battiti, 1992) will

predict behavior that is partially comparable (Figure 4E), but will

do so specifically because of the partial dependence on the first-

order learning rule, which is sensitive to the primitive distribution.

High levels of noise are pervasive in the nervous system (Faisal

et al., 2008), and such noise limits the computational power of

neural networks (Maass and Orponen, 1998). Therefore, it may

be difficult to implement learning schemes that depend on

higher-order derivatives because the accurate estimation of

these derivatives is computationally expensive (Battiti, 1992)

and sensitive to noise. This underscores the importance of the

distribution of learning elements as the key feature in our model

and, in particular, the positive correlation between the responses

of these elements to position and velocity. Learning rules that are

influenced by this correlation predict patterns of motor output

consistent with the simulations shown in Figures 3 and 4A–4C.
Early Learning for Position- and Velocity-Dependent FFs
In Experiment 2, we examined the force output patterns after

just a single trial of exposure to a position-dependent or a

velocity-dependent perturbation. After an error-clamp probe

trial was used to measure a baseline force pattern, subjects

were exposed to a single trial of either a CW or CCW position-

dependent or velocity-dependent FF followed by a second

probe trial. We attributed the difference between the force

patterns measured in these two probe trials (Figures 5A and

5B) to the motor adaptation resulting from the single-trial FF

exposure. We found that the learning-induced changes in force

production resulting from both single-state FFs show clear

evidence of positively correlated dependence on position and

velocity. For the position-dependent perturbation (Figure 5A),

the learning-related force pattern cannot be fully explained by

position alone. Instead, this force pattern is significantly depen-

dent on both position and velocity (p < 10�12 in both cases; R2 =

0.72 for position alone [gray curve], partial R2 for velocity = 0.85,

R2 = 0.96 when both position and velocity are included in the

regression [black curve]). Correspondingly, for the velocity-

dependent perturbation (Figure 5B), we found this learning-

related force pattern to be significantly dependent on both

velocity and position (p < 10�12 in both cases; R2 = 0.60 for

velocity alone [gray curve], partial R2 for position = 0.56, R2 =

0.85 when both velocity and position are included in the regres-

sion [black curve]). Note that like the data in Figure 2, this posi-

tion-dependent component cannot be explained by persistent

lateral kinematic errors (Figure S3).

Interestingly, the crosstalk between position- and velocity-

dependent adaptation is strong enough to make the learned

force patterns that result from a single-trial position-dependent
Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc. 581
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Figure 6. Extended LearningforDifferentFFs

(A) Model-predicted learning curves for different

FFs.

(B) Model-predicted learning trajectories (colored

curves) in position/ velocity gain-space as medi-

ated by the motor primitives (gray dots). Learning

is directed toward the FF goals (squares, force

patterns).

(C) Experimental learning curves for different FFs.

Each data point represents the average learning

across subjects within 20-trial bins. The x coordi-

nates of the data points are the average locations

of error-clamp probe trials within each bin

(maximum standard error of these average loca-

tions is 1.3). The velocity-dependent, position-

dependent, and NC curves have one, two, and

three trial offsets, respectively, to facilitate viewing

of the error bars, which represent standard errors.

The inset displays the averaged learning during the

second half of FF exposure (trials 81–160).

(D) Experimental learning trajectories (solid lines)

in position/velocity gain-space. Note the similarity

to the model-predicted pattern show in (B). Curved

arrows show the misalignment between the

single-trial learning direction (dash-dot lines) and

the FF direction (dotted lines). Each black dot

represents the force output during a 20-trial bin,

while the yellow stars denote the single-trial

learning shown in Figure 3D.
perturbation and those from a single-trial velocity-dependent

perturbation highly correlated with one another (r = 0.81), even

though the temporal profiles of the force perturbations inducing

them are essentially orthogonal (r = 0.01 between the two pertur-

bations). This reflects the similar initial directions of position-

dependent and velocity-dependent learning trajectories, as

shown in Figures 3 and 4A–4C, despite the learning goals being

90� apart in position/velocity gain-space.

Early Learning for Combination FFs
In Experiment 3, we used the same probe/FF/probe paradigm as

in Experiment 2 to measure the single-trial learning associated

with combination FFs having either a positively correlated

dependence on position and velocity, like the representation of

motion state in motor cortex and muscle spindle afferents, or a

negatively correlated dependence on those two states. The

viscoelastic primitive model predicts the fastest and slowest

adaptation to these FFs. However, it also predicts that adapta-

tion to both of these FFs should be essentially free of cross-

talk—i.e., the direction of learning in position/velocity gain-space

should be closely aligned with the FF perturbation directions. We

found that single-trial exposure to both of these combination FFs

produces learned force patterns that are not only composed of

significant position and velocity contributions, but are also very

similar in shape to the associated FF perturbations (Figure 5C;

PC FF: partial R2 for position = 0.79, partial R2 for velocity = 0.78,

R2 = 0.88 when both position and velocity are included in the

regression as independent variables [black curve], R2 = 0.87

when the learned force pattern is regressed onto the shape of

the PC FF [gray curve], p < 10�12 in all cases; NC FF: partial R2

for position = 0.68, partial R2 for velocity = 0.25, R2 = 0.71

when both position and velocity are included in the regression
as independent variables [black curve], R2 = 0.70 when the

learned force pattern is regressed onto the shape of the NC FF

[gray curve], p < 10�12 in all cases). Figure 5D shows a represen-

tation of the similarity between the learned force outputs and the

shapes of the perturbing FFs. Here the curved arrows, which

represent the misalignments of learned force patterns with the

learning goals, are much smaller for the combination FFs than

they are for the single-state FFs.

Perhaps the most striking feature of the force patterns shown

in Figure 5C is that the PC FF induces much greater learning

than the NC FF. To quantify the magnitude of learning for both

FFs, we projected the gain-space representation of the force

patterns onto the corresponding FF directions (Figure 5D, see

Experimental Procedures). We found a significant difference

between groups (one-way ANOVA, F3,74 = 12.6, p = 9.9 3

10�7). Single-trial exposure to the PC FF produced 3-fold greater

adaptation than exposure to the NC FF. PC adaptation was

significantly greater than for all other FFs (PC/Position: p =

0.030, PC/Velocity: p = 0.022, PC/NC: p = 2.0 3 10�8, one-sided

unpaired t test), whereas the NC adaptation was significantly

less than for all other FFs (NC/Position: p = 5.2 3 10�4, NC/

Velocity: p = 2.5 3 10�4, one-sided unpaired t test). Double-trial

learning data (obtained using a probe/FF/FF/probe paradigm) for

all four FFs were also consistent with the single-trial learning data

and the predictions made by the viscoelastic primitive model

(Figure S6).

Extended Learning for Different Types of Dynamics
In Experiment 4, we exposed additional groups of subjects to

extended periods (160 trials) of the CW and CCW position-

dependent, PC, and NC FFs to compare the associated motor

adaptation with that of the velocity-dependent FF. Figure 6C
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depicts the learning curves for each of these FFs (adaptation

index is calculated in the same way as in Experiment 3), and

the inset shows the adaptation averaged over the latter half of

training (trials 81–160). As in the single-trial learning experiments,

we found a significant difference between groups (one-way

ANOVA, F3,133 = 22.0, p = 1.3 3 10�11); participants learned

the PC FF significantly better than the other three FFs (PC/Posi-

tion: p = 0.028, PC/Velocity: p = 0.022, PC/NC: p = 6.6 3 10�10,

one-sided unpaired t test), and they learned the NC FF signifi-

cantly worse (NC/Position: p = 3.4 3 10�6, NC/Velocity: p =

4.1 3 10�6, one-sided unpaired t test). Moreover, the gain-space

trajectories shown in Figure 6D closely resemble those predicted

by the viscoelastic primitive model (Figures 3C and 6B), reflect-

ing the model’s ability to characterize the interplay between

the motor primitive distribution and task-specific goal. The

learning trajectories associated with the position-dependent

and velocity-dependent FFs are curved, reflecting the partial

alignment of the task-specific goal with the direction of maximal

variance in the primitive distribution, while the PC and NC trajec-

tories are straighter, reflecting full or no alignment, respectively,

between the direction of maximal variance and the learning goal

(Figure 6D).

Patterns of Interference between Different Types
of Dynamics
In order to test the prediction that a positively correlated change

in dynamics (D = [+P,+V] or D = [�P,�V]) should produce a faster
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Figure 7. Interference between Position-

Dependent and Velocity-Dependent FFs:

Gain-Space Trajectories

(A) Simulated gain-space trajectories for CW

sequence of FFs. The sequence of FFs experi-

enced is indicated in the top left corner of each

panel. FF goals are indicated by squares (+P:

blue, �P, light blue; +V: red, �V: light red). Longer

and brighter arrows indicate greater adaptive

changes in ten-trial intervals.

(B) Simulated gain-space trajectories for CCW

sequence of FFs.

(C) Experimentally observed gain-space trajecto-

ries for CW sequence of FFs. Red, black, and

brown arrows indicate the learning changes every

ten trials—if an error-clamp was not available at a

particular trial, the point in gain-space was ob-

tained by interpolation of neighboring data. The

redness of each arrow is proportional to its magni-

tude. Green and purple arrows represent the

learning-related changes in the PC and NC direc-

tions, respectively, for adaptation after the first

three trials of exposure to each FF. Subject aver-

ages are displayed.

(D) Experimental gain-space trajectories for CCW

sequence of FFs.

pattern of interference than a negatively

correlated change in dynamics (D =

[+P,�V] or D = [�P,+V]), we recruited 20

additional subjects (divided into two

subgroups) for an additional set of exper-

iments (Experiment 5). The experimental design is illustrated in

Figure 7. These subjects were alternately exposed to position-

and velocity-dependent FFs. After a baseline session of 160

null-field trials in each of two directions (90� and 270�), subgroup

1 learned +P, +V, �P, �V, and +P FFs for 120 trials each (in that

order) in the 270� direction, and +P, �V, �P, +V, and +P FFs in

the 90� direction (Figure 7). As in Experiments 1 and 4, error-

clamp probe trials were interspersed throughout FF exposure

with a frequency of about one in six trials to measure the adap-

tation to each FF environment. For subgroup 1, the 2D gain-

space representations of the FF sequence in the 270� direction

proceed in a CCW fashion, while those of the 90� sequence

proceed in a CW fashion (Figure 7). For subgroup 2, the FF

sequences for 90� and 270� movements were swapped for

a balanced experimental design. This experimental design

allowed us to examine each of the four possible changes in

dynamics between position- and velocity-dependent FFs (D =

[+P,+V], D = [�P,�V], D = [+P,�V], and D = [�P,+V]) and the eight

possible transitions between dynamics (+P/+V, +P/�V,

�P/+V, �P/�V, +V/+P, +V/�P, �V/+P, and �V/�P).

Experimental results are displayed in Figures 7C, 7D, and 8.

The gain-space trajectories displayed in Figures 7C and 7D

show that transitions requiring positively correlated changes

in dynamics (such as +P/�V) have larger initial learning rates

(displayed as the longer, brighter arrows with positive slopes)

than those transitions requiring negatively correlated changes

(such as +P/+V, displayed as the shorter, darker arrows with
Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc. 583



Neuron

Motor Adaptation Reflects Coding of Limb Motion
negative slopes). Each individual red, brown, or black arrow

depicts a gain-space representation of the learning achieved

during a bin of ten trials. The green and purple arrows corre-

spond to the adaptation rate during early learning—the first three

trials of exposure to the FF—for positively and negatively corre-

lated changes in dynamics, respectively. Note that the green

arrows are consistently longer than the purple arrows, indicating

that positively correlated transitions display higher learning rates

than negatively correlated transitions. Note also that in this inter-

ference paradigm, although the initial learning rates are faster for

positively correlated changes in dynamics, the initial amount of

interference is greater. Take, for example, the transition �P/

+V, which is displayed in the upper left of Figure 7A—it

requires a change in dynamics of D = [+P,+V], and is thus in

the PC direction. Since this transition begins with a slightly nega-

tive value for the velocity-gain in the 3rd quadrant, the velocity-
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Figure 8. Interference between Position-

Dependent and Velocity-Dependent FFs:

Learning Curves

(A–C) Learning for Null/P, Null/V, V/P, and

P/V transitions. First column displays learning

during the first three trials of exposure to the new

FF. Three-trial learning data was not available for

the Null/P transition. Second column displays

raw adaptation curves. Third column displays

normalized adaptation curves (see Experimental

Procedures)—inset displays average value of

normalized learning curves starting from Trial 0.

*p < 0.0035.

(D–F) Learning for all transitions to P FFs. Solid

curves indicate either Null/P or PC transitions.

Dotted curves indicate NC transitions. *p < 0.0059.

(G–I) Learning for all transitions to V FFs. Solid

curves indicate either Null/V or PC transitions.

Dotted curves indicate NC transitions. *p < 0.0020.

(J–L) Learning curves grouped by gain-space

direction. *p < 9.4 3 10�5.

gain is initially biased against that which

is to be learned (+V). In general, transi-

tions with positively correlated changes

in dynamics begin at points that are

initially biased against the current FF

goal, but display higher learning rates,

whereas transitions requiring negatively

correlated changes are initially biased

toward the current FF goal, but display

slower learning rates.

Both of these effects are readily

apparent in the learning curves displayed

in Figures 8E, 8H, and 8K. In these

panels, the learning curves associated

with positively correlated transitions

(plotted as thick solid lines) generally

begin lower but end higher than the

curves associated with negatively corre-

lated transitions (plotted as dotted lines).

These curves, along with those in

Figure 8B, are calculated and binned as in Experiment 4. We

calculated normalized adaptation curves (third column of

Figure 8, see Experimental Procedures) in order to make a fair

comparison between the learning rates displayed by the various

transitions in this interference paradigm. These curves (Figures

8F, 8I, and 8L) show that the transitions requiring positively

correlated changes in dynamics (thick solid lines) display faster

normalized adaptation rates than their negatively correlated

counterparts (dotted lines), corresponding to lower overall inter-

ference. The size of this effect is as great or greater than the over-

all interference between velocity- and position-dependent

dynamics, as shown in Figures 8A–8C.

For interference of velocity-dependent dynamics onto posi-

tion-dependent dynamics, we found that the negatively corre-

lated transitions displayed slower initial learning rates (Figure 8D;

one-sided unpaired t test, p = 0.0059) and slower overall learning
584 Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc.
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(Figure 8F; one-sided unpaired t test, p = 0.0073). For interfer-

ence of position-dependent dynamics onto velocity-dependent

dynamics, we also found that the negatively correlated transi-

tions displayed slower initial learning rates (Figure 8G; one-sided

unpaired t test, p = 0.002) and slower overall learning (Figure 8F;

one-sided unpaired t test, p = 8.1 3 10�9). When all the data is

combined (Figures 8J–8L), the differences between the patterns

of interference for positively correlated and negatively correlated

transitions are even clearer—the initial learning rates for the posi-

tively correlated transitions are 73% higher on average

(Figure 8J; one-sided unpaired t test, p = 9.4 3 10�5), and the

overall learning rate is 25% higher on average (Figure 8L; one-

sided unpaired t test, p = 1.3 3 10�7).

DISCUSSION

Here we have shown that neural representations of body motion

are tightly coupled with key features of motor adaptation. In

particular, the changes in motor output during the course of

adaptation can be explained by a population of motor primitives

that exhibit positively correlated responses to position and

velocity, as do neurons in primary motor cortex and muscle

spindle afferents. This positive correlation predicts a specific

pattern of crosstalk during adaptation to different classes of

dynamics that is borne out in our data. In particular, purely

position-dependent and purely velocity-dependent dynamics

induce adaptation with both appropriate and inappropriate

components, whereas combination FFs induce purely appro-

priate adaptation. This model also explains a general principle

of learning: that early adaptation tends to be rapid and stereo-

typed, whereas late adaptation is slower and more task specific.

Interestingly, the viscoelastic primitive model predicts the rate at

which different classes of dynamics can be learned; specifically,

that PC dynamics are intrinsically easiest to learn, while NC

dynamics are hardest to learn. In keeping with this prediction,

we find a greater than 3-fold difference in initial adaptation rates

for these classes of dynamics. Furthermore, the model predicts

that the patterns of interference between adaptations to posi-

tion-dependent and adaptations to velocity-dependent FFs

(and vice versa) are not monolithic, but instead depend on

whether the transition between consecutively learned FFs

requires a positively correlated or negatively correlated change

in dynamics in the position/velocity gain-space.

Primitives Depend on a Combination
of Position and Velocity
Previous work attempting to characterize the primitives under-

lying motor adaptation has shown that these primitives respond

to motion state rather than time (Conditt et al., 1997; Conditt and

Mussa-Ivaldi, 1999; Diedrichsen et al., 2007). However, prior

investigations on the primitives for motor adaptation have

focused on single-state variables rather than on combinations

of them. For example, studies have found local tuning of motor

primitives in velocity-space, although the precise width of this

tuning has remained somewhat controversial (Donchin et al.,

2003; Gandolfo et al., 1996; Krakauer et al., 2000; Thoroughman

and Shadmehr, 2000). Another line of work has focused on

comparing the abilities of the motor system in learning different
single-state dynamics. This work has revealed that motor prim-

itives are more sensitive to position and velocity than to acceler-

ation because novel acceleration-dependent dynamics are more

poorly learned and generalized than other novel dynamics

(Hwang and Shadmehr, 2005; Hwang et al., 2006). However,

studies focusing on single-state representations of dynamics

are unable to account for how the temporal structure of motor

output might evolve during adaptation. Indeed, it is only by

considering the motor primitives’ joint dependence on multiple

states (i.e., position and velocity) that we are able to gain insight

into this evolution.

Interference between Adaptations
to Different State-Dependent Dynamics
We were able to uncover a complex pattern of interference

between different state-dependent adaptations by examining

all eight possible transitions between position-dependent and

velocity-dependent adaptations. Some transitions displayed

high interference, and some displayed low interference. The

viscoelastic primitive model accounts for this pattern of interfer-

ence, as well as results of previous work that examined interfer-

ence between tasks based on the same kinematic variable

(i.e., position-dependent visuomotor rotation and position-

dependent FF) (Tong et al., 2002), or that only studied the low-

interference, +P/�V transition without examining the high-

interference +P/+V transition (Bays et al., 2005) (for further

discussion on Bays et al., 2005, see Supplemental Data). A key

observation about the patterns of interference is that transitions

with positively correlated changes in dynamics have greater

initial force error than the transitions with negatively correlated

changes, as discussed in the Results section. The finding that

larger initial force errors are not synonymous with slower learning

rates suggests that the practice of defining interference as higher

initial errors at task transition should perhaps be reconsidered

(Brashers-Krug et al., 1996; Donchin et al., 2002; Lee and

Schweighofer, 2009; Miall et al., 2004; Shadmehr and

Brashers-Krug, 1997).

Muscle Synergies
Several studies investigating postural control, force production,

and movement generation have found that focal stimulation of

the spinal cord elicits activation of specific muscle combinations,

termed synergies (Kargo and Giszter, 2000; Mussa-Ivaldi et al.,

1994; Tresch and Bizzi, 1999). These synergies are also observed

across different natural behaviors in animals (Bizzi et al., 2008;

d’Avella et al., 2003; Ting and Macpherson, 2005). It has been

hypothesized that these synergies constitute the functional

building blocks for these behaviors, in the sense that motor acti-

vation patterns during a variety of behaviors are formed by

different combinations of a small number of shared synergies

(Bizzi et al., 2008; d’Avella et al., 2003; Mussa-Ivaldi and Bizzi,

2000; Mussa-Ivaldi et al., 1994). However, it is not known to

what extent changes in motor output resulting from motor adap-

tation can be attributed to either changes in the organization of

the synergies themselves or changes in the relative activations

of different, existent synergies (Ting and McKay, 2007).

Interestingly, focal stimulation of the spinal cord, which is

thought to activate a specific muscle synergy, produces motor
Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc. 585
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output that is known to depend strongly on the position of the

limb (Kargo and Giszter, 2000; Mussa-Ivaldi et al., 1994; Tresch

and Bizzi, 1999). However, it is unclear how this motor output

depends on other components of motion state, particularly

velocity. Although our current work indicates that motor learning,

as well as the tuning of motor cortical cells (Ashe and Georgo-

poulos, 1994; Paninski et al., 2004; Wang et al., 2007) and

muscle spindle afferents (Edin and Vallbo, 1990; Matthews,

1933; Prochazka, 1999), is driven by a joint dependence on posi-

tion and velocity, such dependence has not been observed for

muscle synergies because the velocity dependence of the motor

output of these muscle synergies has not been characterized.

Nonetheless, it is likely that these spinal-level muscle synergies

are based on adaptive, supraspinal motor primitives. If so, one

would expect that the motor output patterns associated with

these synergies would often depend on position and velocity in

a correlated fashion given that the majority of the motor primi-

tives do so. If this were true, then perhaps adaptation requiring

positively correlated changes in dynamics of position and

velocity dependence could be achieved by varying the activation

of different synergies, whereas adaptation requiring negatively

correlated changes in dynamics could require changes in the

synergies themselves. Thus, the rapid adaptation we see in the

PC direction may correspond to reweighting the synergies

contributing to motor output, while the slower adaptation in the

NC direction may correspond to a reorganization of synergy

composition, or even the formation of a new synergy.

Just as muscle synergies may undergo reorganization, it is

possible that the state-dependence of the motor primitive popu-

lation may also be reshaped. Our current data suggest that if

such reshaping occurs, it operates on a timescale that is slower

than 240 trials because it appears that a single fixed distribution

explains both the single-trial and extended learning data pre-

sented in this study.

Early Learning Tends to Be Nonspecific
A key feature of motor adaptation is that early learning of different

dynamics tends to be nonspecific. This explains both the present

finding that single-trial exposure to position-dependent and

velocity-dependent FFs produces remarkably similar force

patterns, and previous work showing little difference in the

single-trial adaptive responses to force pulses administered

over a range of different positions in reaching arm movements

(Fine and Thoroughman, 2006). Interestingly, the viscoelastic

primitive model predicts not only the stereotypic shape of the

adaptive responses observed in this study, but their magnitudes

as well (Figure S12E). This underscores the idea that the motor

system adapts much more strongly to state-dependent dynamics

than non-state-dependent dynamics because although the shape

of thenarrow,70 ms forcepulses used in this studycannotbewell-

characterized by position-dependent and velocity-dependent

components, the adaptation resulting from exposure to these

force pulses can. Details are given in the Supplemental Data.

The Ability to Learn Different Dynamic Environments
Can Be Predicted
Our viscoelastic primitive model not only gives us insight into the

evolution of motor adaptation, but it also allows us to predict how
586 Neuron 64, 575–589, November 25, 2009 ª2009 Elsevier Inc.
quickly and to what extent any dynamics composed of elastic and

viscous components can be learned, and how different visco-

elastic dynamics will interfere with one another. In the current

paper, we verified these predictions by testing the most extreme

combinations of the elastic and viscous components. Prediction

of the ‘‘learnability’’ of a dynamic environment can now be based

on an understanding of the intrinsic relationship between the

dynamics of the environment and the motor primitive distribution,

rather than solely on interference from other learning experi-

ences, as in previous work (Bays et al., 2005; Hwang et al., 2003).

The ability to create the easiest possible motor learning task

may be of practical value for motor rehabilitation. For example,

the difficulty that stroke victims display in recovering motor

output appropriate for common tasks results from reduced rates

of motor learning for the affected limb. This difficulty is unfortu-

nately compounded by learned nonuse of the affected limb

that results from the motor disability and corresponding learning

deficit (Han et al., 2008; Taub et al., 2002). Training with the

easiest possible learning task may help reduce this learned

nonuse and speed recovery. In general, a better understanding

of motor learning will allow the rational design of improved

procedures to facilitate motor training and rehabilitation. The

tight coupling that we observe between the neural representa-

tions of body motion and key features of motor learning suggests

that greater understanding of neural representations will improve

our understanding of learning and vice-versa.

EXPERIMENTAL PROCEDURES

All experiment participants gave informed consent, and experimental proto-

cols were approved by the Harvard University Institutional Review Board.

Note that a more detailed version of these methods is available in the Supple-

mental Data.

In all experiments, subjects were instructed to grasp the handle of a robotic

manipulandum while making 500 ms, 10 cm straight, reaching arm movements

in the 90� and 270� directions (Figure 1A); however, all 90� movements were

error-clamp trials, and only 270� movements were analyzed. As the subjects

moved the manipulandum, we applied perturbative FF environments

(Figure 1B) of the form:�
Fx

Fy

�
= K,p + B,v =

�
0 �K
K 0

�
,

�
x
y

�
+

�
0 �B
B 0

�
,

�
,x
,y

�
(1)

where the eight different FFs (CW or CCW versions of the four FF types) were:

Position-Dependent: K = ±45N/m, B = 0Ns/m; Velocity-Dependent: K = 0N/m,

B = ±15Ns/m; Positive-Combination (PC): K = ±21.2N/m, B = ±13.2Ns/m;

Negative-Combination (NC): K = ±35N/m, B = H9.4Ns/m. To move in a straight

line, subjects needed to produce compensatory forces that were equal and

opposite to the robot-produced forces. Learning was quantified with a metric

found by projecting the gain-space representation of each learned force

pattern, measured using error-clamp probe trials, onto the associated

gain-space representation of the perturbing FF.

When plotting the gain-space representation of learning, we normalized the

axes such that the velocity-dependent FF of:

15
N,s

m

and a position-dependent FF of:

45
N

m

were represented by [0,1] and [1,0], respectively. These values were chosen

to equate peak perturbing force between these two types of FFs (see Supple-

mental Data).
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Experiment 1

We instructed 93 subjects to make 160 null-field baseline trials (i.e., trials

where no FF was applied) to familiarize themselves with the task. We then

applied velocity-dependent viscous curl-fields (Figure 1B) represented by

Equation 1 (K = 0N/m, B = ±15Ns/m), during which we gave error-clamp trials

20% of the time in order to measure the force output. As the training pro-

gressed, subjects consistently improved their performance on this dynamic

task (Figure 2A).

Viscoelastic Primitive Model

For Figures 3 and 6, we implemented the zero-mean, positively correlated

primitive distribution as a population of 5000 primitives, where this population

had identical variances for its sensitivity to position and velocity signals, with

a correlation of 0.8 between the two variances. The first-order gradient

descent learning rule is given by:

Dwi = hSiðerrorÞ= hjSi j,jerrorj,cos
�
qerror � qSi

�
(2)

where Dwi is the change in the weight for the ith primitive, h is the learning rate,

Si represents the position and velocity sensitivity of the ith primitive, and qerror is

the angle for the error vector.

For Figure 4, we implemented all of the learning rules with a zero-mean, posi-

tively correlated primitive distribution of 350 primitives with population charac-

teristics identical to those described above. The first-order gradient descent

learning rule applied was identical, as well. We implemented the cocontraction

learning rule as:

Dwi =
h1Si,error� c Si,error > 0
h2Si,error� c Si,error % 0

�
(3)

where h1>0, h2<0, jh1j>jh2j, and c>0. We implemented the Bayesian learning

rule as:�
mPost;x

mPost;y

�
=
�
S�1

Prior + S�1
M

��1
S�1

M

�
mM;x

mM;y

�
+
�
S�1

Prior + S�1
M

��1
S�1

Prior

�
mPrior;x

mPrior;y

�
(4)

SPost =
�
S�1

Prior + S�1
M

��1
(5)

where �
mPrior;x

mPrior;y

�
and

P
Post are the mean and covariance of the posterior,�

mM;x

mM;y

�
and

P
M are the mean and covariance of the measurement distribution, and�

mPrior

mPrior

�
and

P
Prior are the mean and covariance matrix of the prior.

We implemented the ‘‘pure’’ second-order learning rule as:

Dw = � h
�
V2 error

��1 �
V error

�
(6)

where h is the learning rate, Verror = SðST w� y�Þ is the gradient, and

V2error = SST is the Hessian matrix. We implemented the second-order

gradient descent learning rule as:

Dw = � hkbg = � h

 bgT
�
V error

�
bgT
�
V2 error

� bg
!bg (7)

where k is the step size determined by the Hessian, and bg = Verror=kVerrork is

the unit vector pointing in the gradient direction (Battiti, 1992). See Supple-

mental Data for a detailed explanation of these learning rules.

Experiment 2

To observe the learning after a single trial of exposure to either a position-

dependent or velocity-dependent FF, we had 39 subjects (Position-Depen-

dent: 23 subjects; Velocity-Dependent: 16 subjects) perform sets of 90� and

270� movements; however, all 90� were error-clamps, and only the 270� direc-
tion movements were analyzed. Subjects were tested for single-trial adapta-

tion via the administration of ‘‘triplets’’, during which the first and third move-

ments were error-clamp probe trials, and the second movement was an FF trial

(either a CW or CCW position-dependent or velocity-dependent FF). Single-

trial adaptation to the FF presented on the second trial was measured as the

difference between the force patterns from the two error-clamp trials. Triplets

were separated by two to five null-field washout trials. Representative force

patterns were found for each subject by averaging together 24 repetitions of

these movement triplets for single-trial learning. We characterized the position

and velocity contributions of these subject-specific force patterns, and took

the mean across subjects to find the average gain-space representation of

the single trial (Figure 5). The force patterns were also combined to find the

average lateral force patterns produced after a single trial for either a posi-

tion-dependent or velocity-dependent FF.

Experiment 3

See Supplemental Data for how the exact values of the PC and NC FFs were

determined. To observe the learning after a single trial of either a PC or NC FF,

we had 39 subjects (PC: 23 subjects; NC: 16 subjects) repeat movement trip-

lets in the 270� direction, mimicking the paradigm followed in Experiment 2.

Experiment 4

After a 200-trial baseline period, we instructed subjects to learn three FFs (CW

and CCW position-dependent, PC, and NC) for 160 trials in the 270� direction

(Position-Dependent: 34 subjects; PC: 16 subjects; NC: 16 subjects). Error-

clamp probe trials were interspersed during exposure to the FF with

a frequency of 20%. The force outputs observed during these probe trials

were averaged together into 20-trial bins for each subject. We characterized

the position and velocity contributions to these subject-specific force patterns,

and took the mean of these contributions across subjects to find the gain-

space representation for each bin (Figure 6D). To compare the learning of

each FF, we projected each binned point in gain-space onto the vector repre-

senting the FF target (Figure 6C).

Experiment 5

Twenty subjects participated in the interference experiments. The different FFs

used in this experiment were of the same form as Equation 1, with K = ±45N/m,

B = 0Ns/m for the position-dependent FFs, and K = 0N/m, B = ±15Ns/m for the

velocity-dependent FFs. The raw adaptation curves were normalized by the

following equation:

LCnormal =
LCraw � baseline

1� baseline
(8)

This normalization allowed us to compare learning curves that had different

baselines, such as the curves associated with �P/+V and �P/�V

(Figure 8H).

The gain-space trajectories in Figures 7C and 7D are obtained by averaging

data across movement directions and subjects. Half of the subjects learned

the CW sequence in the 270� movement direction, along with the CCW

sequence in the 90� direction, while the other half of subjects did the reverse.

SUPPLEMENTAL DATA

Supplemental data for this article include Supplemental Experimental Proce-

dures and 12 figures and can be found at http://www.cell.com/neuron/

supplemental/S0896-6273(09)00795-8.
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